С.В. Брагинец канд. техн. наук О.Н. Бахчевников, канд. техн. наук А.И. Рухляда мл. науч. сотр. М.В. Чернуцкий инж. ФГБНУ «Аграрный научный центр «Донской» (ФГБНУ «АНЦ «Донской»), г. Зерноград

ТЕХНОЛОГИЧЕСКИЙ МОДУЛЬ КОМПЛЕКСНОЙ ПОДГОТОВКИ РАСТИТЕЛЬНОЙ МАССЫ К ИСПОЛЬЗОВАНИЮ В СОСТАВЕ КОМБИКОРМОВ

Введение. В настоящее время серьезной проблемой для внутрихозяйственных комбикормовых предприятий является высокая стоимость традиционного белкового сырья (соевый шрот, рыбная мука и др.). В связи с этим ведется поиск альтернативных дешевых видов такого сырья [1]. Для сельхозпредприятий России доступным источником сырья для обогащения комбикормов протеином являются кормовые травы, такие как люцерна, клевер, амарант, эспарцет, донник [2].

Была разработана рациональная технологическая схема ввода растительной массы кормовых трав в состав комбикормов, предусматривающая, в летний период, ее измельчение, совместное экструдирование с фуражным зерном и смешивание экструдата с прочими компонентами корма [3]. Схема предусматривает также заготовку растительной массы для включения в состав комбикормов в зимний период, для чего она подвергается комбинированной сушке путем чередования низкотемпературной конвективной сушки и воздействия СВЧ-излучения [3]. Высушенная растительная масса гранулируется. В зимний период гранулы измельчаются и смешиваются с остальными видами сырья.

Целью исследования являлась разработка реализующей представленную технологическую схему машинно-аппаратной схемы комплексной подготовки растительной массы и оформление ее в виде перспективного проектного решения, позволяющего включать ее в состав как вновь проектируемых, так и уже существующих небольших внутрихозяйственных комбикормовых предприятий.

Методы исследования. Исследования проводились на основе положений системного анализа и синтеза [4] и модульного принципа построения технических систем [5].

Результаты исследования. Разработана машинно-аппаратная схема перспективной технологической линии комплексной подготовки растительной массы (рисунок 1), включающая два технологических блока: экструдирования (дисковый измельчитель, одношнековый экструдер, измельчитель и охладитель экструдата) и сушки (установка для комбинированной сушки, пресс-гранулятор и охладитель гранул).

Особенностью предлагаемой машинно-аппаратной схемы является то, что растительная масса после измельчения может быть направлена либо в экструдер для обработки и последующего введения в состав комбикорма, либо в установку комбинированной сушки для последующего гранулирования и закладки на хранение.

В летний период свежескошенная растительная масса кормовых трав поступает в блок экструдирования, где измельчается дисковым измельчителем и подается в экструдер, снабженный объемным дозатором, куда поступает и предварительно измельченное фуражное зерно. Доля зеленой массы в экструдируемой смеси может составлять до 30%. Получаемый в экструдере зернорастительный экструдат подается транспортером в охладитель, где охлаждается до температуры окружающей среды. Охлажденный экструдат по шнековому транспортеру поступает в вальцовый измельчитель-структуратор, где измельчается. Измельченный зернорастительный экструдат далее транспортируется в оперативную емкость для промежуточного хранения. Оттуда он по мере необходимости направляется в блок дозирования и смешивания предприятия, где смешивается с остальными компонентами комбикорма.

Растительная масса после измельчения может быть направлена в блок комбинированной сушки. Сушка травяной резки осуществляется в комбинированной установке для низкотемпературной конвективной и СВЧ-сушки [6]. При этом вначале производится конвективная сушка измельченной растительной массы при температуре 50-60°С, при которой происходит нагрев и испарение влаги с поверхности ее частиц, а в завершении она подвергается воздействию СВЧ-излучения, вызывающего кратковременный нагрев частиц по всему их объему до температуры 60-90°С и удаление влаги из глубинных слоев. Высушенная растительная масса подвергается гранулированию с целью обеспечения большей сохранности при хранении. В зимний период гранулы измельчаются и направляются в блок дозирования и смешивания предприятия, где смешиваются с остальными компонентами комбикорма.

Для того чтобы обеспечит возможность включения разработанной технологической линии в состав не только вновь проектируемых, но и уже существующих небольших внутрихозяйственных комбикормовых предприятий, рационально оформить ее как автономный технологический модуль (рисунок 2).

В разработанном проектном решении каждый из двух блоков модуля представляет собой стальной каркас, внутри которого размещается оборудование. Каркасы блоков имеют габариты стандартного грузового контейнера (6×2,5×2,6 м), что позволяет перевозить их автомобильным транспортом. На площадке заказчика готовые блоки устанавливаются на легком фундаменте и соединяются в вертикальной или горизонтальной плоскостях, образуя технологический модуль подготовки растительной массы. После завершения установки технологический модуль подключается к электросети существующего предприятия и соединяется транспортным оборудованием с бункерами для оперативного хранения исходного сырья и бункером для подготовленного

сырья, который, в свою очередь, соединяется с линией дозирования и смешивания компонентов комбикорма.

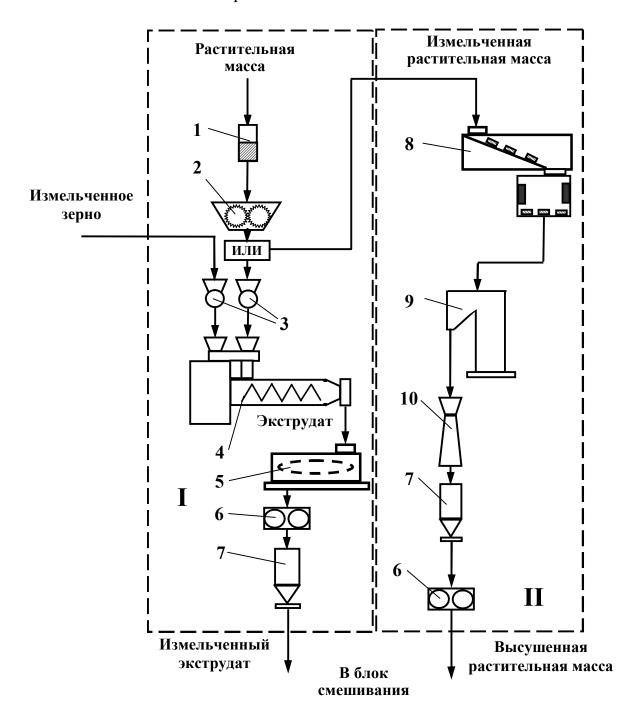


Рис. 1. Машинно-аппаратная схема технологической линии комплексной подготовки растительной массы:

I — технологический блок экструдирования; II — технологический блок комбинированной сушки растительной массы; 1 — магнитная защита; 2 — дисковый измельчитель; 3 — объемный дозатор; 4 — экструдер; 5 — охладитель экструдата; 6 — измельчитель-структуратор; 7 — оперативная емкость; 12 — установка для комбинированной сушки; 9 — пресс-гранулятор; 10 — охладитель гранул

Автономный технологический модуль комплексной подготовки растительной массы имеет производительность $0,5\,$ т/ч при экструдировании зеленой массы и $0,25\,$ т/ч при ее сушке.

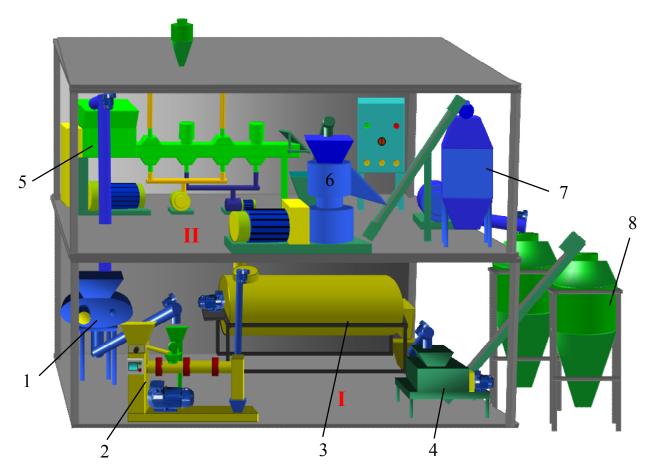


Рис. 2. Технологический модуль комплексной подготовки растительной массы (общий вид):

I — технологический блок экструдирования; II — технологический блок сушки растительной массы; 1 — дисковый измельчитель растительной массы; 2 — экструдер; 3 — охладитель экструдата; 4 — измельчитель экструдата; 5 — установка для комбинированной сушки; 6 — пресс-гранулятор; 7 — охладитель гранул; 8 — бункер для подготовленного сырья

Выводы. Разрабатываемый технологический модуль подготовки растительной массы найдет применение в существующих и вновь создаваемых малых внутрихозяйственных комбикормовых предприятиях. Применение перспективного технологического модуля позволит восполнить потребность сельскохозяйственных животных в растительном протеине и каротине путем ввода зеленой и высушенной растительной массы в состав приготовляемых комбикормов.

Список литературы

1. Протеины: новое в технологии производства и возможности использования // Комбикорма. 2017. № 10. С. 59–62.

- 2. Шевцов А.А., Дерканосова А.А., Коротаева А.А. «Зеленые» инновации в производстве комбикормов // Актуальные направления научных исследований XXI века: теория и практика. 2015. Т. 3. № 4-3. С. 240–242.
- 3. Брагинец С.В., Бахчевников О.Н., Рухляда А.И. Рациональная технологическая схема внутрихозяйственного производства комбикормов для телят с включением растительной массы // Молочнохозяйственный вестник. 2016. № 3. С. 46–54.
- 4. Винограй Э.Г. Учет системных закономерностей в инженерном мышлении и проектировании // Социогуманитарный вестник. 2014. № 1. С. 141–154.
- 5. Baldwin C., Clark K. Modularity in the design of complex engineering systems // Complex engineered systems. Berlin: Springer, 2006. C. 175–205.
- 6. Установка комбинированной сушки зеленой растительной массы : пат. 2620462 Рос. Федерация / Пахомов В.И., Брагинец С.В., Бахчевников О.Н., Рухляда А.И., Дровалев А.В.; заявитель и патентообладатель ФГБНУ «Аграрный научный центр «Донской» № 2015150664; заявл. 25.11.2015; опубл. 25.05.2017, Бюл. № 15.

Цитировать как: Брагинец С.В., Бахчевников О.Н., Рухляда А.И., Чернуцкий М.В. Технологический модуль комплексной подготовки растительной массы к использованию в составе комбикормов // Сборник научных статей по материалам XIV Международной научно-практической конференции «Актуальные проблемы научно-технического прогресса в АПК». — Ставрополь: АГРУС, 2018. — С. 8—13.