

MedChem Russia 2019

4th Russian Conference on Medicinal Chemistry with international participants

June 10-14, 2019 Ekaterinburg, Russia

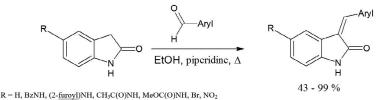
Abstract book

© Ural Branch of the Russian Academy of Sciences. All rights reserved © Authors, 2019

4th Russian Conference on Medicinal Chemistry with international participants. MedChem Russia 2019 Abstract book – Ekaterinburg : Ural Branch of the Russian Academy of Sciences, 2019. – 512 p. ISBN 978-5-7691-2521-8

Abstract book includes abstracts of plenary lectures, oral and poster presentations, and correspondent presentations of the Conference

CONTENT


 Plenary Lectures	45 89 153		
		Partners and Sponsors	639

Synthesis and biological evaluation of 3- arylidene 2-oxindole derivatives as new agents for treatment of diabetes mellitus

Bezsonova E.N.¹, Lozinskaya N.A.^{1,2}, Zaryanova E.V.¹, Tsymlyakov M.D.¹, Efremov A.M.¹, Anikina L.V.², Babkov D.A.³, Zakharyascheva O.Yu.³, Prilepskaya D.R.³ Spasov A.A.³

¹Department of Chemistry, Lomonosov Moscow State University, 119234, Russia, Moscow, Leniskie Gory St., 1 ²Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Russia, Chernogolovka, Moscow Region, Severniy Avenue, 1 ³ Research Institute of Pharmacology, Volgograd State Medical University, 400001,Russia, Volgograd, KIM St., 20

2-Oxindole scaffold was used for targeted design and synthesis of a number of novel compounds with pronounced antidiabetic activity^[1]. Condensation of 2-oxindoles with 2-substituted heteroaromatic aldehydes was E/Z selective and resulted in one isomer predominancy.

Aryl = 2-pyridyl, 4-Br-Ph, 4-OH-Ph, 3<u>4,5</u>-tri-MeO-Ph, 3-OH-Ph, 4-NO₂-Ph, 3-pyridyl, 4-pyridyl, 2-thienyl, 2-furyl, 3,4dimethyl-pyrazol-4-yl

The inhibitory activity of obtained compounds was tested *in vitro* on two molecular targets for diabetes mellitus therapy, glycogen synthase kinase 3 β (GSK-3 β) and α -glucosidase ^[2,3,4]. The lead compounds were shown to inhibit GSK-3 β and α -glucosidase with IC₅₀ 4.19 nM and IC₅₀ 6.78 μ M respectively. Even though GSK-3 β ligands and α -glucosidase inhibitors share similar scaffold, lead compounds in screenings on these two molecular targets were structurally different which suggests a possibility for further structural optimization and search for selective ligands based on 2-oxindole scaffold for both enzymes. Lead compounds for each of two enzymes displayed significant antidiabetic effect in oral glucose tolerance test in rat model of type 2 diabetes mellitus.

References

[1] N.A. Lozinskaya, E.V. Zaryanova, E.N. Bezsonova, M.D. Tsymlyakov, A.M. Efremov, L.V. Anikina, D.A. Babkov, O.Yu. Zakharyascheva, D.R. Prilepskaya, A.A. Spasov, *Bioorganic & Medicinal Chemistry,* in print

[2] G.W. Cline, K. Johnson, W. Regittnig , Diabetes, 2002, 51, 10, 2903-2910

[3] H. Bischoff, European Journal of Clincal Investigation, 1994, 24, 3, 3-10

[4] F. Takahashi-Yanaga, Biochemical Pharmacology, 2013, 86, 2, 191-199

This work was supported by the Russian Foundation for Basic Research (Project 17-03-01320)