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THE GAUSS–BONNET TERM

The Gauss–Bonnet term is

G = R2 − 4RµνR
µν + RµναβR

µναβ .

The integral

SG =

∫
dDx
√
−gG,

is a full derivative at D = 4.
So, if we add SG to a four-dimension action, the equations do not change.
Let us consider, the action

SR =

∫
d4x
√
−g
(
AR2 + BRµνR

µν + CRµναβR
µναβ

)
, (1)

where A, B and C are arbitrary constants. You can always put one of
these constants is equal to zero without changing the equations of
motion. For example, subtracting CSG we get the action

S̃R =

∫
d4x
√
−g
(
(A− C )R2 + (B + 4C )RµνR

µν
)
, (2)

that yields the same equations of motion as SR.
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MODIFIED GRAVITY MODELS WITH THE
GAUSS–BONNET TERM

There are two basic motivations which lead cosmologists to modify
gravity.

The first one is an attempt to connect gravity with quantum physics, at
least in a perturbative way, by including quantum correction terms to
Einstein’s equations.

The second one is an interest to describe the Universe evolution in a
more natural way, without the dark energy and the dark matter
components, which turn out to be avoidable in the modified models.
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The Gauss–Bonnet models are motivated by α′ corrections in string
theories. The most general Lagrangian density at the next to leading
order in the Regge slope α′ reads1:

Lstring = −λ
2
α′ξ(φ)

[
c1G + c2G

µν∂µφ∂µφ+ c3�φφ
;µφ;µ + c4(φ;µφ;µ)2

]
,

where
• Gµν ≡ Rµν − 1

2g
µνR is the Einstein tensor and G is the Gauss–Bonnet

combination;
• α′ = λ2s , where λs is the fundamental string length scale;
• ci are constants (we will consider the case ck = 0, k = 2, 3, 4);
• λ is an additional parameter allowing for different species of string
theories, λ = −1/4 for the Bosonic string and λ = −1/8 for Heterotic
string respectively.

1D.J. Gross and J.H. Sloan, Nucl. Phys. B 291 (1987) 41;
R.R. Metsaev and A.A. Tseytlin, Nucl. Phys. B 293 (1987) 385.
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THE EINSTEIN–GAUSS–BONNET GRAVITY

The model with the Gauss–Bonnet term in a general background
described by the following action,

S =

∫
d4x
√
−g
(
U(φ)R − K

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
, (3)

where U, V , and F are differentiable functions and K = −1, 0, 1.
Let us consider the action

Sf G =

∫
d4x
√
−gf (G), (4)

where f is a differentiable function. Action Sf G can be linearized with
respect to the Gauss–Bonnet term, by adding one more scalar field in the
action2. Introducing a field φ with K = 0, we obtain the following action:

SGBφ =

∫
d4x
√
−g
[[

df

dφ
(G − φ) + f (φ)

]]
.

Varying over φ, one gets φ = G and reconstruct Sf G .

2G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, Phys. Rev. D 73
(2006) 084007, [arXiv:hep-th/0601008]
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FOUR EPOCHS

Reliable astronomical data support the existence of four distinct epochs
of the Universe global evolution:

an inflation,

a radiation dominated era,

a matter dominated era,

the present dark energy epoch.

Initial inflation and dark energy domination are both characterized by an
accelerated expansion of the Universe with almost constant Hubble
parameter H.
The other epochs of the Universe evolution are described by power-law
solutions with H = J/t, where J is a positive constant.
In General Relativity, power-law solutions with H = J/t correspond to
models with a perfect fluid whose EoS parameter reads
wm = −1 + 2/(3J).
The radiation dominated epoch corresponds to solutions with J = 1/2,
whereas the matter dominated one corresponds to J = 2/3.
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INFLATIONARY MODELS

The perturbation theory for such types of models has been developed in
C. Cartier, J. c. Hwang and E. J. Copeland, Evolution of cosmological
perturbations in nonsingular string cosmologies, Phys. Rev. D 64 (2001)
103504 [astro-ph/0106197];
J. c. Hwang and H. Noh, Classical evolution and quantum generation in
generalized gravity theories including string corrections and tachyon:
Unified analysis, Phys. Rev. D 71 (2005) 063536 [gr-qc/0412126]
Inflationary models have been proposed:
C. van de Bruck and C. Longden, Phys. Rev. D 93 (2016) 063519
[arXiv:1512.04768]
K. Nozari and N. Rashidi, Phys. Rev. D 95 (2017) 123518
[arXiv:1705.02617]
S.D. Odintsov and V.K. Oikonomou, Phys. Rev. D 98 (2018) 044039
[arXiv:1808.05045]
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DARK ENERGY MODELS

Models the Gauss–Bonnet term successfully generate a dark energy era.
G. Calcagni, S. Tsujikawa and M. Sami, Class. Quant. Grav. 22 (2005)
3977 [arXiv:hep-th/0505193]
S. Tsujikawa and M. Sami, J. Cosmol. Astropart. Phys. 0701 (2007)
006 [arXiv:hep-th/0608178]
S. Nojiri, S.D. Odintsov and M. Sasaki, Phys. Rev. D 71 (2005) 123509
[arXiv:hep-th/0504052]

Two examples are presented in S.D. Odintsov, V.K. Oikonomou and
S. Banerjee, Nuclear Physics B 938 (2019) 935, arXiv:1807.00335

I) f1(G) = − F0(1− eG/G0);

II) f2(G) = − F0(1− e−|G|/G0),

where G0 corresponds to the present value of the Gauss–Bonnet scalar,
F0 is a constant.
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INFLATIONARY MODELS WITH
NON-MINIMALLY COUPLED SCALAR FIELDS

Models with non-minimally coupled scalar fields are interesting because
of their connection with the particle physics.
Generic quantum corrections to the action of the scalar field minimally
coupled to gravity include the term, proportional to φ2R.
N.A. Chernikov, E.A. Tagirov, Annales Poincare Phys. Theor. A 9 (1968)
109.
There are models of inflation, where the role of the inflaton is played by
the Higgs field non-minimally coupled to gravity.
The first inflationary model with the SM Higgs boson
J.L. Cervantes-Cota and H. Dehnen, Induced gravity inflation in the
standard model of particle physics, Nucl. Phys. B442 (1995) 391
[astro-ph/9505069] was not realistic.
The inflationary parameters obtained in
F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson
as the inflaton, Phys. Lett. B 659 (2008) 703–706 [arXiv:0710.3755]
are in good agreement with the most recent and accurate observational
data (PLANCK’2018).
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Let us consider firstly model without the Gauss–Bonnet term, describing
by the following action:

S =

∫
d4x
√
−g
[
U(σ)R − 1

2
gµνσ,µσ,ν − V (σ)

]
,

where U(σ) and V (σ) are differentiable functions.
For the spatially flat Friedmann–Lemâıtre–Robertson–Walker (FLRW)
metric with the interval

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
,

the evolution equations are

6UH2 + 6U̇H =
1

2
σ̇2 + V , (5)

2U
(

2Ḣ + 3H2
)

+ 4U̇H + 2Ü +
1

2
σ̇2 − V = 0, (6)

σ̈ + 3Hσ̇ + V ′ = 6
(
Ḣ + 2H2

)
U ′ , (7)

where the Hubble parameter H = ȧ/a.
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Let us rewrite equations (5)–(7) in the form similar to the Friedmann
equations in the Einstein frame. We introduce a new variables

P ≡ H√
U

+
U ′σ̇

2U
√
U
, Veff =

V

2U2
.

In terms of P we get the following equations

3P2 =
U + 3U ′2

4U3
σ̇2 +

V

2U2
= Aσ̇2 + Veff , (8)

Ṗ = − A
√
U σ̇2. (9)

σ̈ = − 3P
√
Uσ̇ − A′

2A
σ̇2 − V ′eff

2A
. (10)

where A ≡ (U + 3U ′
2
)/(4U3). If U(σ) > 0, then A(σ) > 0.

From Eq. (10) it is clear that de Sitter solutions corresponds to
V ′eff (σdS ) = 0.
It has been shown that V ′′eff (σdS ) > 0 corresponds to stable de Sitter
solutions if U(σdS ) > 0. M.A. Skugoreva, A.V. Toporensky and
S.Yu. Vernov, Phys. Rev. D 90 (2014) 064044 [arXiv:1404.6226].
Similar functions have been obtained in L. Jarv, P. Kuusk, M. Saal and
O. Vilson, Class. Quant. Grav. 32 (2015) 235013 [arXiv:1504.02686]
by the method of invariant quantities.
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MODELS WITH STANDARD SCALAR FIELDS

Let us consider the case K = 1:

S =

∫
d4x
√
−g
(
U(φ)R − 1

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
. (11)

In the spatially flat FLRW universe with the interval

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
,

one gets the following equations

ϕ̈+ 3Hϕ̇− 6(Ḣ + 2H2)U ′ + V ′ + 24H2F ′
(
Ḣ + H2

)
= 0, (12)

6H2U + 6HU ′ϕ̇ =
1

2
ϕ̇2 + V + 24H3F ′ϕ̇, (13)

4
(
U − 4HḞ

)
Ḣ = − ϕ̇2 − 2Ü + 2HU̇ + 8H2

(
F̈ − HḞ

)
, (14)

where H = ȧ/a is the Hubble parameter, primes mean the derivatives
with respect to ϕ and dots mean the derivatives with respect to the
cosmic time.
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DE SITTER SOLUTUIONS

Let us find de Sitter solutions in the model with the Gauss–Bonnet term
and compare them with de Sitter solutions in the corresponding model
without the Gauss–Bonnet term.
We restrict ourselves to de Sitter solutions with a constant φ.
Substituting φ = φdS and H = HdS into Eqs. (12) and (13), we get:

6H2
dSUdS = VdS , (15)

F ′dS =
3UdS (2U ′dSVdS − V ′dSUdS )

2V 2
dS

. (16)

where VdS = V (φdS ), UdS = U(φdS ), and FdS = F (φdS ).
The value of the Hubble parameter at the de Sitter point is the same as
in the corresponding model without the Gauss–Bonnet term:

H2
dS =

VdS

6UdS
. (17)

For arbitrary functions U and V with VU > 0, we can choose F (φ) such
that the corresponding point becomes a de Sitter solution with the
Hubble parameter defined by (17) and the value of F ′(φdS ) is fixed
by (16).
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THE EFFECTIVE POTENTIAL

It would be convenient to obtain position and stability of de Sitter
solutions using only one combination of three functions: U, V , and F .
To get this combination (the effective potential) we cast Eqs. (12) and
(14) as a dynamical system:

φ̇ =ψ,

ψ̇ =
1

2 (B − 4F ′Hψ)

{
2H
[
3B + 4F ′V ′ − 6U ′

2 − 6U
]
ψ − 2

V 2

U
X

+
[
12 [(2U ′′ + 3)F ′ + 2U ′F ′′]H2 − 96F ′F ′′H4 − 3(2U ′′ + 1)U ′

]
ψ2
}
,

Ḣ =
8
(
U ′ − 4F ′H2

)
Hψ − 2 V 2

U2

(
4F ′H2 − U ′

)
X +

(
8F ′′H2 − 2U ′′ − 1

)
ψ2

4 (B − 4F ′Hψ)
,

where

B = 3
(
4H2F ′ − U ′

)2
+ U, X =

U2

V 2

[
24F ′H4 − 12U ′H2 + V ′

]
.
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It would be convenient, if all the necessary information on the existence
and stability of de Sitter solutions is obtained from a single combination
of functions U, V , and F dubbed effective potential Veff .
The de Sitter solutions would correspond to zeros of the first derivative
of Veff and stability of the solutions would correspond to its second
derivative being positive.
We achieve this goal if we restrict ourselves to the case of U > 0.
We introduce the effective potential Veff (φ) in the model with the
Gauss–Bonnet term, such that

V ′eff (φdS ) = X (φdS ) = 0. (18)

Indeed, let

Veff = − U2

V
+

2

3
F . (19)

we get

X (φdS ) =
2

3
F ′dS − 2

U ′dSUdS

VdS
+

V ′dSU
2
dS

V 2
dS

= V ′eff (φdS ) = 0. (20)

So, de Sitter solutions correspond to extremum points of the effective
potential Veff .
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The Lyapunov Stability

To investigate the Lyapunov stability of a de Sitter solution we use the
following expansions,

H(t) = HdS + δH1(t), φ(t) = φdS + δφ1(t), ψ(t) = δψ1(t),

where δ is a small parameter.
In the first order in δ we get the following linear system

φ̇1 = A11φ1 + A12ψ1 + A13H1 , (21)

ψ̇1 = A21φ1 + A22ψ1 + A23H1 , (22)

Ḣ1 = A31φ1 + A32ψ1 + A33H1 , (23)

where

A =

0 1 0

− V 2

UB X ′,φ HdS

(
1− 4 U

B

)
− V 2

UB X ′,H

VX ′,φ
2BU2 (V ′U − U ′V ) 2HdS

BV (V ′U − U ′V )
VX ′,H
2BU2 (V ′U − U ′V )

and all functions are taken at φ = φdS .
arXiv:1905.05085 16 / 33



The functions H1(t), φ1(t) and ψ1(t) are not independent. From
Eq. (13), we obtain

H1 =
V ′dSUdS − U ′dSVdS

2UdSVdS
(HdSφ1 − ψ1) . (24)

Substituting (24) into (21) and (22), we get:

φ̇1 = Ã11φ1 + Ã12ψ1 , (25)

ψ̇1 = Ã21φ1 + Ã22ψ1 , (26)

where

Ã =
0 1

−V 2X ′,φ
UB − V X ′,H (V ′ U−U′ V )HdS

2U2B HdS

(
1− 4 U

B

)
+

V X ′,H (V ′ U−U′ V )
2U2B
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The condition on the determinant of the characteristic matrix

det(Ã− λ · I ) = 0 (27)

gives the following expressions for λ:

λ± =
Z ±
√
Z 2 + Y

4U2B
, (28)

where

Z = − 3U2

V 2

√
6V

U

[
7

9
UV 2 + (V ′U − U ′V )2

]
,

and

Y = 8VB
[
X ′,H HdSU

2VU ′ − X ′,H HdSU
3V ′ − 2U3VX ′,φ

]
= −16U3V 2BV ′′eff .
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• A de Sitter solution is stable only if both Z/B < 0, and Y < 0.
• Situation considerably simplifies in the case of a positive U and,
therefore, a positive V .
• Indeed, if at the de Sitter point both U and V are positive, then Z < 0
and B > 0. This means that the condition Z/B < 0 at any de Sitter
point is satisfied automatically.
• Thus, we finally reach a conclusion that for any U(φdS ) > 0, a de
Sitter solution is stable if V ′′eff (φdS ) > 0 and unstable if V ′′eff (φdS ) < 0.
• We consider several examples of models and explore the existence and
stability of de Sitter solutions.
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Models with exponential potential

Let us consider the string theory inspired cosmological model with 3

U = U0, V = ce−λφ, F =
α

µ
eµφ, (29)

where U0, α, c , λ, and µ are positive constants.
In this model, the effective potential is

Veff = − U2
0

c
eλφ +

2α

3µ
eµφ. (30)

The condition V ′eff (φdS ) = 0 gives

φdS =
1

λ− µ
ln

(
2ac

3U2
0λ

)
. (31)

3S. Tsujikawa and M. Sami, String-inspired cosmology: Late time transition from
scaling matter era to dark energy universe caused by a Gauss–Bonnet coupling, J.
Cosmol. Astropart. Phys. 0701 (2007) 006 [arXiv:hep-th/0608178]

arXiv:1905.05085 20 / 33



There exists a de Sitter solution for all µ 6= λ. It is easy to see that
V ′′eff = 0 at

φ2 =
1

λ− µ
ln

(
2acµ

3U2
0λ

2

)
= φdS −

ln(λ)− ln(µ)

λ− µ
, (32)

and φdS > φ2 for any λ 6= µ.
• If µ > λ, then V ′′eff is positive at large φ, so the second derivative is
positive at the de Sitter point and this point is stable.
• In the opposite case, µ < λ, V ′′eff < 0 at large φ and the de Sitter
solution is unstable. This result coincides with the result obtained in
S. Tsujikawa and M. Sami, J. Cosmol. Astropart. Phys. 0701 (2007)
006 [arXiv:hep-th/0608178]
by another method.
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Models with generalized exponential potential

• We generalize this result assuming that the constants can be negative:

Veff = c1e
−N1φ + c2e

−N2φ, (33)

• The same effective potential corresponds to different choice of
functions F , V , and U.
• If two of these functions are given, then we can get the third function
using the given form of the effective potential.
• It is a way of constructing models with de Sitter solutions.
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For example, the model (Veff = c1e
−N1φ + c2e

−N2φ) with a non-minimally
coupled scalar field defined by functions

U = U0

(
ξφ2 + 1

)
eη1 φ, and V = V0φ

4eη2φ,

has the effective potential given by (33) if

F =
3

2

[
4U2

0e
2 η1φ−η2φ

V0

(
ξ +

1

φ2

)2

+ c1e
−N1φ + c2e

−N2φ

]

In this model, ci and Ni are arbitrary constants. The analysis of the
second derivative of Veff gives the following stability conditions:

if c1 > 0 and c2 > 0, then the de Sitter solution is stable;

if c1 < 0 and c2 < 0, then the de Sitter solution is unstable;

if c1 > 0 and c2 < 0, then the de Sitter solution is stable at
|N1| > |N2| and unstable at |N1| < |N2|;
if c1 < 0 and c2 > 0, then the de Sitter solution is stable at
|N1| < |N2| and unstable at |N1| > |N2|.

• The effective potential can be used not only to simplify the analysis of
the stability of de Sitter solutions in a given model, but also to construct
a new model with de Sitter solutions.
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MODELS WITH V = CU2

• Let us consider the case V = CU2, where C is a positive constant.
• In this case, a model without the Gauss–Bonnet term transforms to a
model with a constant potential in the Einstein frame.
• If the Gauss–Bonnet term is presented, then the function F (φ) plays a
role of the effective potential, fully determining the position and stability
of the de Sitter solutions, because

Veff = − 1

C
+

2

3
F . (34)

• So, values of φdS satisfy the condition F ′(φdS ) = 0. From Eq. (28), it
follows

λ± = −
√

6CU

4
±

√
6CU[9(3U ′2 + U)− 16CU2F ′′]

12
√

3U ′2 + U
. (35)

• For U(φdS ) > 0, a de Sitter solution is unstable at F ′′ < 0 and
• stable at F ′′ > 0.

arXiv:1905.05085 24 / 33



The working of de Sitter search algorithm through examples in model with V = CU2 and

F = A4 φ
4 + A2φ

2.

• For F = A4 φ
4 + A2φ

2, de Sitter points defined by the condition F ′ = 0
are

φdS± = ±
√
− A2

2A4
, φdS 0 = 0. (36)

It is evident that φdS± are real only if A2 and A4 have different signs.
The values of the second derivative of F at the de Sitter points are

F ′′|φdS±
= − 4A2, F ′′|φdS 0

= 2A2.

• The de Sitter solution in points φdS± is unstable for any A2 > 0 and
A4 < 0 and is stable for any A2 < 0 and A4 > 0.
• At the point φdS 0, the de Sitter solution is stable for any A2 > 0 and
unstable at A2 < 0.
• At A2 = 0, the only de Sitter point is φdS = 0 and we get λ+ = 0 and
λ− = −

√
6CU/2.
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Model with V = CU2 and F = A4 φ
4 + A2φ

2.

F

φ

Figure: The function F̃ (φ) at different values of parameters: A2 = 1 and
A4 = 0.1 (blue curve), A2 = −1 and A4 = 1 (red curve), A2 = 1 and
A4 = −0.5 (yellow curve).
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The working of de Sitter search algorithm through examples in model with V = CU2 and

F̃ = A4φ
4 + A2φ

2 + C̃ sin(ωφ), C̃ , ω where C̃ , ω are constants

F

φ

F

φ

Figure: The function F̃ (φ) at different values of parameters. In the left picture,
A2 = 1, A4 = 0.1, and C̃ = 0 (blue curve), C̃ = 1 and ω = 1 (black curve),
C̃ = 1 and ω = 5 (green curve). In the right picture, A2 = −1, A4 = 1, and
C̃ = 0 (blue curve), C̃ = 1 and ω = 1 (black curve), C̃ = 1 and ω = 7 (green
curve).

arXiv:1905.05085 27 / 33



Models with a massive scalar field

• Let the potential be of the simplest massive form

V = m2φ2, (37)

with the coupling function
U = ξφ2 (38)

• In this situation the effective potential is

Veff = − ξ2

m2
φ2 +

2

3
F . (39)

• Without the Gauss–Bonnet contribution the effective potential is a
monotonic function, so there are no de Sitter solutions4.
• However, it is clear that addition of any monomial F = F0φ

n with
n > 2 and F0 > 0 gives us a stable de Sitter solution.

4In the point φ = 0 the function U = 0, so this extremum of Veff does not
corresponds to a de Sitter solution.
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Models with a massive scalar field, Veff = − ξ2

m2 φ
2 + 2

3
F

• Straightforward calculation shows that

φn−2
dS =

3ξ2

nF0m2

and consequently the de Sitter solution exists if n 6= 2.
• The second derivative of the effective potential, we easily obtain

V ′′eff (φ) =
4ξ2

m2
(n − 2), (40)

which implies that the de Sitter solution is unstable for n < 2.
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Veff

φ

Figure: The effective potential Veff (φ) for U = φ2, V = φ2, F = φα is
presented for α = 4 (red curve) and α = 1 (blue curve).
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Models with the Higgs potential

Let us consider model with

U = U0 + ξφ2 , V = V0φ
4, F = F0/φ

4 (41)

where U0, ξ and V0 are positive constants.The corresponding model
without the Gauss–Bonnet term is known as Higgs-driven inflation
model5 Inflationary scenario proposed in Ref.6 with the same F .
• In this case, the effective potential has the following form,

Veff = −
(
U0 + ξφ2

)2
V0φ4

+
2F0

3φ4
. (42)

• De Sitter solutions correspond to φ real values only if F0 > 3U2
0/(2V0):

φdS = ±
√

(2F0V0 − 3U2
0 )√

3ξU0

. (43)

5F.L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659 (2008) 703
[arXiv:0710.3755];
A.O. Barvinsky, A.Y. Kamenshchik, and A.A. Starobinsky,J. Cosmol. Astropart. Phys.
0811 (2008) 021 [arXiv:0809.2104];
F.L. Bezrukov, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708]

6C. van de Bruck and C. Longden, arXiv:1512.04768
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U = U0 + ξφ2, V = V0φ
4, F = F0/φ

4. V ′′eff (φdS ) =
72U3

0ξ
3

(2F0V0−3U2
0)2V0

> 0 at the dS points

Veff

φ

Figure: The red curve corresponds to a model without a de Sitter solution,
whereas the blue curve corresponds to a model with de Sitter solutions.The
effective potential Veff (φ) for U = 1 + φ2, V = V0φ

4, F = 1/φ4. Veff (φ) is
presented for V0 = 1 (red curve) and V0 = 2 (blue curve).
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Conclusions

• We analyze the Einstein–Gauss–Bonnet gravity model:

S =

∫
d4x
√
−g
(
U(φ)R − 1

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
,

• We have shown that, in the case of U(φ) > 0, it is possible to
introduce the effective potential Veff which can be expressed through the
coupling function U, the scalar field potential V and the coupling
function with the Gauss–Bonnet term F :

Veff = − U2

V
+

2

3
F .

• Using this approach, we have studied concrete models with the
Gauss–Bonnet term and described a number of situations where de Sitter
solutions exist due to the presence of the Gauss–Bonnet term.
• We show that it is convenient to investigate the structure of fixed
points using the effective potential, indeed, the stable de Sitter solutions
correspond to minima of the effective potential Veff .

Thank for your attention
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