Whole Body Sodium MRI at 0.5 Tesla

N.V. Anisimov, E.G. Sadykhov, O.S. Pavlova, D.V. Fomina, A.A. Tarasova, Yu.A. Pirogov

Lomonosov Moscow State University, Moscow, Russian Federation

e-mail: anisimovnv@mail.ru

Experiments on sodium (²³Na) MRI, including the construction of MRI of the whole human body (WB) from head to toe, are described. The studies were performed on a clinical 0.5T scanner Bruker Tomikon S50 which was designed primarily for recording ¹H signals (21.1 MHz). ²³Na MRI provides diagnostic information, since sodium is actively involved in cellular processes [1]. It is believed that progress in ²³Na MRI is possible only with the use of strong magnetic fields – from 3T and above. However, for open-type magnets and compact magnetic systems under development, it is still difficult to achieve fields greater than 1T [2]. Therefore, it is of interest to identify possibilities of ²³Na MRI for weak fields – less than 1T.

The gyromagnetic ratio for 23 Na is 3.8 times less than for a proton, and the sodium content in living tissues is about $2 \cdot 10^3$ times less than that of hydrogen. This imposes high demands on the sensitivity of the 23 Na MRI equipment. To increase the signal-to-noise ratio (SNR), the sampling rate (BW) defining the receiver bandwidth was set as small as possible ${}^{\sim}10^3$ Hz [3]. This, in turn, determined the use of a large echo time (TE) in the scanning pulse

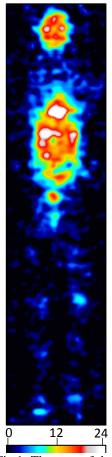


Fig.1. The sum of the WB ²³Na MR images obtained in prone and supine positions.

sequence. The research strategy assumed a minimal modification of the scanner. Therefore, only simple transceiver probehead was made — 20cm square-shaped frame coil (4 turns) tuned to the Larmor frequency of ²³Na (5.6 MHz). Scanning was performed using the gradient echo method with TR/TE=44.7/12 ms, FA=46° (5 ms rectangular pulse), BW=2.87 kHz, echo position was 0.25. In-plane resolution was 6.6×6.6 mm^2 , data matrix was N×N, where N=80. There was no slice selection. To increase the SNR about 4 times, for data of the K space, exponential apodization was applied: $K_A(i,j)=K(i,j)\cdot \exp(-(|i-i_0|-|j-j_0|)/kN)$, where $i_{,j}=1$ ÷N – coordinates of the K-space, i_{0,j_0} – echo position. For our case, $i_0=20$, $j_0=40$, k=0.1. Custom written software was used. As a result, images were obtained, in which human organs are represented with the SNR up to 30. The sensitivity zone of the coil is about 20 cm. Therefore, to assemble the WB ²³Na MRI, 9 separate body segments in prone and supine positions were scanned. The scan time of one body segment was 30 min. Fig. 1 shows the sum of the WB 23 Na MR images (40×170 cm²) obtained in prone and supine positions for a healthy volunteer - a 28year-old male.

The distribution of contrast for different organs and tissues, in general, corresponds to that obtained at 3T [4]. There are significant reserves to increase sensitivity and reduce scan time – the replacement of the frame coil by the volume coil. Then it is possible to increase the informativeness of the study by performing a slice selective scan, as well as applying pulse sequences with a short TE.

[1] G. Madelin, et al., Prog. Nucl. Mag. Res. Sp. 79, 14, (2014).

[2] C.Z. Cooley, et al., IEEE Trans. Mag. 54(1),5100112, (2018).

[3] N.V. Anisimov, et al., Appl. Mag. Res. (2019) (in printing).

[4] F. Wetterling, et al., Phys. Med. Biol. 57(14), 4555, (2012).