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Abstract—For the third order evolution differential equations,
the algebra of differential invariants with respect to the pseu-
dogroup of point transformations is constructed. Such equations
arise in the study of filtration processes (the Rapoport – Leas
equation), the theory of nonlinear waves (the Korteweg – de Vries
equation).

Index Terms—jets, algebra of differential invariants, point
transformations

I. INTRODUCTION

Consider the following problem: describe regular orbits of
the class of differential equations of third order

ut = A(u)x +B(u)xx + C(u)xxx (1)

with respect to point transformations. Here u = u(t, x) is
unknown function, A,B and C are given function of class
C∞. We assume that these functions are defined in the same
interval.

Equations (1) describe a wide class of nonlinear processes.
For example, at C = 0, equations (1) arise in the theory
of nonlinear filtering [1,2] and are called the generalized
Rapoport – Leas equations. Finite-dimensional dynamics and
attractors of such equations were constructed in [3]. Differ-
ential invariants of Rapoport – Leas equations were found in
[4].

If
A(u) = −3u2, B(u) = 0, C(u) = −u

then we get the classical Korteweg – de Vries equation [5]

ut + 6uux + uxxx = 0. (2)

If

A(u) = −3u2, B(u) = µu, C(u) = −u

then we get the Korteweg – de Vries equation with a dissipa-
tive member:

ut + 6uux + uxxx = µuxx. (3)
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By this reason we call equations (1) by generalized Ko-
rteweg – de Vries equations.

In this article, point transformations that preserve the class
of equations (1) are found. It turned out that such transfor-
mations form a Lie group. A field of rational differential
invariants has been found. This field separates the regular
orbits, which makes it possible to classify the generalized
Korteweg – de Vries equations.

II. ADMISSIBLE TRANSFORMATIONS

Equation (1) can be rewitten in the following form:

ut =a(u)ux + b(u)uxx + b′(u)u2x + c(u)uxxx+

3c′(u)uxuxx + c′′(u)u3x,
(4)

where

a(u) = A′(u), b(u) = B′(u), c(u) = C ′(u).

Thus, equation (4) is uniquely determined by three functions
a, b, c of one variable u and therefore it can be considered as a
parametrically defined curve in the space R3 with coordinates
a, b, c.

Equation (4) defines the hypersurface

E = E(a,b,c) = {F (a, b, c) = 0}

in the space of 3-jets J3(R2). Here

F (a, b, c) =u1,0 − a(u0,0)u0,1 − b(u0,0)u0,2 − b′(u0,0)u20,1−
c(u0,0)u0,3 − 3c′(u0,0)u0,1u0,2 − c′′(u0,0)u30,1

and t, x, u0,0, u1,0, . . . , u0,3 are canonical coordinates on
J3(R2) (see [6]).

Consider another equation Ẽ = E(ã,̃b,c̃) of type (4).
Equations E and Ẽ are equivalent with respect to point

transformations if there exist a point transformation ϕ :
J0(R2)→ J0(R2) such that

ϕ(3)(Ẽ) = E ,

where ϕ(3) is a prolongation of the point transformation ϕ to
the space J3(R2). It means that(

ϕ(3)
)∗

(F (a, b, c)) = λF (ã, b̃, c̃), (5)
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where λ is a function on J3(R2).
Using Sophus Lie’s approach we consider infinitesimal

point transformations only. Let X be a vector field on the
space J0(R2) and let ϕτ be a translation along trajectories of
X from τ = 0 to τ . Then ϕ0 is a identiacl transformation. We
get (

ϕ(3)
τ

)∗
(F (a, b, c)) = λτF (ãτ , b̃τ , c̃τ ),

where λτ is a one-parameter family of functions on J3(R2)
and ãτ , b̃τ , c̃τ are one-parameter families of functions. Note
that λ0 = 1, ã0 = a, b̃0 = b, c̃0 = b.

Differentiating both sides of the last equality with respect to
τ at τ = 0 and restricting the resulting equality to the equation
E we get

X(3)(F (a, b, c))
∣∣∣
E
= −α(u0,0)u0,1 − β(u0,0)u0,2−

β′(u0,0)u
2
0,1 − γ(u0,0)u0,3 − 3γ′(u0,0)u0,1u0,2−

γ′′(u0,0)u
3
0,1.

Here X(3) is the prolongation of the vector field X to J3(R2),

α =
daτ
dτ

∣∣∣∣
τ=0

, β =
dbτ
dτ

∣∣∣∣
τ=0

, γ =
dcτ
dτ

∣∣∣∣
τ=0

.

The last formula gives a system of partial differential
equations for coefficients of the vector field X . Solving it we
obtain that the vector field X is a linear combination of the
following vector fields:

∂t, t∂t +
1

3
x∂x, ∂x, x∂x, t∂x, ∂u0,0

, u0,0∂u0,0
.

So, we get the following theorem:

Theorem 1: Admissible infinitesimal transformations of gen-
eralized Korteweg – de Vries equations form a 7-parametric
Lie group.

III. ACTIONS OF ADMISSIBLE TRANSFORMATIONS ON THE
COEFFICIENTS OF EQUATIONS

Show how the Lie group of admissible transformations acts
on the functions a, b, c.

Introduce the space R4 with coordinates u, a, b, c and the
space R with a coordinate u and define the trivial bundle

π : R4 → R, π : (u, a, b, c) 7→ u.

A restriction of the Lie group of admissible transformations
to this bundle form a five-dimensional Lie group, which we
denote by Gπ .

The corresponding Lie algebra gπ is generated by the
following vector fields:

Y1 =∂u,

Y2 =u∂u,

Y3 =∂a,

Y4 =2a∂a + b∂b,

Y5 =a∂a + 2b∂b + 3c∂c.

Let Jk(π) be a k-jets of sections of the bundle π with
canonical coordinates u, a = a0, b = b0, c = c0, a1, b1, c1,
. . . , ak, bk, ck. Prolongations of the vector fields Y1, . . . , Y5
into space Jk(π) are the following:

Y
(k)
1 =∂u,

Y
(k)
2 =u∂u −

k∑
i=1

i(ai∂ai + bi∂bi + ci∂ai),

Y
(k)
3 =∂a,

Y
(k)
4 =

k∑
i=0

(2ai∂ai + bi∂bi),

Y
(k)
5 =

k∑
i=0

(ai∂ai + 2bi∂bi + 3ci∂ci).

IV. DIFFERENTIAL INVARIANTS

A function J on the space Jk(π) is called a differential in-
variant of order ≤ k of the Lie group Gπ (and the generalized
Korteweg – de Vries equation) if it is constant on the orbits
of the Lie group G(k)

π . Here G(k)
π is a prolongation of the Lie

group Gπ to the space Jk(π).
A differential invariant J satisfies the system of five linear

differential equations

Y
(k)
i (J) = 0 (i = 1, . . . , 5). (6)

A point θ ∈ Jk(π) is called regular if the tangent vectors
Y

(k)
1,θ , . . . , Y

(k)
5,θ are linearly independent.

An orbit Oσ of the point σ ∈ Jk(π) is called regular if
each its point is regular.

Differential invariants form an algebra with respect to the
operations of addition and multiplication, that is, if J1 and
J2 are differential invariants, then their sum J1 + J2 and the
product J1J2 are also differential invariants.

The differential invariants J1, . . . , Js of order at most k are
called basic if they are functionally independent and any other
differential invariant of order at most k is their function. In
this case, the number s is called the dimension of the algebra
of differential invariants of order at most k.

A dimension of the algebra of differential invariants of order
at most k is equal to the codimension of the regular orbit of
the Lie group G(k)

π .
In our case this dimension is equal to 3k − 1, k ≥ 1.
Among all differential invariants, one can distinguish

rational invariants. Such invariants form a field and, according
to the Lie – Tresse theorem [7] , they separate regular orbits.

Theorem 2: The field of rational differential invariants of
generalized Korteweg – de Vries equations is generated by



invariants

Jk,1 =
bkb

2k−1
0

ak1c
k
0

,

Jk,2 =
ckb

2k
0

ak1c
k+1
0

,

Jk,3 =
ak+1b

2k
0

ak+1
1 ck0

,

where k = 1, 2, . . . .
This algebra separates regular orbits of the Lie group G(k)

π .

Example 1: For equations (2) and (3) all constructed dif-
ferential invariants Jk,1, Jk,2 and Jk,3 are zero. This means
that these equations belong to singular orbits of the Lie group
G

(k)
π .
Example 2: For Korteweg – de Vries equation with cubic

nonlinearity
ut + u2ux + ηuxxx = µuxx

the invariants J1,1, J1,2, J2,2, J2,3 are zero and

J2,1 =
µ2

2ηu2
.

Example 3: For equation

ut = exp(u)x + exp(u)xx + exp(u)xxx

all invariants are 1.

Example 4: For equation

ut = A(u)x +A(u)xx +A(u)xxx

we have
J1,1 = J1,2 = 1,

J2,1 = J2,2 = J2,3 =
A′′′A′

(A′′)2
,

J3,1 = J3,2 = J3,3 =
A′′′′(A′)2

(A′′)3

and so on.

V. EQUATIONS WITH CONSTANT INVARIANTS

Consider case when first order differential invariants are
constant, i.e.

J1,1 = λ, J1,1 = µ, (7)

where λ and µ are nonzero constant.
Find the function A,B,C in equation (1).
Suppose condition (7) hold. Then the function a, b, c satisfy

the following system of two differential equations:{
b′b− λca′ = 0,

c′b2 − µc2a′ = 0.

Solving this system we get that b(u) is arbitrary function and

a(u) =
µ

C2(2λ− µ)
b(u)2−

µ
λ + C1,

c(u) = C2b(u)
µ
λ .

Therefore

A(u) =
µ

C2(2λ− µ)

∫
B′(u)2−

µ
λ du+ C1u+ C3,

C(u) = C2

∫
B′(u)

µ
λ du+ C4,

where C1, . . . , C4 are arbitrary constant.

VI. CONCLUSION

Rational differential invariants of point transformations were
constructed for generalized Korteweg – de Vries equations.
These invariants form a field and they separate regular orbits.

Invariants can be used to solve the problem of equivalence
of equations.
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