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ABSTRACT
A molecular-statistical theory describing the nematic liquid crystals (LCs)
with spherical inclusions (or point defects) is proposed. At given size of
inclusions and nematic order parameters at the surfaces of inclusions
(zero in the case of point defects) and far from inclusions (where the
nematic LC is almost uniform), the distribution of nematic order
parameters in the bulk of LC with inclusions was found to be fully
determined by the elastic constants of LC. We have found and explained
the two-step heat-driven transformation from the nematic phase into the
isotropic phase, with the intermediate phase in between. The nematic
order parameters and the elastic constants are evaluated in the framework
of a unified approach based on the features of pair interaction potentials
of the individual LC molecules. It is shown that, in the case of K33 < K11,
the point defects should destroy the conventional nematic phase.
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1. Introduction

The liquid crystal (LC) structures of various classes near the surfaces were investigated recently.[1,2]
In particular, the induction of nematic ordering in the isotropic phase near the surface was investi-
gated and the corresponding memory effect was outlined in [3�6]. The nematic�isotropic phase
transition in the presence of a flat surface was studied in the framework of Landau�de Gennes the-
ory [7�12] and in the framework of Onsager approximation.[13,14] Biaxial nematic phase induced
by the surface was also predicted theoretically [15] and by computer simulation.[16] However, at
the moment, there is no thermodynamic description of the local ordering of the molecules near the
distorted surfaces. Such a description is crucial for the investigation of complex topology structures
in nematic LCs with inclusions (or defects). In [17], we developed the molecular mean-field theory
for the ordering of a nematic LC and its two-step melting near a flat surface, which is in a good
agreement with the experiment.[18] In highly sensitive differential scanning calorimetry measure-
ments, a narrow peak corresponding to the transition near a flat surface is observed at higher tem-
perature than the wide peak corresponding to the phase transition in the bulk. Recently, different
experiments [19] have found out the two-step melting of nematic materials mixed with spherical
nanoparticles (SiO), but the sequence of transitions appeared to be reversed to that at a flat surface,
because the splay deformation near the surfaces of nanoparticles reduces the nematic order. In this
paper, we propose the molecular-statistical approach, describing a correlation between the elastic
constants and the nematic order parameters.
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2. Theoretical approach

Let us assume the normal surface conditions at each spherical inclusion. Since the concentration
of inclusions in an LC sample is small, let us assume that each inclusion is surrounded by an
infinite nematic media, where the deformations of director can be sufficiently large only in the
vicinity of inclusions. In this case, the task reduces to consideration of single spherical inclusion
in the middle of a spherical droplet filled with nematic LC with free surface conditions at the
outer part of the droplet (see Figure 1(a)). One can expect the hedgehog director distribution
inside this droplet.

Since any direct intermolecular interaction is of very short range, the surface of inclusion influen-
ces directly only the nearest molecules, but this influence is transmitted through the bulk because of
the interactions of LC molecules with each other. The bulk free energy of LC per unit solid angle of
the sphere can be written in a form of generalized Maier�Saupe theory for inhomogeneous distribu-
tion of the nematic order along the radius of the droplet [17]:

F ¼ rkBT
R
d2a1

R
r21dr1f ðða1 ¢n1Þ; r1Þlnf ðða1 ¢n1Þ; r1Þ

þ 1
2
r2

Z
d2a1

Z
d2a2

Z
r21dr1

Z
d3r12f ðða1 ¢n1Þ; r1Þ f ðða2 ¢n2Þ; r2ÞU12ða1; a2; r12Þ

þr
R
d2a1

R
r21dr1f ðða1 ¢n1Þ; r1ÞWðða1 ¢n1Þ; r1Þ;

(1)

where r is the concentration of LC molecules, ri is the distance of LC molecule i from the center of
inclusion. In Equation (1), the orientational distribution function for each molecule f((ai¢ni), ri) is
assumed to depend on the distance ri, while the director ni at a point, where molecule i is located,
depends on the angular orientation of vector ri, U12(a1, a2, r12) is the interaction potential between
LC molecules 1 and 2, and W((a1¢n1), r1) is the interaction potential of each LC molecule with the
surface of inclusion. The first term in Equation (1) is the orientational entropy, the second term is
the internal energy, and the third term is the average interaction energy of LC media with the surface
of inclusion. Minimizing the free energy functional in Equation (1) with respect to the distribution
function f((a¢n), r) in the bulk of LC (where the third term in Equation (1) can be neglected at this
stage, because the bulk interactions dominate), taking into account the normalizing constraint for
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Figure 1. (a) Spherical inclusion in the center of a large spherical nematic droplet with free boundary conditions on the outer
boundary of a droplet; r12 is the vector connecting the two LC molecules located at points 1 and 2; (b) phase diagram, where Curve
1 corresponds to a transition from nematic phase to the isotropic phase near the surface of inclusion; Curve 2 corresponds to the
phase transition in the bulk; Curve 3 is an asymptote for the surface transition temperature in the case of a flat surface. Here,
J(0)202/kB D 1440 K; J(0)404/kB D 144 K; Js2/kB D 2.95 K; Js4/kB D 2.6 K; (k33 ¡ k11)/(J
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the distribution function and introducing the local nematic order parameters

S‘ðrÞ �
Z

d2af ðða ¢nÞ; rÞP‘ða ¢nÞ; (2)

depending on the separation r from the center of inclusion, one obtains

S‘ðrÞ ¼ I‘ðrÞ=I0ðrÞ; where I‘ �
Z1

�1

d2a P‘ða ¢nÞexp �UMFðða ¢nÞ; rÞ
kBT

� �
; (3)

P‘ is the ‘-th Legendre polynomial, and the mean field potential acting on a molecule located at
point r1, where nematic director has orientation n1, is expressed as follows:

UMFðða1 ¢n1Þ; r1Þ ¼ r
R
d2a2

R
d3r12f ðða2 ¢n2Þ; r2ÞU12ða1; a2; r12Þ; (4)

where u12 � r12/jr12j is the unit intermolecular vector. Minimizing the free energy functional in
Equation (1) with respect to the distribution function f((a¢n), r) at the surface of inclusion
(at rD r0), one obtains recurrent equation in the same form (3) with the only difference that the sur-
face potential W((a ¢ n), r0) should be added to the mean field potential UMF((a ¢ n), r0). Let us
approximate the intermolecular potential U12(a1, a2, r12) by spherical invariants [20,21] and the sur-
face potentialW((a ¢ n), r0) by Legendre polynomials:

U12ða1; a2; r12Þ ¼ �
X
‘Lλ

J‘Lλðr12ÞT‘Lλða1; u12; a2Þ ; Wðða ¢nÞ; r0Þ ¼ �
X
‘

Js‘P‘ða ¢nÞ; (5)

where the following spherical invariants are used for approximation:

T000ðx; z; yÞ ¼ 1; T202ðx; z; yÞ ¼ P2ðx ¢yÞ ¼ 3
2
ðx ¢yÞ2 � 1

2
;

T222ðx; z; yÞ ¼ 9
2
ðx ¢yÞðx ¢zÞðy ¢zÞ � 3

2
ðx ¢yÞ2 � 3

2
ðx ¢zÞ2 � 3

2
ðy ¢zÞ2 þ 1;

T404ðx; z; yÞ ¼ P4ðx ¢yÞ ¼ 35
8
ðx ¢yÞ4 � 15

4
ðx ¢yÞ2 þ 3

8
;

T242ðx; z; yÞ ¼ 35
8
ðx ¢zÞ2ðy ¢zÞ2 � 5

2
ðx ¢yÞðx ¢zÞðy ¢zÞ

þ 1
4
ðx ¢yÞ2 � 5

8
ðx ¢zÞ2 � 5

8
ðy ¢zÞ2 þ 1

8
;

(6)

and also the spherical invariants TL‘λ(x, z, y) D T‘Lλ(z, x, y) and T‘λL(x, z, y) D T‘Lλ(x, y, z) corre-
sponding to commutation of the indexes in invariants (6). Each vector a1, a2, or u12 can be substi-
tuted instead by one of each argument x, y, or z. One notes that the average of any spherical
invariant T‘Lλ(x, z, y) with respect to any of its arguments is the order parameter of kind (2)
(‘-th for x, L-th for y and λ-th for z) with appropriate distribution function. For both vectors a1 and
a2, the distribution function is f((a ¢ n), r), while for vector u12, the distribution function is 1/(4p),
because distribution of vector u12 is isotropic in the nematic state. In particular, in the homogeneous
nematic state, where the order parameters S‘ and director n are uniform, only spherical invariants
T‘0‘(a1, u12, a2) (with index L equal to zero and with index λ equal to index ‘) contribute in average.
On the contrary, in the deformed nematic and/or in the nematic with gradients of the order parame-
ters, the other spherical invariants will also contribute. Coefficients J‘Lλ(r12) depend only on distance
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r12 between molecules 1 and 2. Substituting Equation (5) into Equation (4), one obtains

UMFðða1 ¢n1Þ; r1Þ ¼ �r

Z
d3r12

X
‘Lλ

J‘Lλðr12ÞSλðr2ÞT‘Lλða1; u12;n2Þ; (7)

where n2 is the nematic director at point r2. One can use the gradient expansion for the order
parameters and director:

Sλðr2Þ � Sλðr1Þ þ 1
2
ðr12 ¢ r Þ2 Sλðr1Þ; n2 � n1 þ ðr12 ¢ r Þn1 þ 1

2
ðr12 ¢ r Þ2n1: (8)

Taking into account that the order parameters and the director distribution weakly depend on
the distance r12 between molecules in comparison with functions J‘Lλ(r12), one can estimate the inte-
gral over distance r12 in Equation (7) by the saddle point method.[22] Introducing coefficients

JðiÞ‘Lλ �
Z1

0

dr12r
iþ2
12 J‘Lλðr12Þ; (9)

and considering only up to the square gradients either in S or in n, one obtains

UMFðða1 ¢n1Þ; r1Þ ¼ �4pr
P

‘¼2;4 J
ð0Þ
‘0‘S‘ðr1ÞP‘ða1 ¢n1Þ

þDUS
MFðða1 ¢n1Þ; r1Þ þ DUn

MFðða1 ¢n1Þ; r1Þ;
(10)

where the first term is the mean field of the homogeneous nematic state. The second term in Equa-
tion (10) reflects the gradients of the nematic order parameters:

DUS
MFðða1 ¢n1Þ; r1Þ ¼ � 1

2
r
X
‘Lλ

Jð2Þ‘Lλ

Z
d2u12T‘Lλða1; u12;n1Þðu12 ¢ r Þ2Sλðr1Þ

¼ �4prfS002ðr1Þ½g2P2ða1 ¢n1Þ þ g4P4ða1 ¢n1Þ� þ S004ðr1Þg4P2ða1 ¢n1Þg;
(11)

where S00‘ ðr1Þ � @2S‘=@r2jr¼r1 , and the propagation constants g2 and g4 in the case of spherical sym-
metry are expressed as follows:

g2 ¼ 1
6
Jð2Þ202 þ

1
15

Jð2Þ222; g4 ¼ 1
30

Jð2Þ422 þ Jð2Þ224

h i
: (12)

The third term in Equation (10) is responsible for the deformation of director:

DUn
MFðða1 ¢n1Þ; r1Þ ¼ � 1

2
r
X
‘Lλ

Jð2Þ‘LλSλðr1Þ
Z

d2u12fT‘Lλða1; u12; n2Þ � T‘Lλða1;u12;n1Þg;

¼ 2p
7
rðdiv n1Þ2 ð11k11 þ 3k33ÞS2ðr1ÞP2ða1 ¢n1Þ � 3ðk33 � k11Þ S

2
2ðr1Þ
S4ðr1Þ P4ða1 ¢n1Þ

� �
;

(13)

where only the splay deformation div n1 � 1/r1 is present in the case of the hedgehog structure,
while, in the general case, the three reduced elastic constants k11 � K11/S

2
2, k22 � K22/S

2
2 and
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k33 � K33/S
2
2 are expressed as follows:

k11 ¼ 1
4
Jð2Þ202 þ

1
20

Jð2Þ222 �
1
8

Jð2Þ422 þ Jð2Þ224

h i S4
S2

;

k22 ¼ 1
4
Jð2Þ202 �

1
10

Jð2Þ222 �
1
24

Jð2Þ422 þ Jð2Þ224

h i S4
S2

;

k33 ¼ 1
4
Jð2Þ202 þ

1
20

Jð2Þ222 þ
1
6

Jð2Þ422 þ Jð2Þ224

h i S4
S2

:

(14)

One notes that the average of Equation (13) with respect to vector a1 contains only one elastic con-
stant k11, as it should be in the case of pure splay deformation. Since the propagation constants (12)
and the elastic constants (14) are expressed in terms of the same interaction constants J(2)‘Lλ, they
appear to be linearly dependent of each other:

g2 ¼ 2
3
kþ 4

9
5
7
k11 � k22 þ 2

7
k33

� �
; g4 ¼ 4

35
ðk33 � k11Þ S2S4 ; (15)

where k � ðk11 þ k22 þ k33Þ=3 is the average elastic constant. Substituting Equations (11)�(14) into
Equation (10), one obtains the following expression for the integrals in Equation (3):

I‘ðrÞ �
Z1

�1

dtP‘ðtÞexp
n r

kBT

h
J2ðrÞS2ðrÞP2ðtÞ þ J4ðrÞS4ðrÞP4ðtÞ þ S002ðrÞðg2P2ðtÞ

þg4P4ðtÞÞ þ S004ðrÞg4P2ðtÞ
io

; where t � ða ¢nÞ
(16)

J2ðrÞ � Jð0Þ202 �
k11
r2

� 3
14r2

ðk33 � k11Þ; J4ðrÞ � Jð0Þ404 þ
3

14r2
ðk33 � k11Þ S

2
2ðrÞ
S24ðrÞ

; (17)

where elastic constants k11 and k33 are in correspondence with Equation (14). Taking into account
that gradients terms S002 and S004 are small with respect to the other terms in Equation (16), the expo-
nent can be expanded in Taylor series with respect to them, and one can take into account only the
first terms in these expansions explicitly depending on S002 and S004. Then, instead of recurrent
Equation (3), one obtains

S002ðrÞ ¼
r

kBT
F2

�
S2ðrÞ; S4ðrÞ

�
; S004ðrÞ ¼

r

kBT
F4

�
S2ðrÞ; S4ðrÞ

�
; (18)

where

F2ðS2; S4Þ � 1
g4

I22ðS4I00 � I04Þ � I24ðS2I00 � I02Þ � I02ðS4I02 � S2I04Þ
I24ðS4I02 � I24Þ � I44ðS2I02 � I22Þ � I04ðS4I22 � S2I24Þ ;

F4ðS2; S4Þ � � 1
g4

I24ðS4I00 � I04Þ � I44ðS2I00 � I02Þ � I04ðS4I02 � S2I04Þ
I24ðS4I02 � I24Þ � I44ðS2I02 � I22Þ � I04ðS4I22 � S2I24Þ �

g2
g4
F2

�
S2ðrÞ; S4ðrÞ

�
;

(19)
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where integrals Imn(S2, S4) are defined as follows:

ImnðS2; S4Þ �
Z1

�1

dtPmðtÞPnðtÞexp r

kBT
J2ðrÞS2ðrÞP2ðtÞ þ J4ðrÞS4ðrÞP4ðtÞ½ �

� �
: (20)

The second-order differential equations (18) determine the dependence of the order parameters
S2 and S4 on the distance r from the center of inclusion. These equations can be reduced to the fol-
lowing first-order differential equations:

S 0
2 ðrÞ ¼ §

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ZS2ð1 Þ

S2ðrÞ

F2

�
S2; S4ðrÞ

�
dS2

vuuuut ; S 0
4 ðrÞ ¼ §

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ZS4ð1 Þ

S4ðrÞ

F4

�
S2ðrÞ; S4

�
dS4

vuuuut ; (21)

and the latter ones can be solved numerically to obtain the dependencies S2(r) and S4(r) at a given
temperature. From Equation (1), one obtains the following approximate expression (without gra-
dients in S2 and S4) for the free energy:

F ¼ �rkBT
Z1

r0

r2drlnI00fS2ðrÞ; S4ðrÞg þ 1
2
r2
Z1

r0

r2dr Jð0Þ202 �
1
r2
k11

	 

S22ðrÞ þ Jð0Þ404S

2
4

� �
; (22)

which can be used for determination of the phase transition temperatures. The values of the order
parameters S2(1) and S4(1) far from inclusion can be obtained by solving Maier�Saupe
Equations (3)�(4) numerically, where the mean field can also be estimated without gradients in S2
and S4 (the first and third terms in Equation (10)). The values of the order parameters S2(r0)
and S4(r0) at the surface of inclusion can be obtained in the same manner, but the surface potential
W((a ¢ n), r0) in the form of approximation (5) should be added to the mean field potential in
Equation (3).

3. Discussion of the results

The system of differential equations (21) was solved numerically, and the phase diagram presented
in Figure 1(b) was obtained. The heat-driven transformation from nematic state to the isotropic
state occurs by means of two successive phase transitions, one related to the surface effects (line 1)
and another one related to the bulk effects (line 2). The bulk-related transition temperature TNI is
independent of parameter J(0)202r0

2/k11, while the surface-related transition temperature greatly
depends on this parameter and has the asymptotic value (dashed line 3) at large J(0)202r0

2/k11 coin-
ciding with the phase transition temperature at a flat surface. The four phases are present in the dia-
gram: the nematic phase, the isotropic phase and one of the intermediate phases in between: either
the phase in which the nematic order exists only near the inclusions (in the case of large inclusions),
or, vice versa, the phase in which the nematic order exists only apart from the inclusions (in the case
of small inclusions). In the case of small inclusions, when the splay deformation near the surfaces of
inclusions is large, the sequence of transitions appears to be reversed to that at a flat surface. The
temperature range of the intermediate phase expands greatly, when r0 decreases, therefore expansion
(8) appears to be autocorrelated. The dependencies S2(r/r0) and S4(r/r0) at k33 > k11 are presented in
Figure 2(a,b), respectively, for different temperatures. Curve 1 in both figures corresponds to a tem-
perature below both transition temperatures (at the surface and in the bulk), Curves 2 and 3 corre-
spond to a temperature between the transition temperatures at the surface and in the bulk, and
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Curve 4 corresponds to a temperature above both transition temperatures. From Equations (18) and
(19), it follows that the sign of parameter g4 determines the sign of the second derivative S002(r0). In
the conventional case of k33 > k11, S002(r0) is negative below the temperature of complete loss of the
isotropic phase in the bulk, and the nematic order parameter S2 grows greatly with the increasing
distance r/r0 in the intermediate phase. At the same time, in the case k33 < k11 (which is abnormal
for the conventional nematics, but is found in twist-bend nematics), the parameter g4 is negative,
and therefore the second derivative S002(r0) is positive. In this case, the isotropic disorder in the inter-
mediate phase penetrates deeply from inclusion into the bulk of LC, as shown in Figure 2(c). We
expect that any point defect (r0 ! 0) can destroy the conventional nematic order in the case k33 <
k11. This could be an explanation for why k33 is usually larger than k11.

At given volume fraction f of the inclusions in LC material, one can estimate the average order
parameters hS2i and hS4i in the sample. For this purpose, let us consider one spherical inclusion of
radius r0 in the center of spherical LC droplet of radius R ¼ r0=

ffiffiffi
f3

p
and integrate numerically S2(r)

and S4(r) from r0 to R. Temperature dependencies of hS2i and hS4i are shown in Figures 3 and 4.
From Figure 3, one can see that parameter k11/[J

(0)
202r

2
0] mainly regulates the surface-related transi-

tion temperature, while the order parameters distribution within each phase remains almost
unchanged. On the contrary, from Figure 4, it follows that parameter (k33 ¡ k11)/[J

(0)
202r

2
0] mainly

regulates the order parameters distribution in the intermediate phase, while both transition temper-
atures remain almost unchanged.
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4. Conclusions

A molecular-statistical theory describing the nematic LCs with spherical inclusions (or point
defects) is proposed. It is shown that, at given size of inclusions and nematic order parameters at the
surfaces of inclusions and far from inclusions, the distribution of nematic order parameters in the
bulk of LC with inclusions is fully determined by the elastic constants of LC. The two-step heat-
driven transformation from the nematic phase into the isotropic phase, with the intermediate phase
in between, is explained. The nematic order parameters and the elastic constants are evaluated in
the framework of a unified approach based on the features of pair interaction potentials of the indi-
vidual LC molecules. It is outlined that the difference between the elastic constants k33 ¡ k11 regu-
lates the depth of penetration of the nematic order/isotropic disorder from inclusions into the bulk
of LC. It is shown that at k33 < k11, the conventional nematic phase becomes unstable in the pres-
ence of point defects. The theory developed in the present paper can be helpful in understanding
the structure and behavior of nanocomposite LC systems with nanoparticles, which are extensively
studied these days.
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