
with matter ejected by supernova explosions [11]. 

At the same time, models of coronas without heat conduction are in complete agree- 
ment with the observational data. Such coronas could easily be relics of "hot" proto- 
galaxies, which may exist practically unchanged during billions of years after the in- 
itial phase of rapid evolution of a hot cloud of the protogalaxy. 
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ROTATION OF GAS ABOVE THE GALACTIC DISK 

V. V. Gvaramadze and Dzh. G. Lominadze 

The galactic disk is modeled by an oblate spheroid with confocal spheroidal 
isodensity surfaces. An explicit analytic expression is found for the 
angular velocity of the gas outside the disk. The parameters of a three- 
component model of a spiral galaxy (oblate spheroid with central hole, 
bulge, and massive corona) are chosen in such a way as to obtain in the 
disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It 
is shown that at heights Izl ~ 2 kpc the gas rotates in the same manner 
as the disk. However, at greater heights the rotation curve ceases to 
have two humps. Allowance for the pressure gradient of the gas slightly 
changes the rotation curve directly above the disk (r < rdisk) and leads 
to a falling rotation curve beyond the edge of the disk (r > rdisk). 

i. Introduction 

The gas in the disk of the Galaxy rotates differentially and has a two-hump rotat- 
tion curve (see, for example, [i]). The gas outside the disk also participates in the 
rotation of the Galaxy. Observations of the H I emission lines at 21 cm at intermediate 
latitudes (6 ~ ~ b ~ 20 ~ ) [2] show that up to heights Izl = 1--2 kpc the halo gas rotates 
in the same way as in the disk. However, the observed motion of the high-latitude (b > 
20 ~ ) molecular clouds can be explained by assuming that the rotation velocity of the halo 
gas decreases with increasing distance from the plane of the disk [3]. There are also 
indications of more complicated motions than simple rotation, for example, flows of a 
"galactic fountain" type, meridional circulation, galactic wind, and accretion from 
intergalactic space. Nevertheless, differential rotation can be regarded as the pre- 
dominant mode of motion of the halo gas. 

Information about the distribution of the rotation are important for understanding 
the hydrodynamics of the galactic gas. For example, the presence of a vertical gradient 
of the angular velocity means that the gas pressure cannot be a function of just the 
density alone. An inclination between the surfaces of constant pressure and constant 
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density leads to a baroclinic instability. A gradient of the angular velocity can also 
lead to other hydrodynamic instabilities, for example, the shear instability and the 
Goldreich-Schubert instability [4, 5]. Inhomogeneity of the angular velocity also 
leads to an enhancement of the magnetic field. Knowing the angular velocity and the 
gradient of the gas density in the disk and halo, one can find the mean spiral turbulence, 
which is a characteristic of turbulent gas motion important for generation of a magnetic 
field[6]. 

In this paper, we study the distribution of the rotation of the gas above the galactic 
disk. The motion of the gas is determined by the total gravitational field of the com- 
ponents that form the Galaxy -- the bulge, disk with hole, and the massive corona (see, 
for example, [i]). The self-gravity of the gas in the halo can be ignored. The degree 
of influence of each component on the motion of the gas depends on the distance of the 
considered element of gas from the center and from the central plane of the Galaxy. The 
massive corona has a strong influence on the rotation only at large distances from the 
galactic center, while the bulge has a strong influence at short distances. At short 
distances from the central plane of the Galaxy and far from the inner and outer radii 
of the disk the motion of the gas above the disk is basically determined by the gravita- 
tional field of the disk. 

For simplicity, we shall assume that the disk has the shape of an ellipsoid of rev- 
olution, and that its isodensity surfaces are confocal ellipsoids. We shall assume that 
the corona is spherically symmetric. In Sec. 2, we find the gravitational potential 
of the disk. In Sec. 3, we give the distribution of the angular velocity above the disk. 
For the transition to the real rotation curve, we introduce in the fourth section a cen- 
tral mass and massive corona and take into account the density deficit in the central 
region of the disk (the hole). The possible part played by a pressure gradient is dis~ 
cussed in the fifth section. Brief conclusions are given at the end~ 

2. The Gravitational Potential of the Disk 

In this section, we obtain the gravitational potential of an ellipsoid of revolu- 
tion having as isodensity surfaces confocal ellipsoids. The gravitational potential of 
a body of arbitrary shape is 

~dMR G ~ ~(r')d:~r', (1) 
: - a j - 

where the integration is over the complete volume of the body. If the body possesses 
some symmetry (exact or approximate), then the most effective method for finding the 
potential is an expansion with respect to orthogonal functions. The particular choice 
of the orthogonal system of functions depends on the symmetry. 

We shall assume that the stellar disk of the Galaxy has the form of an oblate ellip- 
soid of revolution (spheroid). The section Of the disk perpendicular to the plane of 
rotation has the form of an ellipse. It is then natural to make all the calculations 
in a system of oblate spheroidal coordinates: 

i = c [(~2 :+ 1)(1 --~2)],2cos~, 
=c[(~+ 1) (1--  ~)]~ 2 sin ~, 0 ~ ( ~ ,  - -1  ~ - ~ 1 ,  0 ~ 2 ~ .  (2) 

= c~,  

The Lam6 parameters in this system of coordinates have the form 

h ~ = c  }~+1 1 j ' " ~ = c [ ( } ~ + l ) ( 1 - - ~ ) ] l e  

and t he  e l emen t  of  volume can be e x p r e s s e d  in  terms of  t h e  i n t r o d u c e d  c o o r d i n a t e s  as 
follows: 

d:~r = c:; (s + 7A ~ ) d~d'~d~, 

where c = r 2 -- b 2 is the half-distance between the focuses of the spheroid, and a and 

(3) 
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b are, respectively, the semimajor and semiminor axes of the spheroid. The boundary of 
the spheroid is determined by the relation ~ = ~0 = b/c. 

In the oblate spheroidal coordinates we can expand R -~ in a series in associated 
Legendre functions [7, 8]: 

where 

- - :  - -  ~ 2 [ ( n - - m ) '  ['cos [rn ( ~ -  ,~;)] 1 1 (2n + 1) ~ i ~+~ " 
R c ,=o m=O (n + m)! I 

PT (r/) PT (~) { , . .  ,, =, 
/ - , ~ t  ), 

{ Sm = I, for m=O, 
8m = 2 ,  for m>O, 

P~ and Q~ a r e  a s s o c i a t e d  Legendre  f u n c t i o n s  Of t h e  f i r s t  and second  k i n d s ,  r e s p e c t i v e l y .  

Substituting the expansion (4) for the case $ > ~0 ~ $', i.e., outside the disk, 
in the general formula (i) and taking into account (3), we obtain a representation of 
the gravitational potential of the ellipsoid in the oblate spheroidal coordinates: 

r  ~, ~) = Gc ~ ~ " 
n ~ 0  m = O  

(4) 

[ ( ~ - m ) '  ]~ 
�9 cos[m (~ - - ~ ' )  ] P~ (~') P~( i~ ' )  PT(~ )  Q~ (i~)} d~'dq'd~'. 

(n + m)! 

The i n t e g r a t i o n  over  ~' i s  f rom 0 to  ~0, ove r  q'  f rom --1 to  +1, and over  ~' f rom 0 to  2~. 

We a s s u m e  t h a t  t h e  d e n s i t y  does  n o t  depend on ~ ( a x i a l  symmet ry ) ,  and t h e n  a l l  i n -  
t e g r a l s  w i t h  m > 0 a r e  z e r o .  The e x p r e s s i o n  f o r  t h e  g r a v i t a t i o n a l  p o t e n t i a l  s i m p l i f i e s ,  

,J 

We consider the terms of this series 

i,=o2 (2n q- 1) P ,  (~') P , (~)  P , ( i ~ ' ) Q .  (i~)l d~'d~'d~.'. 

where ~0, ~, 

(~, o) = r (,~, 9 + % (~, ~) + % (.~, ~) + .... 
~_, e t c . ,  a r e  d e t e r m i n e d  by 

r (~, ~) = -- c2GIoarctg(1/~),  

0 --1 

(5) 

(6) 

1 
r  (L 0) = - -  3c~GI,~ [$ aretg (1/~) - 1], 

I~ = 2r.i P (~', ~i') (~,2 ~_ ~,2) Pl 0]') P~ (K')  d~'d~'; 

0 - - 1  

r (~, ~ o ) =  --~5 c2Gl 2 (3~2 1)[(1 + 312) a rc tg (1 /~ )_  3~], 

~ : 2 ~  I I p  (r ~') (~'-~ + v{2)P2(.()p. , . ( ir  
t 7  L-- 
0 - 1  

(7) 

The constants I0, 1!, 12, etc., can be readily determined by specifying the particular 
form of the density function. For P = p($), i.e., when the density is distributed over 
confocal spheroids (and also in the special case p = const), all the constants except 
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I 0 and 12 are zero. This can be readily seen by representing $2 + q2 in the form 

~+~,~=P0(~)(~'4-. + 2p3 ~ (~) 

and by using in the integration over ~ the orthogonality property of the Legendre functions: 
1 

s P. (~) P .  (~) d~ = B.. __3__ 

2n + 1 
- - 1  

In the well-known (see, for example, [9]) special case 0 = const, the constants I 0 and 
12 have the form 

4~ R ~.2~ 1 M 
= = 7 ( 8 )  

T "  ~,{} ~ C ;I 
4 - ] -  p~o (1 p v =  --, 

1~ = - 1 4 ,  ( 9 )  
5 

In (8) V = (4~/3)alb is the volume of the spheroid, and M is its mass. 

After substitution of (6), (7), and (9) in (5) we obtain 

�9 (~, ~) = arctg(1/~) + ~- (3~  ~ -  1)[(1 ~ . aretg (1.,!) - -  3~] . (10)  

The o b l a t e  s p h e r o i d a l  c o o r d i n a t e s  ~ and q a r e  r e l a t e d  t o  t h e  c y l i n d r i c a l  c o o r d i n a t e s  r 
and z by 

I [~ ~],~ i~ ~+4P~q~,.~, ~=z~ p _ ~ .  1 [~ + p],l~, ~ . . . . .  ~ = + 

~= V---~-T ~ / ~  

After some manipulations the expression (i0) can be shown to be identical to the well- 
known expression for the gravitational potential of a homogeneous spheroid [9]~ How- 
ever, it is found that this expression is unchanged in the more general case 0 = 0(~), 
since the relation (9) between the constants I0 and 12 remains true. Thus, the gravita- 
tional potential outside an inhomogeneous ellipsoid of revolution whose isodensity sur- 
faces are confocal ellipsoids is identical to the gravitational potential of a homogeneous 
ellipsoid of revolution of the same mass. Similarly, the gravitational potential out- 
side a spherically symmetric mass distribution does not depend on the particular distribu- 
tion of the density. 

We note that the gravitational potential of an ellipsoid of revolution for the special 
case of isodensity surfaces in the form of confocal ellipsoids was obtained in [I0], but 
the identity of the obtained potential and the potential of a homogeneous ellipsoid was 
not pointed out. 

Using the connection between $ and q (see (2)), we can rewrite (i0) in the form 

From t h i s  e x p r e s s i o n  we can r e a d i l y  f i n d  t h e  f o r c e  f u n c t i o n  K r = - -O~/Sr .  

3. D i s t r i b u t i o n  o f  t h e  A n g u l a r  V e l o c i t y  

I g n o r i n g  t h e  s e l f - g r a v i t y  o f  t h e  gas  o u t s i d e  t h e  d i s k ,  we can assume t h a t  t h e  mo t ion  
o f  t h e  gas  i s  d e t e r m i n e d  by t h e  g r a v i t a t i o n a l  f i e l d  o f  t h e  d i s k .  I n  t h i s  and t h e  f o l l o w i n g  
s e c t i o n  we s h a l l  assume t h a t  t h e  r a d i a l  component  o f  t h e  g r a v i t a t i o n a l  f o r c e  o f  t h e  d i s k  
i s  b a l a n c e d  by t h e  c e n t r i f u g a l  f o r c e .  

~ r = K ~ ,  ( I I )  

where ~ is the angular velocity of rotation of the gas (the possible role of a radial 
pressure gradient will be discussed in Sec. 5). From (ii) we find the angular velocity 
and the linear velocity corresponding to it: 
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Fig. 2. Radial dependence of the 
linear velocity for different z. 

Figures 1 and 2 give the angular and linear velocities as functions of the radius 
for different z. To be specific, we have taken a disk with major and minor axes a = 12.5 
kpc and b = 0.5 kpc. It can be seen from Fig. 2 that the maximum of the linear velocity 
near the plane of the disk is at the edge of the disk, and is shifted to larger r with 
increasing distance from the disk. The fact that the maximum of the linear velocity is 
at the edge of the disk is due to the fact that the density in the disk is distributed 
with respect to the confocal spheroids, i.e., is a function of only $. If a dependence 
of the density on the coordinate q is taken into account, the maximum can be shifted 
closer to the rotation axis. In the Galaxy it is at about r = 9 kpc. In this paper we 
do not aim to reproduce individual properties of particular systems, for example, the 
Galaxy. Our main aim is a qualitative investigation of the rotation of the halo gas. 

Figure 3 shows the angular velocity as a function of the distance to the plane of 
the disk at different r. 

4. A More Realistic Model 

Real spiral galaxies have other components besides a disk. We limit ourselves to 
a three-component model of spirals and assume that they consist of a bulge, a disk, and 
a massive corona (see, for example, [i]). 

p u i ~ 

~" 150 
'o pc 

0 10 2o 

Z (kpc )  

F i g .  3. Dependence  o f  a n g u l a r  v e -  
l o c i t y  on t h e  d i s t a n c e  t o  t h e  
p l a n e  o f  t h e  d i s k  a t  d i f f e r e n t  r .  

TABLE i. Parameters of Bulge, Disk, 
and Hole. 

Bulge 

Disk 

Hole 

Major axis, 
a (kpc) 

1 

12.5 
3 

Minor axis, I Mass, 
b (kpc) IM (iu!0 . ~) 

i 

0.6 i 1.2 
0.5 i 7.0 
0.5 I --0.4 
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It is known from observations that the rotation curves of the Galaxy M 31, and M 81 
have deep minima at distances r = 1--4 kpc from the center. The observed minimum can 
be explained if the stellar disk has a density deficit (a hole) in the central region 
[ii]. To be specific, we consider the Galaxy. The hole in the disk of the Galaxy has 
a radius r ~ 3 kpc. For simplicity, we shall assume that the hole and the bulge, like 
the disk, have a spheroidal shape. The parameters of the bulge, disk, and hole are 
given in Table i. 

We shall assume that the massive corona is spherically symmetric. The density in 
it is distributed in accordance with the law [12] 

p ( R )  = Pc 
I+(R/Rc) ~ 

(12) 

where R 2 = r 2 + z 2, Pc = 2"15"10-2 MQ pc -3, R c = 15.4 kpc. The gravitational potential 

within the spherically symmetric mass distribution (12) is determined by the expression 

= - - 4 ~ g p R ~ { 1  - -  R~. qbcorona(R) arct~ \ R 

R 1 In R~" + R~\ 

where R 0 is the radius of the region occupied by the mass. 

From the linearity of Poisson's equation in # and p it follows that the gravitational 
potentials of the components that form the Galaxy are added. Allowance for the hole is 
equivalent to introducing a comPonent with negative mass. The total linear rotation ve- 
locity of the halo gas is 

'U2 ---- V2bulge ~- v~lisk-- Vhole Vcorona' " ~J" 

where Vbulge, Vdisk, Vhole, and Vcorona are the linear rotation velocities of the cor- 
responding components. Figure 4 gives the rotation curves for different z. We have 
chosen the masses of the components to make the rotation curve above the disk at height 
Izl = 0.6 kpc similar to the rotation curve in the disk (see, however, Sec. 3)~ The rota- 
tion curve retains a two-hump shape to heights [z I < 2 kpc. At greater heights, the rota- 
tion curve has only one hump. This property is a general property of rotation above disk 
systems with holes. Figure 5 gives the angular velocity as a function of the distance 
to the galactic plane for different r. 

5. Allowance for Pressure 

When the rotation curves of spiral galaxies in the plane of their rotation (z = 0) 
are being constructed, the influence of a pressure gradient is ignored, and it is assumed 
that the radial component of the gravitational force is equalized by the centrifugal 
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Fig. 6. Modified rotation curve at dif- 
ferent distances from the plane of the 
galaxy. For comparison, the broken 
curve is the rotation curve (Iz[ = 0.6 
kpc) obtained without allowance for the 
pressure gradient. 

force (see, for example, [i]). This can be done because the rms velocity of the gas 
(v t ~ i0 km/sec) is small compared with the rotation velocity (v ~ 200 km/sec). We com- 
pare the two terms ~2r and (i/p)SP/3r. Assuming that P ~ pv i and replacing 8P/Sr by 
P/r, we obtain the estimate 

1 oP v~ v ~ 
? Or r %~---r = ~2r" 

In the halo the situation is different. The temperature of the halo gas is about 
two orders of magnitude higher than in the disk, Thalo = 5"I0S~ Therefore, the rms 
velocity of the gas in the halo is also higher (v t = i00 km/sec). In this case, the 
terms ~2r and (i/p)SP/Sr are comparable. 

Thus, in the halo the equilibrium of the gas in the radial direction is described 
by the equation 

I 0P 

? Or 

which differs from (ii) by the edition of the pressure gradient. We shall assume that 
the pressure of the gas in the halo has a thermal nature, and that the rms turbulent ve- 
locity of the gas is equal to the thermal velocity: 

(14) 

p ~ _  1 '  2 l / ~  3 k T  
- ~  pv ~; v t  = V m 

For an isothermal gas 

a P = 1 2 o  P. (15)  
dr- 3 t dr 

Note that in Eq. (15) the pressure is a function of the density alone, but this, strictly 
speaking, is possible only if the angular velocity does not depend on z. However, in a 
first approximation, until we consider the baroclinic instability in the obtained ve- 
locity field, the gas can be assumed to be barotropic. 

We consider two model distributions of the gas density in the halo: 

a) The density depends only on z. Then the radial pressure gradient is zero and 
the pressure does not change the rotation curve. 

b) The density of the gas in the halo decreases exponentially with increasing r, 
p(r) ~ exp(--r/r0). From (15) we obtain 

OP p 
- -  _ _  V 2  

t ~ 
Or 3ro 

Then from Eq. (14) we obtain for the linear velocity the expression 
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3F 0 

where v = mr, and 92 is determined by Eq. (13). The modified rotation curves for dif- 
ferent z are given in Fig. 6, where we have set r 0 = i0 kpc. 

Thus, the pressure gradient has the consequence that the rotation curve of the halo 
may decrease at large radii even in the presence of a massive corona, when the rotation 
curve of the disk is flat. 

6. Conclusions 

The gravitational potential outside an inhomogeneous ellipsoid of revolution whose 
isodensity surfaces are confocal ellipsoids is identical to the gravitational potential 
of a homogeneous ellipsoid of revolution of the same mass. 

The halo gas rotates differentially. Near the disk (Izl g 2 kpc) it preserves a two- 
hump rotation curve like the rotation curve in the plane of the Galaxy (z = 0). With 
increasing distance from the plane of the disk the rotation curve becomes a single-hump 
curve, i.e., the influence of the hole becomes unimportant, and the maximum of the rota- 
tion curve is shifted to larger r. 

Allowance for the pressure gradient slightly changes the rotation curve above the 
disk (r < rdisk) and leads to a falling rotation curve beyond the edge of the disk 
(r > rdisk), even in the presence of a massive corona. 

We are grateful to A. A. Ruzmaikin and A. M. Shukurov for numerous helpful discus- 
sions, to M. G. Abramyan and A. M. Fridman for their interest in the work, and also V. 
L. Polyachenko, who drew our attention to [i0]. 
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