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1. INTRODUCTION. THE MULTIPLIER METHOD AND THE LINEARLY CONSTRAINED 
LAGRANGIAN METHOD

Consider the mathematical programming problem

  min, (1.1)

in which the objective function f : �
n
  � and the mappings h : �

n
  �

l
 and g : �

n
  �

m
 have locally

Lipschitzian first derivatives but are not necessarily twice differentiable. Problems of this smoothness arise
in numerous applications such as stochastic programming and optimal control (the so�called extended
linear�quadratic problems; see [1–3]), semi�infinite programming and primal decomposition procedures
(see [4, 5] and the references therein), smooth and “lifted” reformulations of complementarity constraints
(see [6–8]), and so on. Below, we discuss certain methods for solving problem (1.1) and give an analysis
of their local convergence, which seems to be the first one under the indicated smoothness requirements.

Let L : �
n
 × �

l
 × �

m
  � be the Lagrangian of problem (1.1):

Then the stationary points of this problem and the corresponding Lagrange multipliers are given by the
Karush–Kuhn–Tucker (KKT) system

(1.2)

Denote by

the set of indices of active constraints for a feasible point  ∈ �
n
 of problem (1.1). Let  be a stationary

point for this problem. For every Lagrange multiplier ( ) ∈ �
l
 × �

m
, corresponding to , the symbols

denote the sets of indices for strongly and weakly active constraints, respectively.

We say that the linear independence constraint qualification is fulfilled at a stationary point of problem (1.1)
if the gradients of equality constraints and active inequality constraints are linearly independent at this

point. This condition ensures the uniqueness of the Lagrange multiplier ( ), corresponding to .

f x( ) h x( ) 0, g x( ) 0,≤=

L x λ μ, ,( ) f x( ) λ h x( ),〈 〉 μ g x( ),〈 〉 .+ +=

∂L
∂x
����� x λ μ, ,( ) 0, h x( ) 0, μ 0, g x( ) 0, μ g x( ),〈 〉≤≥ 0.= = =

A x( ) i 1 … m gi x( ), , 0= ={ }=

x x

λ μ, x

A+ x μ,( ) i A x( ) μi 0>∈{ }, A0 x μ,( ) i A x( ) μi∈ 0={ }= =

λ μ, x
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We also define the family of augmented Lagrangians Lc : �
n
 × �

l
 × �

m
  � for problem (1.1):

Here, c > 0 is the penalty parameter and the max operation is performed componentwise.

Based on the current dual approximation (λk, μk) ∈ �
l
 × �

m
 and the current penalty parameter ck > 0,

the multiplier method generates the next primal�dual approximation (xk + 1, λk + 1, μk + 1) ∈ �
n
 × �

l
× �

m

in the following manner: xk + 1 is found as a stationary point of the optimization problem

  min, (1.3)

while λk + 1 and μk + 1 are calculated using the formulas

(1.4)

This method underlies a number of well�known packages such as LANCELOT (see [9]) and ALGENCAN
(see [10]).

There are well�known results concerning the local convergence of the augmented Lagrangian method
in the case where the function f and the mappings h and g are twice differentiable. In [11], this issue was
treated under the assumption that the linear independence constraint qualification, the strict complementa�
rity condition A0( ) = ∅, and the second�order sufficient optimality condition are fulfilled (see also [12,
Theorem 4.7.4]). It was recently shown that the method converges locally under the sole second�order
sufficient condition if one requires additionally that the current and next approximations be always suffi�
ciently close (see [13]). Moreover, the convergence rate is guaranteed to be linear and even superlinear if
the penalty parameter ck tends to infinity as k  ∞.

In Section 3, we prove a result on the local convergence and the convergence rate of the multiplier
method with no assumption about twice differentiability and admitting the possible violation of the strict
complementarity condition. Our analysis uses the linear independence condition and the following ver�
sion of the strong second�order sufficient condition:

(1.5)

Here, the symbol ∂x denotes the partial Clarke differential with respect to x (see [14]) and

If f, h, and g are twice differentiable, then (1.5) converts into the more conventional condition

The linearly constrained Lagrangian method (see [15–17]) is traditionally introduced for problem (1.1) in

the case where m = n and g(x) = –x, x ∈ �
n
, that is, for a problem with equality constraints and the non�

negativity condition for the variables:

  min, (1.6)

Based on the current approximation (xk, λk, μk) ∈ �
n
 × �

l
 × �

n
 and the current penalty parameter ck ≥ 0,

the method calculates the next primal approximation xk + 1 ∈ �
n
 as a stationary point of the optimization

problem

  min, (1.7)

while the next point (λk + 1, μk + 1) ∈ �
l
 × �

n
 on the dual trajectory is chosen so that the pair (λk + 1 – λk,

μk + 1) is a Lagrange multiplier, corresponding to xk + 1. It is this method that underlies the very successful

Lc x λ μ, ,( ) f x( ) 1
2c
���� λ ch x( )+ 2

2
max 0 μ cg x( )+,{ } 2

2
+( ).+=

Lck
x λk μk, ,( ) x �
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,∈

λk 1+ λk
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+ max 0 μk

ckg x
k 1+( )+,{ }.= =
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H∀ ∂x
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ck

2
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+ + h x
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k( ) x x

k
–( )+ 0, x 0,≥=
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package MINOS (see [18]). The objective function of problem (1.7) is the augmented Lagrangian that
involves only the equality constraints of problem (1.6).

For twice differentiable f and h, the finest result on the local convergence of this method was obtained
in [19]. The local superlinear convergence was proved in [19] under the assumptions that the multiplier is
unique and the second�order sufficient condition is fulfilled.

In Section 4, we prove the local convergence of the linearly constrained Lagrangian method under the
same assumptions as those for the conventional multiplier method. Moreover, we show that the method
converges quadratically.

These results on the local convergence of two methods are obtained as simple implications of a very
general fact concerning the abstract Newton’s iterative scheme. This fact as applied to strongly regular
generalized equations is presented in Section 2. The underlying scheme is of independent interest and has
also other applications. At the same time, it is quite remarkable that this abstract scheme covers the mul�
tiplier methods, which are traditionally not regarded as Newton�type methods.

2. ABSTRACT NEWTONIAN SCHEME FOR GENERALIZED EQUATIONS

Following [20], we call the problem

(2.1)

a generalized equation. Here, Φ : �
ν

  �
ν

 is a single�valued mapping, while N(·) is a set�valued mapping

that acts from �
ν

 to the set of subsets of �
ν

. If N(·) ≡ {0}, then problem (2.1) is a conventional equation.
On the other hand, (2.1) covers many other problem formulations, including KKT systems in mathemat�
ical programming (see Section 3).

Let Π be an arbitrary set. Consider the following abstract iterative scheme for generalized equation (2.1):

based on the current approximation uk ∈ �
ν

 and the current parameter πk ∈ Π, the method calculates the

next approximation uk + 1 ∈ �
ν

 as a solution to the subproblem

(2.2)

where the mapping � : Π × �
ν

 × �
ν

  �
ν

 is chosen so that, for every π ∈ Π and every  ∈ �
ν

, the map�
ping �(π, , ·) approximates Φ in a certain sense in a neighborhood of . The specific properties that we
require of this approximation are indicated below in Theorem 1.

For every π ∈ Π and  ∈ �
ν

, define the set

(2.3)

Then U(πk, uk) is the solution set for subproblem (2.2). Even if uk is arbitrary close to the desired solution
to Eq. (2.1), the set U(πk, uk) can contain elements that are far from this solution. Therefore, for possible
convergence, scheme (2.2) should be modified by complementing it with the so�called localization con�
dition. This condition ensures that the solutions to subproblem (2.2) that are too far from uk are not
accepted as uk + 1:

(2.4)

Hereinafter, the symbol B(u, δ) denotes the closed ball of radius δ > 0 centered at the point u ∈ �
ν

.

The abstract iterative scheme (2.4) is an extension of the scheme developed in [21, Section 6C], which
in turn goes back to [22]. The following theorem on the local convergence of scheme (2.4) is close to the
result in [21, Exercise 6C.4].

Theorem 1. Let  ∈ �
ν

 be a solution to the generalized equation (2.1). Assume that a mapping Φ : �
ν

  �
ν

is continuous in a neighborhood of  and N(·) is a set�valued mapping that acts from �
ν

 to the set of subsets

Φ u( ) N u( ) 0∋+

� πk
u

k
u, ,( ) N u( ) 0,∋+

ũ
ũ ũ

ũ

U π ũ,( ) u �
ν

� π ũ u, ,( ) N u( ) 0∋+∈{ }.=

u
k 1+

U πk
u

k,( ) B u
k δ,( ), k∩∈ 0 1 … ., ,=

u

u
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of �
ν

. Let Π be a given set and � : Π × �
ν

 × �
ν

  �
ν

 be a given mapping. Assume that the following con�
ditions are fulfilled:

(1) (strong metric regularity of the solution) There exists a scalar ρ > 0 such that, for every r ∈ �
ν

 suffi�
ciently close to 0, the perturbed generalized equation

(2.5)

has a unique solution u(r) near . Moreover, the mapping u(·) is locally Lipschitzian at the point 0 and has ρ
as a Lipschitz constant.

(2) (accuracy of approximation) There exists a scalar  > 0 such that

and there exists a function ω : Π × �
ν

 × �
ν

 × �
ν

  �+ such that

(2.6)

(2.7)

Then there exist scalars δ > 0 and ε0 > 0 with the following properties: for every initial approximation u0 ∈

B( , ε0) and every sequence {πk} ⊂ Π, there exists a unique sequence {uk} ⊂ �
ν

 satisfying condition (2.4).
This sequence converges to , and, for each k, we have

In particular, {uk} converges at a linear rate. Moreover, the convergence rate is superlinear if ω(πk, uk, uk,
uk + 1)  0 as k  ∞. The convergence rate is quadratic if ω(πk, uk, uk, uk + 1) = O(||uk – ||).

Proof. In view of (2.3), for any π ∈ Π and any  ∈ �
ν

, every point u ∈ U(π, ) satisfies the generalized
equation (2.5) for

Moreover, assumption (2) implies that the following relations hold for all , u1, u2 ∈ B( , ):

(2.8)

In particular, we have

(2.9)

if , u ∈ B( , ). Using assumption (1) and reducing  if necessary, we can ensure that the following ine�
qualities hold for all π ∈ Π,  ∈ B( , ), and u ∈ B( , ) ∩ U(π, ):

In view of (2.6), these inequalities imply that

(2.10)

Note that, according to (2.8), the function r(π, , ·) is Lipschitzian in the ball B( , ) and has
the Lipschitzian constant 1/(2ρ) for all π ∈ Π and  ∈ B( , ). Moreover, by virtue of (2.9), we have
r(π, , )  0 as    uniformly with respect to π ∈ Π. Then, applying Theorem 1.4 in [23], we

Φ u( ) N u( ) r∋+

u

ε

� π ũ ũ, ,( ) Φ ũ( ) π∀ Π, ũ∀ B u ε,( ),∈ ∈=

q := ρsup ω π ũ u
1

u
2, , ,( ) π Π ũ u

1
u

2
B u ε,( )∈, , ,∈{ } 1

2
��,<

Φ u
1( ) � π ũ u

1, ,( )–( ) Φ u
2( ) � π ũ u

2, ,( )–( )– ω π ũ u
1

u
2, , ,( ) u

1
u

2
–≤

π∀ Π, ũ∀ u
1
, u

2, B u ε,( ).∈ ∈

u
u

u
k 1+

u– ρω πk
u

k
u

k
u

k 1+, , ,( )

1 ρω πk
u

k
u

k
u

k 1+, , ,( )–
����������������������������������������������� u

k
u– q

1 q–
��������� u

k
u– .≤ ≤

u

ũ ũ

r r π ũ u, ,( ) Φ u( ) � π ũ u, ,( ).–= =

ũ u ε

r π ũ ũ, ,( ) 0,=

r π ũ u
1, ,( ) r π ũ u

2, ,( )– ω π ũ u
1

u
2, , ,( ) u

1
u

2
– 1

2ρ
����� u

1
u

2
– .≤ ≤

r π ũ u, ,( ) ω π ũ ũ u, , ,( ) u ũ– 1
2ρ
����� u ũ– ,≤ ≤

ũ u ε ε
ũ u ε u ε ũ

u u– ρ r π ũ u, ,( ) ρω π ũ ũ u, , ,( ) u ũ– ρω π ũ ũ u, , ,( ) u u– ũ u–+( ).≤ ≤ ≤

u u– ρω π ũ ũ u, , ,( )
1 ρω π ũ ũ u, , ,( )–
����������������������������������� ũ u– q

1 q–
��������� ũ u– .≤ ≤

ũ u ε
ũ u ε

ũ u ũ u
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can easily establish the existence of ε ∈ (0, /3] and  ∈ (0, ε] such that the set U(π, ) ∩ B( , ε) contains
exactly one element for every π ∈ Π and every  ∈ B( ).

Setting , we see that the relations

hold for all  ∈ B( ) and u ∈ B( , ε). Consequently,

(2.11)

Moreover, for all  ∈ B( ) and u ∈ B( , δ), we have

It follows that (2.10) is fulfilled for all π ∈ Π,  ∈ B( ), and u ∈ U(π, ) ∩ B( , δ). Moreover, (2.6)
implies that q/(1 – q) < 1. In particular, u ∈ B( ) ⊂ B( , ε). Hence, the set in (2.11) contains exactly
one element. If we set ε0 = , then this fact, combined with (2.10), immediately yields the required assertion.

Theorem 1 shows that the superlinear convergence rate is attained if Φ(uk + 1) is increasingly accurately
approximated by �(πk, uk, uk + 1) as k grows. This improved accuracy of approximation can be achieved
by two different methods, namely, ω(πk, uk, uk, uk + 1) can be reduced in a natural way as uk and uk + 1 come
closer to  or in an artificial way through controlling the parameters πk.

For instance, if a mapping Φ is differentiable near  and its derivative is continuous at this point, then
Φ can be approximated by its linearization �( , u) = Φ( ) + Φ'( )(u – ) without any parameters. In
this case, the mean�value theorem implies that assumption (2) in Theorem 1 is fulfilled for ω( , u1, u2) =
supt∈ [0, 1]||Φ'(tu1 + (1 – t)u2) – Φ'( )||. This value tends to zero in a natural way as , u1, and u2 approach .
Iterative scheme (2.4) with this choice of � corresponds to the well�known Josephy–Newton method,
and Theorem 1 entails the results on the local superlinear convergence of this method obtained in [24, 25].

The application of Theorem 1 to the multiplier method discussed in Section 3 involves an adequate
control of the penalty parameter. On the other hand, in the case of the linearly constrained Lagrangian
method, the quality of approximation is attained in a natural way.

3. LOCAL CONVERGENCE OF THE MULTIPLIER METHOD

It is well known that the KKT system (1.2) for problem (1.1) can be restated in the form of generalized

equation (2.1) if one sets ν = n + l + m, defines the mapping Φ : �
n
 × �

l
 × �

m
  �

n
× �

l
 × �

m
 by the

equality

where u = (x, λ, μ) ∈ �
n
 × �

l
 × �

m
, and sets

(3.1)

Here,

is the normal cone of the convex closed set Q ⊂ �
ν

 at a point u ∈ �
ν

.

ε ε̃ ũ u
ũ u ε̃,

δ ε ε̃+=

u ũ– u u– ũ u– ε ε̃+≤+≤ δ=

ũ u ε̃, u

U π ũ,( ) B ũ δ,( ) ∅ π∀ Π, ũ∀ B u ε̃,( ).∈ ∈≠∩

ũ u ε̃, ũ

u u– u ũ– ũ u– δ ε̃+≤+≤ ε 2ε̃ ε.≤+=

ũ u ε̃, ũ ũ
u ε̃, u

ε̃

u

u
ũ ũ ũ ũ

ũ
ũ ũ u

Φ u( ) ∂L
∂x
����� x λ μ, ,( ) h x( ) g x( )–, ,⎝ ⎠

⎛ ⎞ ,=

N ·( ) NQ ·( ), Q �
n

�
l

�+
m

.××= =

NQ u( ) v �
ν

v w u–,〈 〉 0 w∀ Q∈≤∈{ }, if u Q,∈

∅, if u Q,∉⎩
⎨
⎧

=
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In view of relations (1.3) and (1.4), an iteration step of the multiplier method can be written as

These relations allow us to conclude that the multiplier method is a particular case of scheme (2.2) in

which � : (�+\{0}) × �
ν

 × �
ν

  �
ν

 is defined as

where  and u = (x, λ, μ), and N(·) is defined by (3.1). It is obvious that �(c, , ) = Φ( ) and

It follows that

which implies that condition (2.7) is fulfilled if ω(c, , u1, u2) = 1/c and u1 = (x1, λ1, μ1), u2 = (x2, λ2, μ2)

for any c > 0 and any x1, x2 ∈ �
n
, λ1, λ2 ∈ �

l
, and μ1, μ2 ∈ �

m
. Thus, the local convergence and the con�

vergence rate of the multiplier method are immediately given by Theorem 1 if the solution  ∈

�
n

× �
l
 × �

m
 to the generalized equation corresponding to KKT system (1.2) is strongly metrically regular.

Suppose that a mapping Φ is locally Lipschitzian at the solution  to generalized equation (2.1). By the
main result of [26], the strong metric regularity of this solution is implied by the property (called CD�reg�
ularity in [26]) that can be stated as follows: for every matrix J ∈ ∂Φ( ), the solution  to the generalized
equation

is strongly metrically regular or, which is the same, is strongly regular in the classical sense (see [20]).
Here, ∂ denotes the Clark differential.

Assume that f, h, and g are locally Lipschitzian at . Then, according to [27, Proposition 2.3, Remark 2.1],
the linear independence constraint qualification and the strong second�order sufficient condition (1.5)

imply that  is a CD�regular solution to generalized equation (2.1) corresponding to KKT
system (1.2).

Summing up what was said above, we arrive at the following result.

Theorem 2. Assume that f : �
n
  �, h : �

n
  �

l
, and g : �

n
  �

m
 are differentiable in a neighbor�

hood of a point  ∈ �
n
 and their derivatives are locally Lipschitzian at this point. Let  be a stationary point

of problem (1.1) satisfying the linear independence constraint qualification. Assume that the unique Lagrange

multiplier ( ) ∈ �
l
 × �

m
 corresponding to  satisfies the strong second�order sufficient condition (1.5).

0
∂Lck

∂x
�������� x

k 1+ λk μk, ,( ) f ' x
k 1+( ) h' x

k 1+( )( )
т

λk
ckh x

k 1+( )+( ) max 0 ckgi x
k 1+( ) μi

k
+,{ }gi' x

k 1+( )
i 1=

m

∑+ += =

=  f ' x
k 1+( ) h' x

k 1+( )( )
т
λk 1+

g' x
k 1+( )( )

т
μk 1+

+ + ∂L
∂x
����� x

k 1+ λk 1+ μk 1+, ,( ),=

0 h x
k 1+( ) 1

ck

��� λk 1+ λk
–( ),–=

0 max μk 1+
– ckg x

k 1+( ) μk 1+ μk
–( )–,{ } min μk 1+

ckg x
k 1+( )– μk 1+ μk

–( )+,{ }.–= =

� c ũ u, ,( ) ∂L
∂x
����� x λ μ, ,( ) h x( ) 1

c
�� λ λ̃–( )– g x( )– 1

c
�� μ μ̃–( )+, ,⎝ ⎠

⎛ ⎞ ,=

ũ x̃ λ̃ μ̃, ,( )= ũ ũ ũ

Φ u( ) � c ũ u, ,( )– 0 1
c
�� λ λ̃–( ) 1

c
�� μ μ̃–( )–, ,⎝ ⎠

⎛ ⎞ .=

Φ u
1( ) � c ũ u

1, ,( )–( ) Φ u
2( ) � c ũ u
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Then there exist scalars  > 0 and δ > 0 with the following properties: for every initial approximation

(x0, λ0, μ0) ∈ �
n

× �
l
 × �

m
 sufficiently close to ( ) and every sequence {ck} ⊂ [ , +∞), there exists a

unique sequence {(xk, λk, μk)} ⊂ �
n
 × �

l
 × �

m
 such that, for k = 0, 1, …, xk + 1 is a stationary point of problem (1.3),

the pair (λk + 1, μk + 1) satisfies relations (1.4), and

(3.2)

This sequence converges to ( ), and the convergence rate is linear. Moreover, the convergence rate is

superlinear if ck  +∞ and quadratic if 1/ck = O(||(xk – , λk – , μk – )||).

4. LOCAL CONVERGENCE OF THE LINEARLY CONSTRAINED LAGRANGIAN METHOD

In the analysis of the local convergence of the linearly constrained Lagrangian method, the natural
assumption is that the penalty parameter in (1.7) is constant, that is, ck = c for all k (see the discussion of
this issue in [17]; in the original paper [15], the choice was ck = 0 for all k).

The KKT system for problem (1.7) has the form

This system and the rule defining λk + 1 imply that the linearly constrained Lagrangian method is a partic�

ular case of scheme (2.2) in which ν = n + l + n, � : �
ν

 × �
ν

  �
ν

 is defined as

and N(·) is defined by (3.1).

In order to apply Theorem 1 in this case, the mapping Φ should be redefined as follows:

(4.1)

For every fixed c, the KKT system for problem (1.6) remains equivalent to generalized equation (2.1) with
N(·) defined by (3.1). This reflects the well�known fact that, in the optimality conditions, the conventional
Lagrangian function can be replaced by the augmented one. On the other hand, this generalized equation
is identical to the generalized equation corresponding to the KKT system for problem

  min, (4.2)

Suppose that the triple ( ) ∈ �
n
 × �

l
 × �

n
 is a solution to the KKT system for problem (1.6) satisfy�

ing the linear independence condition and the second�order sufficient condition (1.5). It is easy to see that
the same properties hold with respect to problem (4.2). As was explained in the preceding section, this

ensures the strong metric regularity of the solution  = ( ) ∈ �
n
 × �

l
 × �

n
 to generalized equation (2.1)

in which Φ is defined by (4.1) and N is defined by (3.1).

Furthermore, it is easy to see that �( ) = Φ( ). By the mean�value theorem, we have

where

(4.3)

c

x λ μ, , c

x
k 1+

x
k

– λk 1+ λk
– μk 1+ μk

–, ,( ) δ.≤

x λ μ, ,

x λ μ

f ' x( ) h' x( )( )Tλk h' x
k( )( )

T
λ+ μ– c h' x( )( )T

h x( )+ + 0,=

h x
k( ) h' x

k( ) x x
k

–( )+ 0, μ 0, x 0, μ x,〈 〉≥ ≥ 0.= =

� ũ u,( ) f ' x( ) h' x( )( )Tλ μ– c h' x( )( )T
h x( ) h' x( ) h' x̃( )–( )T λ λ̃–( )– h x̃( ) h' x̃( ) x x̃–( ) x,+,+ +( ),=

Φ u( ) f ' x( ) h' x( )( )Tλ μ– c h' x( )( )T
h x( )+ + h x( ) x, ,( ).=

f x( ) c
2
�� h x( ) 2

2
+ h x( ) 0, x 0.≥=

x λ μ, ,

u x λ μ, ,

ũ ũ, ũ

Φ u
1( ) � ũ u

1,( )–( ) Φ u
2( ) � ũ u

2,( )–( )– ω ũ u
1

u
2, ,( ) u

1
u

2
– ,≤

ω ũ u
1

u
2, ,( ) O( h' tx

1
1 t–( )x

2
+( ) h' x̃( )– λ2 λ̃–+

t 0 1,[ ]∈

sup ).=
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To complete the verification of assumption (2) of Theorem 1, it remains to note that ω( , u1, u2)  0 as
, u1, u2   because the mapping h' is continuous at the point .

Moreover, equality (4.3) and the fact that h' is locally Lipschitzian at  imply that

(4.4)

If the sequence {uk} ⊂ �
ν

 converges (super)linearly to , then  = O( ), and relation (4.4)

entails the estimate ω(uk, uk, uk + 1) = O( ).

Theorem 3. Assume that f : �
n
  � and h : �

n
  �

l
 are differentiable in a neighborhood of a point

 ∈ �
n
 and their derivatives are locally Lipschitzian at this point. Let  be a stationary point of problem (1.6)

satisfying the linear independence constraint qualification. Assume that the unique Lagrange multiplier ( ) ∈

�
l
 × �

n
 corresponding to  satisfies the strong second�order sufficient condition (1.5).

Then, for every c > 0, there exists a scalar δ > 0 with the following properties: for every initial approximation

(x0, λ0, μ0) ∈ �
n
 × �

l
 × �

n
 sufficiently close to ( ), there exists a unique sequence {(xk, λk, μk)} ⊂ �

n
 ×

�
l
 × �

n
 such that, for k = 0, 1, …, xk + 1 is a stationary point of problem (1.7), the pair (λk + 1 – λk, μk + 1) is

the corresponding Lagrange multiplier, and inequality (3.2) is fulfilled. This sequence converges to ( ),
and the convergence rate is quadratic.

In closing, we emphasize that the superlinear convergence of the multiplier method is attained at the
expense of the unlimited growth of the penalty parameter, which leads to the deterioration of the condi�
tioning of subproblems (1.3) in this method. On the other hand, the linearly constrained Lagrangian
method converges quadratically for a constant penalty parameter; however, its subproblems (1.7) are sub�
stantially more complex than unconstrained subproblems (1.3).
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