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Abstract. A semi-analytic solution for predicting the evolution of damage in the process of 

plane strain bending under tension of a sheet of elastic-plastic, isotropic, incompressible, strain 

hardening material is provided. No restriction is imposed on the strain hardening law. The 

evolution of damage is described by an arbitrary uncoupled damage mechanics model. The 

final result is the dependence of the damage variable at the site of fracture initiation on any 

geometric parameter of the process in parametric form. Having the critical value of the damage 

variable it is possible to use this dependence for determining the value of the geometric 

parameter chosen at which the initiation of fracture occurs. 

1. Introduction 

Plane strain bending under tension at large strains is one of the classical problems in plasticity theory. 

Its exact analytic solution for rigid perfectly plastic material has been given in [1]. Using additional 

assumptions concerning the through-thickness distribution of strains analytic plane-strain solutions for 

more realistic models have been proposed in [2, 3]. Ignoring the transverse stress a new solution has 

been obtained in [4].  

The present paper deals with the prediction of ductile fracture initiation in the process of plane strain 

bending under tension using uncoupled damage mechanics models. The solution is based on the 

approach proposed and developed in [5, 6]. The solution is semi-analytic. 

2. Kinematics for uncoupled damage mechanics models 

Let H and 2L be the initial thickness and width of a sheet, respectively. A cross-section of the sheet at 

the initial instant is illustrated in Fig. 1a. It is always possible to choose an Eulerian Cartesian 

coordinate system (x, y) such that its x- axis coincides with the axis of symmetry of the process and its 

y-axis with one of the sides of the initial rectangular. Then, the sides 1 1A B , 1 1C D , 1 1A D , and 1 1C B

 

of 

the initial rectangular are determined in this coordinate system by the equations 

 0, , , ,x x H y L y L= = − = − =  (1)  

respectively. Introduce a Lagrangian coordinate system ( ),   such that 

 andx H y H = =  (2) 
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at the initial instant. It follows from (1) and (2) that the sides 1 1A B , 1 1C D , 1 1A D , and 1 1C B

 

in the 

Lagrangian coordinate system are determined by the equations 0 = , 1 = − , L H = −

 

and 

L H = . Then, the equations of the curves AB , CD , AD , and CB

 

are (Fig. 1b) 

 0 = , 1 = − , L H = −

 

and ,L H =  (3) 
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Figure 1. Bending under tension – notation. 

 

respectively. In [5], the following mapping between the Cartesian and Lagrangian coordinate systems 

has been introduced for describing the process of pure bending: 

 ( ) ( )2 2
cos 2 ,   sin 2

x s s y s
a a

H a a a H a a

 
 = + − = +  (4) 

Here s is an arbitrary function of a, a is a function of the time, t, and 0a =  at the initial instant, 0t = . 

Moreover, the function s should satisfy the condition  

 1 4s =  (5) 

at 0t = . It is evident from (4) that this mapping is symmetric relative to the x- axis. Moreover, it has 

been demonstrated in [5] that the mapping (4) satisfies the equation of incompressibility, transforms 

the sides 1 1A B  and 1 1C D  into concentric circular arcs AB  and CD  and the sides 1 1A D  and 1 1C B  into 

straight lines AD  and CB  orthogonal to AB  and CD . The coordinate curves of the ( ),   coordinate 

system coincide with principal strain rate trajectories. Then, in the case of coaxial material models, the 

coordinate curves of this coordinate system coincide with principal stress trajectories. Thus the 

contour of the sheet is free of the shear stress throughout the process of deformation. The function 

( )s a  should be found from the solution. In the case of pure bending, this function has been found in 

[5] for several material models. It has been shown in [6] that the mapping (4) describes the process of 

bending under tension. The total principal strain components are determined from (4) as    

 ( )2 2 ln 4 a s   = − = −  +    (6) 

It is evident from (5) and (6) that 0  = =  at the initial instant. The further solution is significantly 

facilitated by introducing a moving cylindrical coordinate system ( ),r q  as 

 and 2ar H a s a q = + =  (7) 
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In this coordinate system, circular arcs AB  and CD  are determined by the equations ABr r=  and 

CDr r= , and straight lines AD  and CB  by the equations 0q q=  . It follows from (7) that    

 0, , 2AB CDr H s a r H s a a aL Hq= = − =  (8) 

3. Elastic/Plastic Solution for an Arbitrary Hardening Law 

Using the mapping (4) in conjunction with the classical Eulerian theory of finite elastoplasticity [7] a 

semi-analytic solution for the process of plane strain bending under tension has been found in [6]. This 

solution is summarized in this section to introduce the nomenclature and to provide a basis for 

integrating damage evolution equations. The yield criterion adopted in [6] reads    

 ( )03 2 p

eq    − =   (9) 

Here   and   are the normal stresses in the ( ),   system of coordinates, 0  is the initial yield 

stress in uniaxial tension, ( )p

eq  is an arbitrary function of the equivalent plastic strain, p

eq , 

satisfying the conditions ( )0 1 =  and ( ) 0p p

eq eqd d    for all p

eq . In general, the process consists 

of three stages. The first stage corresponds to a purely elastic solution. This stage ends when 

( )exp 3 4es s k= =  where ( )0 3k G=  and G is the shear modulus of elasticity. The corresponding 

value of ea a=  is determined from the equation    

 ( ) ( )2 26 ln 4 ln 4e e e e e ekfa s a s s a− = −  −    (10) 

where ( )0f F H=  and F is the tensile force per unit length (Fig. 1b). In what follows, it is assumed 

that f is constant and that ea a .  

A plastic region starts to develop from the surface 0 =  at ea a= . Let 1  be the elastic/plastic 

boundary and 1  be the value of p

eq  at 0 = . It has been found in [6] that    

 
( )  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2

1 1

4 exp 3 ,   exp 3 4 4 ,

ln 4 6 0 2

s k k s a

fa s a s a k k

  

   

 =  +   = −   

− +  −  = − +  

 (11) 

Here ( )p

eq   is an anti-derivative of ( )p

eq . Eliminating s in the third equation by means of the first 

equation leads to the equation for determining 1  as a function of a. Then, s and 1  as functions of a 

can be immediately found from the first and second equation, respectively. This stage ends when 

another plastic region starts to develop from the surface 1 = − . The corresponding equation is    

 ( ) ( ) 1 1exp 3 exp 3 4 0k k a − −  +   + =   (12) 

Since 1  has been found as a function of a, equation (12) can be solved to determine the values of a 

and 1  at the end of the second stage. These values will be denoted by 1a  and 
( )1

1 , respectively.  

There are two plastic regions, 10     and 2 1   − , and an elastic region, 2 1    , at 1a a . 

Let 2  be the value of p

eq  at 1 = − . It has been found in [6] that 
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   

 

  

  −  +  −  + − =   

=  +   − −  +     

− = −  +   

= − − −  +   − 

 (13)

  

Using the second and third equations it is possible to eliminate a and s in the first equation. The 

resulting equation should be solved numerically to find 2  as a function of 1 . Then, a, s and 2  as 

functions of 1  can be determined from the second, third and forth equations, respectively. The 

equation for 2  in (11) is valid and can be used to find 2  as a function of 1 .  

4. Fracture prediction at the surface 0 =  

The uncoupled damage mechanics models usually involve the maximum tensile stress, m , and the 

hydrostatic stress,  . In particular, damage functions usually take the form  

 ( ), p

m eqD g d  =   (14) 

where g is some function of its arguments. The value of D is supposed to attain its critical value, crD , 

at fracture. The through thickness distribution of stress has been found in [6]. However, it is not 

necessary to use that solution to predict the evolution of damage at 0 =  (It is however important to 

know that the solution exists). Since 0 =  is a traction free surface, it follows from (9) that 

 ( )0 12 3m    = =   (15) 

Moreover, since the material is incompressible, 2    = +   or using (15)
  

 ( )0 1 3  =   (16) 

Substituting (15) and (16) into (14) at the surface 0 =   yields 

 ( ) ( )
1

0 0

0

3, 2 3D g z z dz



  =  
   (17) 

Consider several widely used uncoupled damage mechanics models. In the case of the model proposed 

by Cockcroft and Latham [8] equation (17) becomes 

 ( ) ( ) ( )
1

0 0
1

0

2 2
0

3 3
D z dz


 

  =  =  −    (18) 

In the case of the model proposed in [9], equation (17) becomes 

 ( ) ( )
1

1

0

1 1 3 1 1 3D B dz B



   = + = +
     (19) 

Here B is a constitutive parameter.  In the case of the model proposed in [10], equation (17) becomes  

 
1

1

0

4 3 4 3D dz



= =  (20) 

In the case of the model proposed in [11], equation (17) becomes  
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 ( )
1 1

0

0

3 3D c z dz




−

 = − 
   (21) 

Here c is a constitutive parameter.   

Any of the equations for D derived and (8) in conjunction with the solution given in Section 3 provide 

the dependence of D on CDr  (or any other geometric parameter). Then, the equation crD D=  allows 

the value of CDr  corresponding to the initiation of fracture to be calculated. 

It is seen from (19) and (20) that the prediction of fracture initiation based on the models [9] and [10] 

is independent of the strain hardening law. The function   involved in (18) can be found analytically 

for all widely used hardening laws. The integral involved in (21) is represented in terms of 

hypergeometric functions for Swift’s and Ludwik’s hardening laws. 

5. Conclusions 

The general semi-analytic solution for plane strain bending under tension for elastic plastic, strain 

hardening material found in [6] has been adopted to predict the initiation of ductile fracture by means 

of uncoupled damage mechanics models. No restriction on the isotropic hardening and damage 

evolution laws is imposed. The final result is the dependence of the damage variable on any geometric 

parameter of the process in parametric form. Having a critical value of the damage variable this 

dependence can be used to immediately determine the value of the geometric parameter chosen at 

which the initiation of ductile fracture occurs.  
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