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Abstract—Tunka-Rex is an antenna array for the detection of radio emissions from extensive air showers gen-
erated by ultra–high energy cosmic rays. This emission has a broadband spectrum, which corresponds to
pulses with durations of tens of nanoseconds and is measured in the band of 30 to 80 MHz. Matched filtering
and artificial neural networks are used to improve signal processing at the Tunka-Rex facility. Matched fil-
tering allows more accurate determination the signal peak time, but the best performance can only be
achieved with white noise. Convolutional neural networks with autoencoder architecture are used to improve
recognition of noise features in traces. These are implemented in Tunka-Rex signal processing and their per-
formance is compared to that of standard means.
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INTRODUCTION
Tunka-Rex is an antenna array that solves the

problems of detecting radio emissions from extensive
air showers (EAS) initiated by cosmic rays with energies
above 100 PeV. The experiment operates in the frequency
range of 30 to 80 MHz and consists of 63 antenna stations
located in the Tunka Valley, Buryatia [1].

The array requires an external trigger to operate, so
Tunka-Rex works in conjunction with other detectors:
the Tunka-133 Cherenkov detector [2] and the Tunka-
Grande scintillation detector [3].

Typical signals recorded by the Tunka-Rex facility
are coherent broadband pulses with durations of tens
of nanoseconds. The amplitude and peak position of
such a pulse are reconstructed by finding the maxi-
mum of the envelope [1]. This approach has proven
itself well, but other means can also be used to improve
the reconstruction of signal parameters, especially a
matched filter and neural networks.

MATCHED FILTER
A matched filter is based on the correlation

between a received signal and its template using con-
volution. The amplitude of each convolution point

can be considered a measure of how closely the tem-
plate matches the corresponding part of the incoming
signal. The filter can be implemented using software.
Starting from the beginning of the track, the template
is multiplied in sequence with all values of the received
signal. The results are summed, and the template is
shifted by one step. The peak of the signal acquired as
a result of these actions will correspond to the peak of
the received signal.

For a matched filter to work, we must have a signal
that is already known; in this work, we used a template
of a 60-ns signal created by averaging several thousand
EAS pulses simulated using the CoREAS software [4].
The length of this template is optimal in terms of speed
and accuracy of the result, as can be seen on the left in
Fig. 1.

To determine the response threshold of the
matched filter, we constructed the distribution of
square roots of the maxima of the template convolu-
tions with a background noise window (i.e., with
tracks that obviously contain no signal). A quantile
corresponding to a 5% probability of detecting a false
signal was determined for this distribution. As a result,
we obtained a value of the convolution amplitude at
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Fig. 1. (a) 60-ns signal template; (b) distributions of the
true amplitude, relative to the square root of the maximum
cross correlation.
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Fig. 2. (a) Distribution of reconstructed energies; (b) dis-
tribution of deviations in the direction of arrival.
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which the reconstruction of the peak and position of
the signal could still be performed (854 μV m−1).

The right-hand part of Fig. 1 shows the result from
using the matched filter to reconstruct the amplitudes
of a set of model signals with and without noise, along
with one using the threshold to distribute the true
amplitude relative to the square root of the maximum
cross-correlation.

The matched filter was included in the Offline soft-
ware environment [5] and tested on a set of simulated
events. It was shown that the filter is capable of recon-
structing pulses with lower amplitudes, and the angle-
of-arrival resolution is similar to the one in the stan-
dard approach.

NEURAL NETWORKS

Another means used in this work was an autoen-
coder, i.e., a neural network based on one-dimensional
ultra-precise layers with a straightened linear unit and
maximum unification after the ultra-precise layer.
Binary cross-entropy is in this case used as a loss func-
BULLETIN OF THE RUSSIAN ACADE
tion. In contrast to matched filtering, an autoencoder is
intended for isolating and eliminating noise features.

Two metrics were used to evaluate the quality of
networks: efficiency Nrec/Ntot, which corresponds to
the part of the events that cross the threshold, and
purity Nhit/Nrec, denoting the reconstructed events
for which a peak is reconstructed with the condition
|trec – ttrue| < 5 ns. Here, Nrec, Ntot, and Nhit are the
number of reconstructed events, the total number of
events, and the number of reconstructed events, the
peak of which hits the interval |trec – ttrue| < 5 ns, respec-
tively; trec and ttrue are the reconstructed and true posi-
tions of the signal peak in time.

As with a matched filter, an autoencoder is able to
recover signals with lower energy than in the standard
approach, and its angular resolution remains at the
same level. This can be seen in Fig. 2.

CONCLUSIONS
Signal reconstruction was improved with both a

matched filter and an autoencoder. Both approaches
MY OF SCIENCES: PHYSICS  Vol. 83  No. 8  2019
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showed similar efficiency higher than that of the stan-
dard technique. Software that includes these proce-
dures is ready to be implemented in the standard pro-
cessing of the Tunka-Rex experiment. Work is also
under way to improve the efficiency of these means by
creating a library of templates for the matched filter
and optimizing the architecture of the autoencoder.
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