МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

На правах рукописи

Козачук Анастасия Дмитриевна

Редкие радиационные распады В-мезонов в Стандартной модели

Специальность 01.04.23— «Физика высоких энергий»

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена на кафедре физики атомного ядра и квантовой теории столкновений Физического факультета Московского государственного университета имени М. В. Ломоносова.

Научный руководитель:	доктор физико-математических наук Мелихов Дмитрий Игоревич			
Официальные оппоненты:	Галкин Владимир Олегович, доктор физико-математических наук, Институт образовательной информатики Феде- рального исследовательского центра «Информати- ка и управление» Российской академии наук, главный научный сотрудник			
	Иванов Михаил Алексеевич, доктор физико-математических наук, профессор, Международная межправительственная организа- ция «Объединенный институт ядерных исследо- ваний», лаборатория теоретической физики имени Н. Н. Боголюбова, главный научный сотрудник			
	Баранов Сергей Павлович, доктор физико-математических наук, Федеральное государственное бюджетное учре-			

Федеральное тосударственное оюджетное учреждение науки институт имени П. Н. Лебедева Российской академии наук,

ведущий научный сотрудник

Защита состоится «20» декабря 2019 г. в 15:00 на заседании диссертационного совета МГУ.01.11 Московского государственного университета имени М. В. Ломоносова по адресу: 119991, г. Москва, Ленинские горы 1, строение 5 (19 корпус НИИЯФ МГУ), аудитория 2-15.

С диссертацией можно ознакомиться в Отделе диссертаций научной библиотеки МГУ им. М. В. Ломоносова (Ломоносовский просп., д.27) и на сайте ИАС «Истина» https://istina.msu.ru/dissertations/249467767/.

Автореферат разослан «_____» ноября 2019 года. Телефон для справок: +7 (495) 939-58-69, +7 (916) 871-77-50. Электронная почта совета для справок: galan_lidiya@mail.ru

Ученый секретарь диссертационного совета МГУ.01.11, к-т физ.-мат. наук

Па ссеу Галанина Лидия Ивановна

Общая характеристика работы

Актуальность темы и степень ее разработанности. На сегодняшний день самой успешной теорией в физике элементарных частиц является Стандартная модель (Стандартная модель – the Standard Model (СМ)). СМ объясняет большую часть экспериментальных данных и предсказывает большую часть наблюдаемых явлений. Тем не менее, СМ не описывает всю существующую на данный момент картину мира, так как включает только три типа фундаментальных взаимодействий – электромагнитное, слабое и сильное, и не учитывает гравитацию. Кроме того, существуют экспериментальные данные, такие как, например, аномальный магнитный момент мюона, феномен темной материи или барионная асимметрия вселенной, требующие дальнейшего как экспериментального, так и теоретического исследования. В связи с этим в настоящее время в физике элементарных частиц проводится множество экспериментов, направленных на поиски новой физики за рамками СМ, а также продолжают разрабатываться теории, расширяющие СМ и способные как описать существующие данные, так и предоставить предсказания для дальнейших экспериментальных исследований.

Современные эксперименты проводятся на сложных установках, многие из которых, например, Большой адронный коллайдер (Большой адронный коллайдер – Large Hadron Collider (LHC)), имеют поистине огромные размеры. Исследования включают как прямые поиски новых частиц, так и измерения отклонений различных физических наблюдаемых, способных косвенно указать на присутствие новой физики в изучаемых явлениях.

К последним относятся исследования редких распадов *B*-мезонов, происходящих за счет нейтральных токов, изменяющих аромат кварков (Нейтральные токи, изменяющие аромат кварков – Flavour Changing Neutral Currents (FCNC)). Подобные процессы запрещены на древесном уровне в СМ и происходят только за счет петлевых диаграмм. Это приводит к малой парциальной ширине заданных распадов, отчего они и называются редкими. За счет возможного вклада новых частиц в петли данные распады потенциально чувствительны к новой физике.

Редкие FCNC распады *В*-мезонов изучались на экспериментальных установках BaBar (Эксперимент по физике элементарных частиц, проводимый в 1999-2008гг. в Стэнфордской лаборатории SLAC (Калифорния, США) (BaBar)) и Belle (Эксперимент по физике элементарных частиц на ускорителе высоких энергий (1999 – 2010 гг.) на ускорителе КЕКВ в КЕК (Япония) (Belle)), активно изучаются на LHCb (Эксперимент на Большом адронном коллайдере по изучению b-физики – Large Hadron Collider beauty experiment (LHCb)), а также планируются дальнейшие исследования на установке Belle II (Эксперимент по физике элементарных частиц на ускорителе SuperKEKB в KEK (Япония), преемник эксперимента Belle (Belle II)). К настоящему моменту в данных процессах были найдены небольшие отклонения от предсказаний CM на уровне $2 - 4\sigma$.

Например, для отношения

$$\mathcal{R}_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to K^+ e^+ e^-) / \mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} \,,$$

экспериментальное значение составляет $\mathcal{R}_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$ в области $q^2 \in [1.1,6]$ GeV² (q – импульс лептонной пары), отклонение от предсказаний CM составляет 2.5σ . Похожее отклонение было обнаружено коллаборацией LHCb в распадах $B^0 \to K^{*0}l^+l^-$:

 $\mathcal{R}_{K^{*0}} = 0.69^{+0.110}_{-0.070}(\text{stat}) \pm 0.05(\text{syst}), \ 1.1 < q^2[\text{GeV}^2] < 6.0.$

В данном случае отклонение от теоретических предсказаний СМ также составляет порядка $2.5\sigma.$ Независимо была измерена ширина распада $B^+\to K^+\mu^+\mu^-$ в области $q^2\,\in\,[1,6]\,{\rm GeV}^2$

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (1.19 \pm 0.03 \pm 0.06) \times 10^{-7},\tag{1}$$

которая на 30% ниже предсказаний СМ на уровне 2σ ; аналогичное отклонение было наблюдено для распада $B_s^0 \to \phi \mu^+ \mu^-$, в области $q^2 \in [1,6] \,\text{GeV}^2$ отличие парциальной ширины от теоретических предсказаний составляет более 3σ . Были найдены отклонения при анализах угловых распределений распадов *B*мезонов, происходящих за счет FCNC, проведенных коллаборациями LHCb и Belle. Перечисленные отклонения говорят о возможном нарушении лептонной универсальности в данных распадах.

Несмотря на интересные экспериментальные результаты, теоретические исследования редких распадов *B*-мезонов связаны с известными трудностями. Данные процессы содержат адроны в начальном и иногда в конечном состояниях, из-за чего необходимо учитывать эффекты непертурбативной квантовой хромодинамики (Квантовая хромодинамика – теория сильного взаимодействия (КХД)). Предсказания, полученные с использованием непертурбативных подходов, как правило, обладают большой неопределенностью, что приводит к неясности при интерпретации результатов экспериментов. Следовательно, необходимы более тщательные теоретические исследования в рамках СМ с использованием различных непертурбативных подходов, а также экспериментальный анализ, направленный на понимание того, какой из подходов дает более надежные предсказания и может быть использован в дальнейшем.

Одним из способов обойти эту проблему является выбор таких наблюдаемых, в которых вклад непертурбативной КХД сокращается. Пример – измерение отношения парциальных ширин в распадах редких *B*-мезонов, происходящих за счет FCNC. Кроме распадов $B^+ \to K^+ \ell^+ \ell^-$, $B^0 \to K^{*0} l^+ l^-$, и другие распады *B*-мезонов, индуцированные FCNC, являются потенциальными модами для поиска отклонений от СМ. К этому классу распадов относятся радиационнолептонные распады $B_{(s,d)} \to \gamma l^+ l^-$. Данные процессы были рассмотрены с теоретической точки зрения в ряде публикаций. Радиационно-лептонные распады *В*-мезонов активно обсуждаются в контексте поиска возможного нарушения лептонной универсальности, в связи с чем необходимы более современные предсказания, а также анализ наблюдаемых с точки зрения чувствительности к вкладам новой физики.

Интересным классом распадов с точки зрения изучения эффектов непертурбативной КХД являются редкие радиационные распады *B*-мезонов, происходящие только за счет механизма «слабой аннигиляции». КХД динамика данных распадов относительно проста. Распады аннигиляционного типа имеют очень маленькие вероятности и экспериментально до сих пор не были наблюдены. В настоящий момент на относительные парциальные ширины этих распадов установлены только верхние пределы: в 2004 году коллаборация ВаВаг установила верхний экспериментальный предел $\mathcal{B}(B^0 \to J/\psi\gamma) < 1.6 \cdot 10^{-6}$. Несколько лет назад коллаборация LHCb достигла той же чувствительности в отношении распадов B^0 -мезонов и установила верхние пределы $\mathcal{B}(B^0 \to J/\psi\gamma) < 1.7 \cdot 10^{-6}$ и $\mathcal{B}(B_s^0 \to J/\psi\gamma) < 7.4 \cdot 10^{-6}$ при 90% СL. Очевидно, что с увеличивающейся статистикой есть перспективы улучшить верхние пределы на относительные парциальные ширины эти распады.

С теоретической точки зрения распады аннигиляционного типа не раз рассматривались в литературе, но, несмотря на относительную простоту КХДдинамики данных процессов, существующие теоретические предсказания являются достаточно неопределенными. Например, предсказания для распада $\mathcal{B}(B_s^0 \to J/\psi\gamma)$ разнятся от $5.7\cdot 10^{-8}$ до $5\cdot 10^{-6}$. Очевидно, что данная ситуация не удовлетворительна и требует прояснения.

Цель и задачи исследования. Целью диссертации являлось теоретическое исследование двух классов редких распадов В-мезонов: радиационнолептонных распадов и радиационных распадов, происходящих за счёт механизма «слабой аннигиляции», и получение новых теоретических предсказаний для различных наблюдаемых, в том числе потенциально чувствительных к возможным вкладам физики за рамками СМ.

Для достижения поставленной цели были решены следующие задачи:

- Амплитуды изучаемых процессов были параметризованы в терминах переходных формфакторов, содержащих вклад непертурбативной КХД, из амплитуд были получены аналитические выражения для наблюдаемых;
- Формфакторы были вычислены в рамках релятивистской кварковой модели;
- Был учтен вклад с-кварковых петель в амплитуды радиационнолептонных распадов. Данный вклад является динамическим и требует отдельного рассмотрения. Был учтен вклад легких и сс-резонансов;
- Были получены дифференциальные распределения и численные предсказания для наблюдаемых: парциальных ширин, отношения парциальных ширин, зарядовой лептонной асимметрии, была оценена

чувствительность данных наблюдаемых к возможным вкладам физики за рамками СМ.

Объект и предмет исследования. Объектом исследования настоящей работы являлись слабые распады *В*-мезонов. В качестве предмета исследования рассматривались вклады непертурбативной КХД в распады *В*-мезонов аннигиляционного типа, а также в редкие радиационно-лептонные распады.

<u>Методология исследования.</u> Основные результаты работы были получены с помощью методов квантовой теории поля и являются следствием теоретических расчетов.

Формфакторы перехода, содержащие вклады непертурбативной КХД, появляющиеся из-за наличия связанных состояний (адронов) в начальном и/или конечном состояниях, были вычислены в рамках релятивистской кварковой модели. Данный подход является феноменологическим, что приводит к неопределенностям в теоретических предсказаниях. Из сравнения с результатами, полученными в рамках других подходов (КХД на решетке, правила сумм КХД), и экспериментальными данными, неопределенность в предсказаниях для формфакторов оценивается на уровне 10%.

Для учета вклада сс-резонансов в редкие радиационно-лептонные распады *В*-мезонов были использованы результаты вычислений в рамках правил сумм на световом конусе, скомбинированные с гипотезой векторной доминантности.

Положения, выносимые на защиту:

- 1. В распадах $B \to V \gamma$ излучение фотона из петли векторного мезона не подавлено по сравнению с излучением фотона из петли B-мезона, и данный вклад нужно учитывать при вычислении ширин распадов.
- 2. Предсказания для относительных парциальных ширин распадов $B \to V \gamma$, где $V = \{J/\psi, D^{0*}, \bar{D}_s^{*-}\}$ находятся на уровне $10^{-7} 10^{-9}$ и могут быть использованы в дальнейших экспериментальных исследованиях;
- 3. Результаты для нефакторизуемых поправок вклада чарма в распадах $B \to \gamma \mu^+ \mu^-$ и $B \to \gamma e^+ e^-$, полученные для области переданного импульса ниже порога рождения чарма, не позволяют решить проблему относительных фаз чармониевых резонансов.
- 4. Отношение дифференциальных распределений распадов $B \to \gamma \mu^+ \mu^$ и $B \to \gamma e^+ e^-$ при больших переданных импульсах предоставляет возможность провести прямые измерения зависимости формфакторов перехода $B \to \gamma$ от переданного импульса в случае, если лептонная универсальность будет установлена из данных при малых q^2 .

Научная новизна, теоретическая и практическая значимость. Впервые распады вида $B \to V\gamma$, где V – векторный мезон, происходящие только за счет механизма «слабой аннигиляции», изучены в рамках релятивистской кварковой модели. Теоретический анализ данных распадов является важным результатом. В случае распадов $B_{d,s} \to J/\psi\gamma$ теоретические предсказания в литературе сильно разнятся. В то же время распады изучаются экспериментально, в настоящий момент коллаборациями Belle и LHCb установлены верхние

экспериментальные пределы. Очевидно, что с увеличивающейся статистикой есть перспективы улучшить верхние пределы на относительные парциальные ширины данных распадов или же наблюдать эти распады, а значит, необходимы и надежные теоретические предсказания. Впервые было показано, что вклад от излучения фотона из петли векторного мезона параметрически не подавлен по сравнению со вкладом от излучения фотона из петли *B*-мезона, и что данным вкладом нельзя пренебречь. Более того, численно вклад от петли *V*-мезона существенен. В случае распада $\bar{B}_s \rightarrow J/\psi\gamma$ учет вклада от излучения из обоих s и b кварков петли *B*-мезона и вклада от излучения фотона из петли векторного мезона приводит к сильному, порядка 60%, подавлению ширины распада по сравнению с результатами, полученными только при учете излучения фотона из легкого кварка *B*-мезона. Данный результат является важным, так как для получения надежных теоретических предсказаний необходимо учесть все существенные вклады.

Впервые был проанализирован вклад чарма в амплитуды распадов $B \to \ell^+ \ell^- \gamma$ с точки зрения вклада как при малых q^2 , так и при больших q^2 , в области чармониевых резонансов, и получены соответствующие предсказания для данного вклада в амплитуду. Впервые была дана оценка вкладу соответствующих нефакторизуемых поправок при малых q^2 . Было продемонстрировано, что результаты для нефакторизуемых поправок, полученные для области q^2 ниже порога не позволяют решить проблему относительных фаз чармониевых резонансов. Было показано, что экспериментальное измерение зарядовой лептонной асимметрии в области по q^2 между ψ и ψ' позволит прояснить ситуацию с относительных распределений $B \to \gamma \mu^+ \mu^-$ и $B \to \gamma e^+ e^-$, при больших q^2 предоставляет возможность провести прямые измерения q^2 -зависимости формфакторов перехода $B \to \gamma$ в случае, если лептонная универсальность будет установлена из данных при малых q^2 . Данный результат является важным для дальнейшего экспериментального изучения данных распадов.

Достоверность диссертации обусловлена использованием апробированных методов современной теоретической физики, неоднократно использовавшихся в других работах и дающих надежные теоретические предсказания, а также сравнением результатов диссертации с теоретическими предсказаниями, полученными другими авторами.

Апробация работы. Основные результаты диссертации докладывались на следующих конференциях: Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов» (Москва – 2015, 2016, 2017 гг.); Научная конференция «Ломоносовские чтения» (Москва – 2016, 2017, 2018 гг.); Международная сессия-конференция Секции ядерной физики Отделения физических наук РАН «Физика фундаментальных взаимодействий» (Дубна – 2016г.); International Workshop High Energy Physics and Quantum Field Theory – QFTHEP (Самара – 2015г., Ярославль – 2017г.); International Seminar on High Energy Physics – QUARKS (Пушкин – 2016г., Валдай – 2018г.); Hadron Structure and

QCD: from Low to High Energies (Гатчина – 2016г.); Quark Confinement and the Hadron Spectrum (Салоники – 2016г., Мейнут – 2018г.); The European Physical Society Conference on High Energy Physics – EPS-HEP (Венеция – 2017г.);

Личный вклад. В написанных в соавторстве работах основные результаты, представленные в диссертации, получены автором лично. Автор принимал непосредственное участие в постановке и решении задач и подготовке публикаций.

Публикации. Основные научные результаты диссертации опубликованы в 7 работах, индексируемых в базах данных Scopus, WoS, RSCI.

Содержание работы

Во **введении** обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, формулируется цель, ставятся задачи работы и формулируются положения, выносимые на защиту, формулируются объект, предмет и методология исследования, излагаются научная новизна, теоретическая и практическая значимость представляемой работы, описывается структура диссертации.

В **первой главе** излагается теоретический аппарат, необходимый для описания дальнейших вычислений. В первой части приводится эффективный гамильтониан, использующийся при рассмотрении изучаемых распадов – вильсоновское разложение:

$$H_{eff}^{b \to q} \sim \sum_{i} C_i(\mu) \mathcal{O}_i(\mu),$$

где $C_i(\mu)$ – вильсоновские коэффициенты, содержащие проинтегрированный вклад тяжелых частиц (W, Z бозонов, t-кварков), $\mathcal{O}_i(\mu)$ – базисные операторы, содержащие вклад только легких частиц (u, d, s, c, и b-кварков, лептонов, фотонов и глюонов). Легкие степени свободы остаются динамическими, а соответствующие диаграммы, содержащие эти частицы в петлях, например, виртуальные c и u кварки, должны быть вычислены отдельно. В данной части приводится явный вид базисных операторов \mathcal{O}_i и соответствующие им фейнмановские диаграммы.

Вторая часть первой главы посвящена краткому описанию дисперсионного представления релятивистской кварковой модели – непертурбативному подходу, использующемуся в данной работе для вычисления переходных мезон-мезонных и мезон-фотонных формфакторов.

Данный подход к релятивистскому описанию связанных систем основан на представлении амплитуды взаимодействия адрона с внешним полем в виде дисперсионного интеграла по массовой переменной в терминах кварковой волновой функции адрона. Именно возможность самосогласованного введения релятивистски инвариантной функции, которая описывает распределение кварков внутри адрона, и которую можно интерпретировать как волновую функцию связанного состояния, является важным преимуществом данного спектрального представления.

Третья часть первой главы посвящена вычислению переходных формфакторов. Данные формфакторы являются очень сложными объектами, которые включают в себя адрон (векторный или псевдоскалярный мезон) в начальном или конечном состоянии состоянии и потому требуют рассмотрения в рамках непертурбативной КХД. В данной части в рамках релятивистской кварковой модели вычисляются формфакторы, необходимые в дальнейшем для вычисления ширин распадов $B \to V\gamma$ и $B \to \gamma \ell^+ \ell^-$.

Вторая глава посвящена теоретическому исследованию редких радиационных распадов *B*-мезонов, происходящих только за счет механизма «слабой аннигиляции».

Данные распады, а именно распады $B \to V\gamma$, где V – векторный мезон, происходят за счёт четырехкварковых операторов эффективного гамильтониана. В приближении факторизации амплитуда может быть представлена в виде произведения константы лептонного распада мезона и матричного элемента слабого тока между мезоном и фотоном, который содержит мезон-фотонные формфакторы. В главе рассматривается амплитуда перехода $B \to V\gamma$

Рис. 1 — Диаграммы, описывающие процесс $B \rightarrow V \gamma$, протекающий за счет механизма «слабой аннигиляции», в приближении факторизации: (а) излучение фотона из петли *B*-мезона, (b) излучение фотона из петли векторного *V*-мезона.

$$A(B \to V\gamma) = \langle \gamma(q_1)V(q_2) | H_{eff} | B(p) \rangle,$$

где p – импульс В-мезона, q_2 – импульс векторного мезона V, а q_1 – импульс фотона, $p = q_1 + q_2, q_1^2 = 0, q_2^2 = M_V^2, p^2 = M_B^2$. Соответствующий эффективный гамильтониан имеет вид:

$$H_{eff} = -\frac{G_F}{\sqrt{2}} \xi_{CKM} \left(C_1(\mu) \mathcal{O}_1 + C_2(\mu) \mathcal{O}_2 \right),$$

где G_F – константа Ферми, ξ_{CKM} – элементы СКМ матрицы, соответствующие рассматриваемому распаду, в данном случае $V_{cd}^*V_{ub}$; $C_{1,2}(\mu)$ – зависящие от масштаба вильсоновские коэффициенты. Эффективный гамильтониан в данном случае содержит только базисные операторы \mathcal{O}_1 и \mathcal{O}_2 , соответствующие процессу «слабой аннигиляции». Выражение для ширины распада имеет следующий вид:

$$\Gamma(B \to V\gamma) = \frac{G_F^2 \,\alpha_{em}}{16} M_B^3 \left(1 - M_V^2 / M_B^2\right)^3 \left(|F_{PC}|^2 + |F_{PV}|^2\right).$$

Здесь F_{PC} и F_{PV} – сохраняющая и не сохраняющая четность части амплитуды. Для них получаются следующие выражения:

$$\begin{split} F_{\mathrm{P}V} &= \xi_{\mathrm{C}KM} a_{\mathrm{e}ff}(\mu) \left[\frac{F_A}{M_B} f_V M_V + f_B H_S - \frac{2Q_B f_B f_V M_V}{M_B^2 - M_V^2} \right] \\ F_{\mathrm{P}C} &= \xi_{\mathrm{C}KM} a_{\mathrm{e}ff}(\mu) \left[\frac{F_V}{M_B} f_V M_V + f_B H_P \right]. \end{split}$$

Формфакторы F_A , F_V , H_S , H_P , содержащие вклад непертурбативной КХД, вычисляются в первой главе в рамках релятивистской кварковой модели. Формфакторы, вычисленные в рамках данного подхода, удовлетворяют всем строгим ограничениям, полученным из КХД в пределе тяжелых кварков. Численные предсказания для формфакторов, описывающих слабые переходы, полученные таким способом, находятся в отличном согласии с соответствующими результатами КХД на решетке и правил сумм КХД.

Далее проводится численный анализ формфакторов. Демонстрируется, что вклад от излучения фотона из петли векторного мезона параметрически не подавлен по сравнению со случаем, когда фотон излучается из петли В-мезона. Показывается, что вклад в амплитуду петли векторного мезона по порядку величины сравним с соответствующим вкладом петли В-мезона и оказывает значительный эффект на ширину распада $B \to V \gamma$.

В конце главы представлены оценки парциальных ширин нескольких распадов В-мезонов аннигиляционного типа, имеющих наибольшие вероятности. Диаграммы, соответствующие данным распадам на кварковом уровне, представлены на рис. 2. Соответствующие амплитуды *F*_{PC} и *F*_{PV}, а так же парциальные

Рис. 2 — Четырехкварковые операторы, соответствующие аннигиляционным распадам *B*-мезонов, перечисленным в таблице 1. (а) $\bar{B}^0_s \to J/\psi\gamma$; (b) $\bar{B}^0_d \to J/\psi\gamma$; (c) $\bar{B}^0_d \to D^{*0}\gamma$; (d) $B^- \to D^{*-}_s\gamma$.

ширины распадов представлены в таблице 1. Для наглядности вклад, соответствующий излучению фотона из петли векторного мезона, домножен на коэффициент r, который при вычислении ширин приравнивается к единице. Очевидно, что для некоторых распадов излучение фотона из петли векторного мезона сравнимо по величине или даже превышает таковую от соответствующего вклада от петли В-мезона, и, таким образом, должно быть учтено. Для зависящих от масштаба вильсоновских коэффициентов $C_i(\mu)$ и $a_{1,2}(\mu)$ на масштабе $\mu \simeq 5$ ГэВ используются следующие значения $C_1 = 1.1, C_2 = -0.241, a_1 = C_1 + C_2/N_c = 1.02$ и $a_2 = C_2 + C_1/N_c = 0.15$.

Таблица 1 — Амплитуды и парциальные ширины для распадов аннигиляционного типа B и B_s мезонов.

Распад	<i>F_{PC}</i> [ГэВ]	F_{PV} [ГэВ]	Отн. парц. шир.
$\bar{B}^0_s \to J/\psi\gamma$	0.036 - 0.052r	0.020	$1.43 \cdot 10^{-7} \left(\frac{a_2}{0.15}\right)^2$
$\bar{B}^0_d \to J/\psi\gamma$	0.035 - 0.050r	0.021	$7.54 \cdot 10^{-9} \left(\frac{a_2}{0.15}\right)^2$
$\bar{B}^0_d \to D^{*0} \gamma$	0.012 - 0.014r	0.007 + 0.002r	$4.33 \cdot 10^{-8} \left(\frac{a_2}{0.15}\right)^2$
$B^- ightarrow D_s^{*-} \gamma$	-0.025 + 0.001r	-0.014 + 0.002r	$1.68 \cdot 10^{-7} \left(\frac{a_1}{1.02}\right)^2$

Третья глава посвящена теоретическому исследованию редких радиационно-лептонных распадов *В*-мезонов.

Редкие радиационно-лептонные распады $B_{(s,d)} \to \gamma l^+ l^-$ относятся к распадам, происходящим за счет FCNC. На кварковом уровне они индуцированы переходами $b \to \{s,d\}$, которые запрещены на древесном уровне в СМ. Такие переходы происходят за счет диаграмм типа «пингвин» и «бокс», содержащих петли и, таким образом, приводят к малым парциальным ширинам, порядка $10^{-8} - 10^{-10}$. Возможные вклады новых частиц в петли делают эти распады особенно чувствительными к потенциальным эффектам новой физики.

Эффективный гамильтониан, содержащий вклады, которые необходимо учесть при изучении данных распадов, выглядит следующим образом:

$$\begin{split} H^{b \to sl^+l^-}_{eff} &= \frac{G_F}{\sqrt{2}} \frac{\alpha_{\rm em}}{2\pi} V_{tb} V^*_{ts} \left[-2im_b \frac{C_{7\gamma}(\mu)}{q^2} \cdot \bar{s}\sigma_{\mu\nu} q^\nu \left(1+\gamma_5\right) b \cdot \bar{l}\gamma^\mu l \right. \\ &+ C_{9V}(\mu) \cdot \bar{s}\gamma_\mu \left(1-\gamma_5\right) b \cdot \bar{l}\gamma^\mu l \\ &+ C_{10A}(\mu) \cdot \bar{s}\gamma_\mu \left(1-\gamma_5\right) b \cdot \bar{l}\gamma^\mu \gamma_5 l \right]. \end{split}$$

Также необходимо учесть вклады, содержащие четырехкварковые операторы:

$$H_{\rm eff}^{b \to s\bar{c}c} = -\frac{G_F}{\sqrt{2}} V_{cb} V_{cs}^* \{ C_1(\mu) \mathcal{O}_1 + C_2(\mu) \mathcal{O}_2 \} \,.$$

Далее рассматриваются вклады в амплитуду распадов $B_{(s,d)} \rightarrow \gamma l^+ l^-$, соответствующие излучениям реального и виртуального фотонов валентным кварком *B*-мезона. Соответствующие диаграммы приведены на рисунках 3 и 4. Рассматривается вклад тормозного излучения, соответствующие диаграммы изображены на рисунке 5.

Обсуждаются ограничения, налагаемые электромагнитной калибровочной инвариантностью на амплитуды перехода, индуцированные векторным, аксиально-векторным, тензорным и псевдотензорным слабыми токами.

Рассматривается вклад чарма в амплитуду $B_s \to \gamma l^+ l^-$ На рис. 6 изображены диаграммы, соответствующие вкладу чарма в амплитуду $B \to \gamma^* \gamma^*$. Рассматриваются два вклада: пингвины с с-кварком и «слабая аннигиляция». В дополнение к данному вкладу, амплитуда $B \to \gamma l^+ l^-$ содержит аналогичные вклады, в которых *с*-кварк заменяется на *u*-кварк. Последние, однако, содержат

Рис. 3 — Диаграммы, дающие вклад в распады $\bar{B}_s \to \gamma l^+ l^-$, соответствующие излучению реального фотона валентным кварком *B*-мезона. Заштрихованные кружки соответствуют переходу $b \to s\gamma$ оператора $\mathcal{O}_{7\gamma}$. Черные кружки соответствуют переходу $b \to sl^+l^-$ операторов \mathcal{O}_{9V} и \mathcal{O}_{10A} .

Рис. 4 — Диаграммы, дающие вклад в распады $\bar{B}_s \to \gamma l^+ l^-$, соответствующие излучению виртуального фотона валентным кварком *B*-мезона. Заштрихованные кружки соответствуют переходу $b \to s\gamma$ оператора $O_{7\gamma}$.

Рис. 5 — Диаграммы, описывающие тормозное излучение. Черные кружки соответствуют оператору ${\cal O}_{10A}.$

СКМ-фактор $V_{ub}V_{us}^* \ll V_{cb}V_{cs}^*$, и, таким образом, сильно подавлены по сравнению со вкладом чарма.

Аналогично диаграммам, которые обсуждались в предыдущей части, диаграмма рис. ба порождает следующие два типа вкладов в амплитуду $B_s \rightarrow \gamma l^+ l^-$: *с*-кварк излучает виртуальный фотон, в то время как *s*-кварк излучает реальный, и *с*-кварк излучает реальный фотон, в то время как *s*-кварк излучает ет виртуальный фотон, в то время как *s*-кварк излучает реальный.

Рис. 6 — Диаграммы низшего порядка, описывающие вклад чарма в амплитуду распада $B \to \gamma^* \gamma^*$: пингвинный вклад (а) и вклад «слабой аннигиляции» (b). Обе диаграммы содержат СКМ фактор $V_{cb}V_{cs}^* = -V_{tb}V_{ts}^*$. В данном случае на диаграммах не показано излучение фотона из валентного кварка *B*-мезона.

Проблемой данного анализа вклада чарма является необходимость описать широкий диапазон $0 < q^2 < M_B^2$, включая область чармониевых резонансов. Пертурбативная КХД тут неприменима, и необходимо использовать непертурбативные подходы, основанные на адронных степенях свободы. Для вклада чарма можно записать дисперсионное представление по q^2 с двумя вычитаниями:

$$H_i(q^2,0) = a_i + b_i q^2 + (q^2)^2 \left\{ \sum_{\psi = J/\psi, \psi'} \frac{f_{\psi} \mathcal{A}^i_{B\psi\gamma}}{m_{\psi}^3 (m_{\psi}^2 - q^2 - im_{\psi} \Gamma_{\psi})} + h_i(q^2) \right\}, \quad i = V, A,$$

где a_i и b_i – неизвестные константы вычитания, а функции $h_i(q^2)$ описывают адронный континуум, включая широкие резонансы, находящиеся в надпороговой (DD) области.

Вклад чарма в амплитуды может быть описан как поправки к вильсоновским коэффициентам $C_{7\gamma}$ и C_{9V} , т.е. заменами $C_{9V} \rightarrow C_{9V}^{{\rm eff}}(q^2) = C_{9V} +$ $\Delta C_{9V}(q^2)$, $C_{7\gamma} \to C_{7\gamma}^{\text{eff}}(q^2) = C_{7\gamma} + \Delta C_{7\gamma}(q^2)$. Описывать нефакторизуемые эффекты как сдвиг в C_{9V} не особенно удобно в области малых q^2 : в то время как полный нефакторизуемый вклад составляет порядка нескольких процентов при малых q^2 , в случае, если его выразить как добавку к C_{9V} , он резко растет вблизи нуля. Тем не менее, описание эффектов от петель с *с*-кварками как добавки к вильсоновским коэффициентам имеет одно очень важное преимущество: эти добавки получаются в виде отношения функций $H_i(q^2,0)$ и соответствующих формфакторов ($B \rightarrow K^*$ или $B \rightarrow \gamma$). Разумно ожидать, что эффекты, связанные с разницей между векторным мезоном и фотоном в конечном состоянии в значительной степени сокращаются в отношениях и что поправки к вильсоновским коэффициентам примерно равны друг другу в случае распадов $B \rightarrow \gamma l^+ l^-$ и $B \rightarrow V l^+ l^-$. Предполагается, что точность этого приближения находится на уровне 10%-20%, что есть типичная точность, характерная для подхода векторной доминантности. В принципе, поправка к $C_{7\gamma}$ тоже не универсальна и q^2 -зависима. Однако, формфакторы $H_i(0,q^2)$ и $F_{Ti}(0,q^2)$ имеют похожие q^2 -зависимости, так как содержат вклады тех же $\bar{s}s$ адронных резонансов в *q*²-канале. Следовательно, можно полагать, что поправку к вильсоновскому коэффициенту $C_{7\gamma}$ можно взять q^2 -независимую. Ввиду этих аргументов в данной работе используются результаты, полученные при малых q^2 в рамках правил сумм на световом конусе для распадов $B \to V \ell^+ \ell^-$ для ΔC_9 и ΔC_7 .

На рис. 7 изображены два различных фита для $\Delta C_{9V}(q^2)$ для $q^2 < 4 \ \Gamma \Rightarrow B^2$. Один из фитов предполагает стандартные положительные вклады для обоих ψ и ψ' ; другой фит предполагает противоположный знак для вклада ψ' . Очевидно, что даже знание $\Delta C_{9V}(q^2)$ при $q^2 < 4 \ GeV^2$ с точностью в несколько процентов не позволит увидеть разницу между случаем, когда знаки одинаковые, и случаем, когда они разные. Учитывая предполагаемую неопределенность результатов правил сумм КХД, которая составляет порядка 30-50%, вопрос об относительных фазах ψ и ψ' можно считать полностью открытым. Далее приводятся аналитические выражения для дифференциальных распределений распадов $\bar{B}_s \to \gamma l^+ l^-$, зависящие от переходных формфакторов.

Формфакторы $F_i^{(b,d)}(q^2,0)$, $F_i^{(b,s)}(q^2,0)$ вычисляются для фиксированных значений волновой функции $B_{(s)}$ мезона в рамках релятивистской кварковой модели с помощью спектральных представлений, заданных в первой главе. В данной главе формфакторы параметризуются с помощью формулы модифицированного полюса

$$F_i(q^2) = \frac{F_i(0)}{(1 - q^2/M_{R_i}^2)(1 - \sigma_1(q^2/M_{R_i}^2) + \sigma_2(q^2/M_{R_i}^2)^2)}.$$

Данное выражение аппроксимирует результаты вычислений в рамках релятивистской кварковой модели в широкой области $0 < q^2 < 25 \; GeV^2$ с точностью лучше, чем 3%. Также рассматривается и однополюсная параметризация формфакторов.

Стоит сделать комментарий относительно неопределенности предсказаний, полученных в данной главе: картина конституэнтных кварков, использующаяся для вычисления формфакторов – это приближение очень сложной картины, возникающей в КХД. И, следовательно, невозможно дать какую-либо жесткую оценку систематических ошибок результатов вычисления формфакторов. Из сравнения результатов дисперсионного подхода с результатами правил сумм КХД и КХД на решетке систематическая ошибка вычисления формфакторов предполагается равной 10% в области $0 < q^2 < 15 \ {\Gamma 9 B^2}$ и около 20% в области $q^2 > 15 \ {\Gamma 9 B^2}$.

Для вычисления формфакторов $F_{TA}(0,q^2) = F_{TV}(0,q^2)$ используется модель векторной доминантности. Таким образом, учитываются вклады легких мезонов основного состояния, вкладами возбужденных состояний пренебрегается. Последние сложно оценить напрямую, но случаи с формфакторами упругих

Рис. 7 — Поправка к вильсоновскому коэффициенту C_{9V} , $\Delta C_{9V}(q^2)$ в области $0 < q^2 < 15$ ГэВ². Красная (сплошная) линия соответствует положительным фазам ψ и ψ' ; синяя (пунктирная) линия соответствует положительной фазе ψ и отрицательной фазе ψ' .

пионных и слабыми формфакторами во времениподобной области подтверждают, что вклад возбужденных состояний численно очень мал по сравнению со вкладом основных состояний. Таким образом, вкладами от возбужденных состояний векторных мезонов в $F_{TA,TV}(0,q^2)$ можно пренебречь по сравнению с остальными вкладами в амплитуду $B \to \gamma l^+ l^-$.

Приводятся полученные дифференциальные распределения относительных парциальных ширин распадов $B \rightarrow \gamma l^+ l^-$. Результаты представлены на рис. 8. Результаты рис. 8 соответствуют описанию эффектов *с*-кварковых петель в предположении, что все чармонии входят с одинаковым положительным знаком (совпадающим со знаком, который получается из приближения факторизации).

В области $q^2 \leq 6$ ГэВ² *с*-кварковые петли дают мягкий вклад на уровне нескольких процентов, и, следовательно, парциальные ширины в данной области могут быть предсказаны с контролируемой точностью, которая в основном ограничивается неопределенностью формфакторов. Приводятся численные оценки, полученные для парциальных ширин при малых q^2 :

$$\mathcal{B}(\bar{B}_s \to \gamma l^+ l^-)|_{q^2 \in [1,6] \text{ GeV}^2} = (6.01 \pm 0.08 \pm 0.70)10^{-9},$$

$$\mathcal{B}(\bar{B}_d \to \gamma l^+ l^-)|_{q^2 \in [1,6] \text{ GeV}^2} = (1.02 \pm 0.15 \pm 0.05)10^{-11}.$$

Первая ошибка в данных предсказаниях соответствует 10% неопределенности в формфакторах перехода $B \to \gamma$. Вторая ошибка соответствует неопределенности во вкладах легких векторных мезонов ρ , ω , и ϕ . Следует подчеркнуть, что в случае распада $B_s \to \gamma l^+ l^-$ основной вклад дает узкий полюс ϕ -мезона. В случае распада $B_d \to \gamma l^+ l^-$ известный вклад векторных резонансов не так важен, и, таким образом, неопределенность в парциальной ширине в значительной степени отражает неопределенность в формфакторах, которая находится на уровне 10%.

В таблице 2 представлены относительные парциальные ширины, проинтегрированные по нескольким интервалам ниже области чармониевых резонансов (область чармониев $0.33 \leq q^2/M_{B_s}^2 \leq 0.55$ обычно исключается при экспериментальном анализе). В таблице 3 представлены результаты интегрирования в области за резонансами, от $q^2 = 0.55 M_{B_s}^2$ до $q^2 = M_B^2 - 2M_B E^\gamma$ для различных значений E^γ , где имеется в виду энергия фотона в системе отсчета *B*-мезона: из-за того, что тормозное излучение приводит к расходимости парциальной ширины при больших q^2 , необходимо обрезание по энергии фотона. Значения в области $0.1\,{\rm GeV} < E_{min}^\gamma < 0.5\,{\rm GeV}$ соответствуют критериям отбора фотонов на детекторе Belle II, в то время как интервал $0.5\,{\rm GeV} < E_{min}^\gamma < 1\,{\rm GeV}$ соответствуют таковым на детекторе LHCb.

При экспериментальном анализе данных обрезание по энергии фотона производится в лабораторной системе отсчета, а не в системе отсчета *B*-мезона. Однако, как видно из таблиц 2 и 3, конкретный выбор энергии обрезания оказывает значительный эффект на полную парциальную ширину, так как вклад от области за резонансами после обрезания по энергии составляет меньше 10%.

Таблица 2 — Вклад в парциальную ширину распадов $\bar{B}_s \to \gamma l^+ l^-$ проинтегрированный по конкретным q^2 -интервалам в области ниже чармониевых резонансов, центральные значения всех параметров и формфакторов задаются с помощью формулы модифицированного полюса.

	$10^9 \Delta \mathcal{B}(B_s \to \gamma l^+ l^-)$						
	$[4m_e^2, 4m_\mu^2]$	$[4m_{\mu}^2, 1{ m GeV}^2]$	$[1\mathrm{G}eV^2, 6\mathrm{G}eV^2]$	$[6 {\rm GeV}^2, 0.33 M_{B_s}^2]$			
e^+e^-	4.672	1.796	6.003	0.136			
$\mu^+\mu^-$	_	1.790	6.004	0.149			

Таблица 3 — Вклады в парциальные ширины распадов $B_s \to \gamma l^+ l^-$ в области $q^2 \ [0.55 M_{B_s}^2, M_{B_s}^2 - 2M_{B_s} E_{\gamma}].$

	$10^9 \Delta \mathcal{B}(B_s \to \gamma l^+ l^-)$					
$E_{\gamma}[\text{GeV}]$	0.08	0.1	0.5	1.0		
e^+e^-	0.20	0.20	0.16	0.06		
$\mu^+\mu^-$	0.43	0.41	0.23	0.07		

Рис. 8 — Относительные дифференциальные парциальные ширины для распадов $B_s \to \gamma l^+ l^-$ (слева) и $B_d \to \gamma l^+ l^-$ (справа). Синяя линия соответствует конечному состоянию $\mu^+\mu^-$, красная линия – конечному состоянию e^+e^- .

На рис. 9 представлено отношение $R_{\mu/e}$ дифференциальных распределений $\bar{B} \rightarrow \gamma \mu^+ \mu^-$ и $\bar{B} \rightarrow \gamma e^+ e^-$. Данное отношение является стандартной наблюдаемой для поиска эффектов нарушения лептонной универсальности в редких полулептонных распадах $B \rightarrow (P,V)l^+l^-$, происходящих за счет нейтральных токов, изменяющих аромат кварков. Не так давно это отношение было также предложено в качестве наблюдаемой для изучения радиационнолептонных распадов . Данное отношение близко к единице в области $q^2 \leq 5$ ГэВ². Однако, следует заметить, что в распадах $B \rightarrow \gamma l^+ l^-$, в отличие от процессов $B \rightarrow (P,V)l^+l^-$, есть зависимость ширины от массы лептонов, в основном это вклад в амплитуду тормозного излучения.

Рис. 9 — Отношение $R_{\mu/e}$ в распадах $\bar{B}_s \to \gamma l^+ l^-$ (а) и $\bar{B}_s \to \gamma l^+ l^-$ (b). Чувствительность $R_{\mu/e}(\bar{B}_s)$ при больших q^2 к q^2 -зависимости формфакторов перехода $B_s \to \gamma$ (c,d).

Дифференциальная зарядовая лептонная асимметрия задается выражением

$$A_{FB}(\hat{s}) = \frac{\int\limits_{0}^{1} d\cos\theta \, \frac{d^2\Gamma(B_{(s)} \to l^+ l^- \gamma)}{d\hat{s} \, d\cos\theta} - \int\limits_{-1}^{0} d\cos\theta \, \frac{d^2\Gamma(B_{(s)} \to l^+ l^- \gamma)}{d\hat{s} \, d\cos\theta}}{\frac{d\Gamma(B_{(s)} \to l^+ l^- \gamma)}{d\hat{s}}},$$

где $\hat{s}=q^2/M_B^2,\;\theta$ – это угол между \vec{p} и $\vec{p_2},$ импульсом отрицательно заряженного лептона.

Соответствующие распределения для распадов $\bar{B}_s \to \gamma \mu \mu$ и $\bar{B}_d \to \gamma \mu \mu$ представлены на рис. 10 (а) и (b), соответственно. С практической точки зрения асимметрии нечувствительны к неопределенностям в формфакторах перехода $B \to \gamma$, так как эти неопределенности в асимметриях в значительной степени сокращаются.

Как обсуждалось выше, относительные фазы чармониевых резонансов не могут быть однозначно определены на основе вычислений нефакторизуемых поправок при $q^2 \leq 4m_c^2$ в рамках правил сумм КХД. Результаты, представленные на рис. 10 (а) и (b), были получены с использованием результатов правил сумм КХД для нефакторизуемых поправок в области малых q^2 в стандартном предположении, что все знаки чармониев положительны.

Рис. 10 — Зарядовая лептонная асимметрия для распадов $\bar{B}_s \to \gamma \mu^+ \mu^-$ (слева) и $\bar{B}_d \to \gamma \mu^+ \mu^-$ (справа). На нижних графиках представлена асимметрия для $q^2 < M_{\psi'}^2$ для двух различных относительных знаков вкладов ψ и ψ' .

Стоит подчеркнуть, что A_{FB} в области между ψ и ψ' резонансами предоставляет возможность однозначно определить относительные знаки вкладов ψ и ψ' : как показано на рис. 10 (с) и (d), A_{FB} не чувствительна к поведению резонансов в C_{9V} в области малых q^2 , однако, в области между ψ и ψ' резонансами видна качественная разница в зависимости от того или иного относительного знака резонансных вкладов. Следовательно, экспериментальное изучение асимметрии в этой области позволит проверить относительные знаки вкладов ψ и ψ' . Стоит особенно подчеркнуть, что данное наблюдение относится не только к распадам $B \to \gamma l^+ l^-$, но также и к распадам $B \to V l^+ l^-$, для которых подобные измерения осуществить проще.

Следует учесть, однако, что измерение зарядовой лептонной асимметрии в распаде $B \to \gamma l^+ l^-$ кажется трудной задачей, потому что конечное состояние $\gamma l^+ l^-$ не несет никакой информации об аромате распадающегося *B*-мезона. К тому же, знаки асимметрий, соответствующих *B* и \overline{B} мезонам, противоположны.

В заключении приведены основные результаты работы:

1. Были вычислены формфакторы перехода $B \to \gamma F_A$, F_V , F_{TA} , F_{TV} , описывающие излучение фотона из петли В-мезона, и формфакторы H_P и H_S , описывающие излучение фотона из петли векторного мезона, в рамках релятивистской кварковой модели – дисперсионном подходе, основанном на картине конституэнтных кварков. Данные формфакторы необходимы для вычисления парциальных ширин распадов $B \to V\gamma$,

где V – это векторный мезон, и ширин радиационно-лептонных распадов $B \to \gamma \ell^+ \ell^-$. Формфакторы, вычисленные в рамках релятивистской кварковой модели, удовлетворяют всем жестким ограничениям из КХД в пределе тяжелых кварков для переходов тяжелого кварка в тяжелый, тяжелого в легкий и тяжелого мезона в фотон. Численные параметры модели, такие как эффективные массы конституэнтных кварков и непертурбативные волновые функции мезонов, были фиксированы требованием воспроизвести хорошо известные константы лептонных распадов мезонов и некоторых хорошо известных из КХД на решётке формфакторов. Слабые формфакторы тяжелых мезонов, полученные в рамках дисперсионного подхода, удовлетворяют строгим известным ограничениям из КХД в пределе тяжелых кварков. Однако, дисперсионный подход – это феноменологический подход, представляющий собой особую формулировку релятивистской кварковой модели. Следовательно, по сути, единственный способ понять его точность – это сравнить предсказания, полученные в рамках данного подхода, с предсказаниями подходов, напрямую связанных с КХД. Из сравнения с известными результатами КХД на решетке и правил сумм КХД, в случае, когда таковые доступны, можно заключить, что неопределенность в формфакторах, полученных в рамках дисперсионного подхода, не превышает 10%. Таким образом, в данной работе предполагается, что точность предсказаний для формфакторов перехода $B \to \gamma$ составляет 10%.

- 2. Были проанализированы радиационные распады В-мезонов аннигиляционного типа $B \to V \gamma$, где V векторный мезон, в приближении факторизации. Были учтены вклады, соответствующие излучению фотона из петель векторного и В-мезонов. Вклад от петли векторного мезона не был учтен во всех предыдущих анализах и, таким образом, является отличительной чертой данной работы. В общем случае было показано, что вклад от излучения фотона из петли векторного мезона не подавлен по сравнению с аналогичным вкладом от петли В-мезона. Более того, численно вклад от петли V-мезона существенен. Например, в случае распада $\bar{B}_s \to J/\psi\gamma$ учет вклада от излучения из обоих *s* и *b* кварков петли *B*-мезона и вклад от излучения фотона из петли векторного мезона приводит к сильному, порядка 60%, подавлению ширины распада по сравнению с результатами, полученными только при учете излучения фотона из легкого кварка *B*-мезона.
- Используя полученные результаты для формфакторов и применяя наивную факторизацию для амплитуд из четырехкварковых операторов, были получены предсказания для распадов аннигиляционного типа,

имеющих самую большую ширину распада:

$$\begin{array}{rcl} \mathcal{B}(\bar{B}^0_s \to J/\psi\gamma) &=& 1.43 \cdot 10^{-7}, \\ \mathcal{B}(\bar{B}^0_d \to J/\psi\gamma) &=& 7.54 \cdot 10^{-9}, \\ \mathcal{B}(\bar{B}^0_d \to D^{0*}\gamma) &=& 4.33 \cdot 10^{-8}, \\ \mathcal{B}(B^- \to \bar{D}^{*-}_s\gamma) &=& 1.68 \cdot 10^{-7}. \end{array}$$

- 4. Были проанализированы амплитуды перехода $B \to \gamma^*$, индуцированные векторным, аксиально-векторным, тензорным и псевдотензорным $b \to (s,d)$ кварковыми токами. Инвариантные формфакторы, параметризующие соответствующие амплитуды, зависят от двух переменных k'^2 и k^2 , где k' - импульс, излученный из FCNC $b \to (s,d)$ вершины, а k– импульс виртуального фотона. Были получены ограничения на данные формфакторы, накладываемые электромагнитной калибровочной инвариантностью. Все необходимые формфакторы были вычислены в рамках релятивистского дисперсионного подхода, основанного на модели конституэнтных кварков. Были сделаны необходимые вычитания в спектральных представлениях формфакторов, для того чтобы последние удовлетворяли всем требованиям, накладываемым калибровочной инвариантностью. Для формфакторов, описывающих процессы, в которых l^+l^- пара излучается из FCNC вершины, численные результаты для всей кинематической области по q^2 распад
а $B \to \gamma$ были получены целиком в рамках дисперсионного подхода. Получившаяся зависимость формфакторов от q^2 демонстрирует ожидаемые свойства, в частности, полюсную зависимость выше кинематической области процесса, с полюсом в месте, соответствующем квантовым числам подходящего мезонного резонанса. В случае формфакторов, описывающих излучение l^+l^- пары из легкого валентного кварка B-мезона, в физической области процесса появляются легкие векторные мезонные резонансы. Чтобы получить предсказания для формфакторов в этом случае, были скомбинированы результаты прямых вычислений в рамках дисперсионного подхода с калибровочно-инвариантной версией модели векторной мезонной доминантности. Численные предсказания для формфакторов, включающих вклад векторных мезонов, были обновлены. Была использована новая процедура фиксирования параметров волновой функции векторных мезонов: а именно, данные параметры были фиксированы из требования воспроизвести константы распада соответствующих мезонов, полученные в рамках наиболее современных теоретических подходов.
- 5. Был проделан детальный анализ вклада чарма и получены общие ограничения, накладываемые электромагнитной калибровочной инвариантностью. Из сходства соответствующих амплитуд в распадах $B \rightarrow$

 $\gamma l^+ l^-$ и $B \to V l^+ l^-$, где V– векторный мезон, были получены численные предсказания для вклада чарма в амплитуду $B \to \gamma l^+ l^-$ с использованием существующих оценок нефакторизуемых эффектов в распадах $B \to V l^+ l^-$. Было продемонстрировано, что результаты для нефакторизуемых поправок, полученные для области q^2 ниже порога, не позволяют решить проблему относительных фаз чармониевых резонансов. Для того, чтобы решить данную проблему, необходимы дополнительные данные. Было показано, что экспериментальное измерение зарядовой лептонной асимметрии в области по q^2 между ψ и ψ' позволит прояснить ситуацию с относительными знаками фаз чармониевых резонансов.

- 6. Были получены численные предсказания для дифференциальных распределений наблюдаемых величин в распадах $B \to \gamma l^+ l^-$. В частности, было продемонстрировано, что $R_{\mu/e}(q^2)$, отношение дифференциальных распределений $B \to \gamma \mu^+ \mu^-$ и $B \to \gamma e^+ e^-$, при больших q^2 предоставляет возможность провести прямые измерения q^2 -зависимости формфакторов перехода $B \to \gamma$ в случае, если лептонная универсальность будет установлена из данных при малых q^2 .
- 7. Были вычислены относительные парциальные ширины, проинтегрированные в области низких энеркий $q^2 = [1,6]$ ГэВ², где формфакторы надежно известны и вклад от $\bar{c}c$ -петель находится на уровне нескольких процентов.

Публикации автора по теме диссертации в рецензируемых журналах, индексируемых в Web of Science и SCOPUS:

- 1. *Kozachuk A*. Contribution of charm to rare radiative leptonic B-decays // EPJ Web Conf. 2018. T. 191. C. 02012. IF 0.35.
- 2. Kozachuk A., Melikhov D., Nikitin N. Long-distance QCD effects in FCNC $B \rightarrow \gamma l^+ l^-$ decays // EPJ Web Conf. 2018. T. 192. C. 00031. arXiv: 1808. 03532 [hep-ph]. IF 0.35.
- 3. *Kozachuk A., Melikhov D.* Revisiting nonfactorizable charm-loop effects in exclusive FCNC *B*-decays // Phys. Lett. 2018. T. B786. C. 378—381. arXiv: 1805.05720 [hep-ph]. IF 4.162.
- 4. Kozachuk A., Melikhov D., Nikitin N. Rare FCNC radiative leptonic $B_{s,d} \rightarrow \gamma l^+ l^-$ decays in the standard model // Phys. Rev. 2018. T. D97, No 5. C. 053007. arXiv: 1712.07926 [hep-ph]. IF 4.368.
- 5. *Kozachuk A*. Rare radiative leptonic B-decays as a tool to study New Physics // EPJ Web Conf. 2017. T. 158. C. 03001. IF 0.35.
- 6. *Kozachuk A., Melikhov D., Nikitin N.* Rare radiative leptonic B-decays // EPJ Web Conf. 2016. T. 125. C. 02015. arXiv: 1609.06491 [hep-ph]. IF 0.35.

7. *Kozachuk A., Melikhov D., Nikitin N.* Annihilation type rare radiative $B_{(s)} \rightarrow V\gamma$ decays // Phys. Rev. — 2016. — T. D93, Nº 1. — C. 014015. — arXiv: 1511.03540 [hep-ph]. — IF 4.368.

Козачук Анастасия Дмитриевна

Редкие радиационные распады В-мезонов в Стандартной модели Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать 13.11.2019. Заказ № _____ Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография _____