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Abstract As is well known, when initialized close to a nonsingular solution of a smooth
nonlinear equation, the Newton method converges to this solution superlinearly. Moreover,
the common Armijo linesearch procedure used to globalize the process for convergence
from arbitrary starting points, accepts the unit stepsize asymptotically and ensures fast local
convergence. In the case of a singular and possibly even nonisolated solution, the situa-
tion is much more complicated. Local linear convergence (with asymptotic ratio of 1/2) of
the Newton method can still be guaranteed under reasonable assumptions, from a starlike,
asymptotically dense set around the solution. Moreover, convergence can be accelerated by
extrapolation and overrelaxation techniques. However, nothing was previously known on
how the Newton method can be coupled in these circumstances with a linesearch technique
for globalization that locally accepts unit stepsize and guarantees linear convergence. It turns
out that this is a rather nontrivial issue, requiring a delicate combination of the analyses on
acceptance of the unit stepsize and on the iterates staying within the relevant starlike domain
of convergence. In addition to these analyses, numerical illustrations and comparisons are
presented for the Newton method and the use of extrapolation to accelerate convergence
speed.
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1 Introduction

Consider a system of nonlinear equations

Φ(u) = 0, (1)

where Φ : Rp → Rp is sufficiently smooth. For a current iterate uk ∈ Rp, the basic Newton
method solves the linear system

Φ(uk)+Φ ′(uk)v = 0 (2)

to obtain vk, and defines the next iterate as uk+1 = uk + vk.
In this work, we are interested in the case when (1) has a singular, possibly even non-

isolated, solution ū. This means that Φ ′(ū) is a singular matrix. Evidently, one cannot guar-
antee convergence of the Newton method to a singular solution ū from all starting points
in its entire neighborhood, as the Newton iteration need not be well-defined at some points
arbitrarily close to such ū. However, well-definedness and convergence can still be shown
from some large domains, and under reasonable assumptions. To discuss the relevant results
and put our contributions in perspective, we need to recall some definitions first.

A set U ⊂Rp is called starlike with resect to ū ∈Rp if, for every u ∈U and t ∈ (0, 1], it
holds that tu+(1− t)ū ∈U . With S standing for the unit sphere in Rp, a direction v ∈S is
called excluded for such a starlike set U if ū+tv ̸∈U for all t > 0. A set which is starlike with
respect to a given point is called asymptotically dense if the corresponding set of excluded
directions is thin, i.e., the complement of the latter is open and dense in S (with topology
induced from Rp).

Assuming that Φ is twice differentiable at ū, we say that it is 2-regular at ū in the di-
rection v ∈ Rp if the matrix Φ ′(ū)+ΠΦ ′′(ū)[v] is nonsingular, where Π is the orthogonal
projector in Rp onto (imΦ ′(ū))⊥, and Φ ′′(ū)[v] is a matrix of the linear operator defined by
(Φ ′′(ū)[v])u = Φ ′′(ū)[v, u], u ∈ Rp. This is one of the possible definitions of 2-regularity;
an equivalent characterization will be introduced and employed in Section 2. Of course, if
Φ ′(ū) is nonsingular, then Φ is 2-regular at ū in every direction v, including v = 0. What
is important here is that 2-regularity may hold naturally at singular (and even nonisolated)
solutions in nonzero directions and, among them, in directions from kerΦ ′(ū) (see Exam-
ples 2–4 below). This will be the key assumption in our analysis.

Next, we recall that the notion of a noncritical solution of a nonlinear equation, intro-
duced in [10], consists of the following two ingredients: Clarke-regularity of the solution set
at ū, and the contingent cone to the solution set at ū being equal to kerΦ ′(ū). As demon-
strated in [9,10], noncriticality is equivalent to the local Lipschitzian error bound, and if
the key assumption of 2-regularity of Φ at the solution ū in a direction v ∈ kerΦ ′(ū) \ {0}
holds, then the second ingredient in the definition of noncriticality of ū is necessarily vi-
olated. Thus, the 2-regularity assumption can be expected to hold only at those singular
solutions which are critical. Note that such solutions can be stable under a rich class of
perturbations [10].

In [7], convergence of the Newton iterates to ū has been established under the 2-regula-
rity assumption specified above. Under this assumption, convergence holds from all starting
points in a set in Rp, which is starlike with respect to ū and asymptotically dense. It is im-
portant to emphasize that this analysis is applicable to solutions which are not isolated. As
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is shown in [7], the rate of convergence is linear, with the asymptotic ratio of 1/2, and it
cannot be any faster (again, unless ū is a nonsingular solution). Moreover, there is a rather
special convergence pattern specified in detail in [8, Theorem 2.1]. In particular, in addition
to the above-mentioned linear convergence rate with ratio of 1/2, it is established that con-
vergence is along a single direction v ∈ kerΦ ′(ū), i.e., the sequence {(uk − ū)/∥uk − ū∥}
converges to such v. In [16], these results were further extended to the case when Φ has a
Lipschitz-continuous first derivative (but is not necessarily twice differentiable). They were
also (partially) generalized to various modifications of the basic Newton scheme in [9], and
to constrained equations in [4].

At this point, it should be commented that faster local convergence (i.e., superlinear)
in the singular/degenerate cases can be guaranteed for some Newton-type methods when
they are initialized close to noncritical solutions. These methods modify the basic Newton
schemes by incorporating appropriate stabilizing mechanisms. The examples are the classi-
cal Levenberg–Marquardt method [14,15] with an adaptive selection of the regularization
parameter [5,18], the stabilized Newton–Lagrange method (stabilized sequential quadratic
programming, when (1) corresponds to the Lagrange optimality system for an equality-
constrained optimization problem) [3,11,17], and the LP-Newton method [1,2]. In these
references, it is demonstrated that all those methods possess very similar and very strong
local convergence properties when initialized close enough to a noncritical solution: in this
case, they converge superlinearly or even quadratically to a nearby solution. However, the
results in [9] highlight that these nice convergence properties may not show up in computa-
tion, if critical solutions exist. This is because critical solutions may be specially attractive
for Newtonian sequences initialized within large sets of starting points, even though critical
solutions typically form only a thin subset within the whole solution set (this is normally
the case, unless a singular solution is isolated). In particular, the attraction phenomenon of
critical solutions may not allow the cited methods to enter a sufficiently small neighborhood
of any noncritical one, from where superlinear convergence occurs.

Thus, in this work, we follow a different path: instead of trying to avoid convergence
to critical solutions, the idea is to exploit the special convergence pattern of the Newton
method to critical solution, established in [8, Theorem 2.1], in order to accelerate conver-
gence, and to achieve at least a relatively fast linear rate. Some accelerating techniques are
known, like extrapolation [6,8], which decreases the asymptotic ratio of linear convergence
from 1/2 to 1/4, 1/8, etc., and is easy to integrate into globalization schemes. Theoretically
clean integration of other existing acceleration techniques seems way more difficult. In any
case, preserving accelerating properties of these techniques becomes not a simple issue if
linesearch is used for globalization: the ultimate acceptance of the unit stepsize of the New-
ton method becomes a key question, as this is not at all automatic (in contrast to the case of a
nonsingular solution). This question turns out to be highly nontrivial and will be the central
issue addressed in this work.

It is also quite possible that other approaches for local acceleration might be developed
in the future, but they would all face this principle issue: when combining these essentially
local acceleration techniques with globalized versions of the Newton method, the latter must
preserve the convergence pattern of the pure Newton method, for the overall algorithm to
be well-defined and (potentially) accelerated. Therefore, our work is a basic contribution in
this direction, i.e., of consciously exploiting the attraction of Newtonian methods to critical
solutions.

The rest of the paper is organized as follows. In Section 2, we summarize the results
from [7], with some refinements required for our purposes. Our linesearch globalization
is dealt with in Section 3, together with the acceleration by extrapolation. Furthermore,
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we exhibit that, unlike in the case of convergence to a nonsingular solution, the question
of acceptance of the unit stepsize by linesearch is highly nontrivial in the singular case.
Section 4 provides the analysis showing when the unit stepsize is accepted. We conclude
with numerical illustrations and comparisons in Section 5.

2 Preliminaries

After some basic definitions, we provide the key ingredients of the analysis in [7], with some
refinements needed for our subsequent developments.

For a symmetric bilinear mapping B : Rp ×Rp →Rp, and for a given v ∈Rp, we denote
by B[v] a linear operator from Rp to Rp defined by B[v]u = B[v, u], u ∈ Rp. Assuming that
Φ is twice differentiable at ū, define the linear operator B(v) : kerΦ ′(ū) → (imΦ ′(ū))⊥

as the restriction of ΠΦ ′′(ū)[v] to kerΦ ′(ū). Then 2-regularity of Φ at ū in a direction v is
equivalent to saying that B(v) is nonsingular. For a given point ū ∈ Rp, a given direction
v̄ ∈ S , and scalars ε > 0 and δ > 0, define the set

Kε ,δ (v̄) =
{

u ∈ Rp \{ū} : ∥u− ū∥ ≤ ε,
∥∥∥∥ u− ū
∥u− ū∥

− v̄
∥∥∥∥≤ δ

}
.

Here and throughout the paper, all the norms are Euclidean (i.e., consistent with the Eu-
clidean inner product, denoted by ⟨·, ·⟩). Observe further that every u ∈Rp can be written as
u = u1 +u2 with uniquely defined u1 ∈ (kerΦ ′(ū))⊥ and u2 ∈ kerΦ ′(ū).

The following result can be considered as a sharpened version of [7, Lemma 4.1]; see
also [9, Lemma 1].

Lemma 1 Let Φ : Rp → Rp be twice differentiable near ū ∈ Rp, with its second derivative
Lipschitz-continuous with respect to ū, that is,

Φ ′′(u)−Φ ′′(ū) = O(∥u− ū∥)

as u → ū. Let ū be a solution of equation (1), and assume that Φ is 2-regular at ū in a
direction v̄ ∈ S . Then, there exist ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄ (v̄) > 0 such that, for every
uk ∈ Kε̄ , δ̄ (v̄), the linear operator B(uk − ū) is invertible,

(B(uk − ū))−1 = O(∥uk − ū∥−1) (3)

as uk ∈ Kε̄, δ̄ (v̄) tends to ū, the Newton iteration system has a unique solution vk, and it holds
that

uk
1 + vk

1 − ū1 = O(∥ΠΦ ′′(ū)[uk − ū, uk
1 − ū1]∥)+O(∥uk − ū∥3), (4)

uk
2 + vk

2 − ū2 =
1
2

π(uk − ū)+O(∥uk − ū∥2), (5)

where for v ∈ Rp we set

π(v) = v2 +(B(v))−1ΠΦ ′′(ū)[v, v1]. (6)
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Proof As in the proof in [9, Lemma 1], without loss of generality we can assume that ū = 0
and

Φ(u) = Au+
1
2

B[u, u]+R(u), (7)

where A = Φ ′(0) ∈Rp×p, B = Φ ′′(0) is a symmetric bilinear mapping from Rp ×Rp to Rp,
and the mapping R : Rp → Rp is differentiable near 0, with

R(u) = O(∥u∥3), R′(u) = O(∥u∥2)

as u → 0.
Directly following the proof in [9, Lemma 1] we obtain the existence of ε̄ > 0 and δ̄ > 0

such that for every uk ∈ Kε̄ , δ̄ (v̄) there exists the unique vk solving (2), and

uk
1 + vk

1 = O(∥u− ū∥2) (8)

holds, as well as (5), as u → ū. Therefore, it only remains to show that (8) can be replaced
by the sharper estimate (4).

Multiplying (2) by (I −Π), and employing (7), we obtain that

(A+(I −Π)(B[uk]+R′(uk)))vk
1 = −Auk

1 − (I −Π)

(
1
2

B[uk, uk]+R(uk)

)
−(I −Π)(B[uk]+R′(uk))vk

2

= −Auk
1 − (I −Π)

(
B
[

uk,
1
2

uk + vk
2

]
+R(uk)+R′(uk)vk

2

)
. (9)

According to (3), (5), and (6), it follows that

B
[

uk,
1
2

uk + vk
2

]
= B

[
uk,

1
2

uk
2 + vk

2

]
+O(∥ΠB[uk, uk

1]∥)

= O(∥ΠB[uk, uk
1]∥)+O(∥uk∥3).

But then, repeating the argument in the proof in [9, Lemma 1], we obtain from (9) that (4)
holds. ⊓⊔

Compared to the smoothness of Φ in Lemma 1, a weaker smoothness assumption is
used in [16, Assumption 1]. However, to get the refined results in Lemma 1 above, it seems
impossible to relax our smoothness assumptions on Φ .

The next result is a counterpart of [7, Lemma 5.1]; see also [6, Lemma 2.2] and [9,
Theorem 1 and Remark 1]. It characterizes convergence from points in the set Kε,δ (v̄) with
sufficiently small ε > 0 and δ > 0, where v̄ is from the key 2-regularity assumption.

Proposition 1 In addition to the assumptions of Lemma 1, let v̄ ∈ kerΦ ′(ū). Then, for every
ε̄ > 0 and δ̄ > 0, there exist ε = ε(v̄) > 0 and δ = δ (v̄) > 0 such that, for every starting
point u0 ∈ Kε ,δ (v̄), the unique sequence {uk} ⊂ Rp exists such that vk = uk+1 − uk solves
(2) for each k, and this sequence possesses the following properties: {uk} ⊂ Kε̄ , δ̄ (v̄), {uk}
converges to ū,

lim
k→∞

∥uk+1 − ū∥
∥uk − ū∥

=
1
2
, (10)

and the sequence {(uk − ū)/∥uk − ū∥} converges to some v ∈ kerΦ ′(ū).
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The key assumption needed for applicability of Proposition 1 consists of the existence of
v̄ ∈ kerΦ ′(ū) such that Φ is 2-regular at ū in the direction v̄. This assumption will be playing
the central role in the subsequent analysis as well. We refer the reader to [13, Section 1.3.4]
for some analysis of how wide are the classes of mappings with 2-regularity properties. In
particular, it is demonstrated there that the set of pairs (Q, v) such that a quadratic mapping
Q : Rp → Rp is 2-regular at 0 in a direction v ∈ Rp is open and dense in the normed linear
space of such pairs.

3 Peculiarities of linesearch near singular solutions

A standard approach to achieving global convergence of Newtonian methods relies on line-
search with a suitable residual function. To this end, we shall employ the function φ : Rp →
[0,+∞) with

φ(u) = ∥Φ(u)∥.

Observe that if Φ(uk) ̸= 0 for some iterate uk, then φ is differentiable at uk with

φ ′(uk) = ∥Φ(uk)∥−1(Φ ′(uk))⊤Φ(uk).

Therefore, for vk defined by (2), it holds that

⟨φ ′(uk),vk⟩=−∥Φ(uk)∥< 0, (11)

and hence, vk is a direction of descent of φ at uk.
Based on the residual function φ , we first state the following model linesearch global-

ization scheme.

Algorithm 1 Choose u0 ∈ Rp, σ ∈ (0, 1), θ ∈ (0, 1), and set k = 0.

1. If Φ(uk) = 0, stop.
2. Compute vk ∈ Rp as a solution of (2).
3. Set α = 1. If the inequality

∥Φ(uk +αvk)∥ ≤ (1−σα)∥Φ(uk)∥ (12)

is satisfied, set αk = α . Otherwise, replace α by θα , check the inequality (12) again,
etc., until (12) becomes valid.

4. Set uk+1 = uk +αkvk.
5. Increase k by 1 and go to step 1.

Instead of (12), one might also consider the Armijo linesearch rule for the squared resid-
ual ψ : Rp → [0,+∞),

ψ(u) = ∥Φ(u)∥2,

which would mean replacing (12) by the inequality

ψ(uk +αvk)≤ ψ(uk)+σα⟨ψ ′(uk),vk⟩.

Since
ψ ′(uk) = 2(Φ ′(uk))⊤Φ(uk),

for vk defined by (2) we then have that the Armijo inequality above takes the form

∥Φ(uk +αvk)∥2 ≤ (1−2σα)∥Φ(uk)∥2. (13)
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The two rules defined by (12) and (13) are closely related (see [12, Section 5.1]), but they
are not the same: in general, (12) allows for larger stepsizes than (13). For instance, in
Example 1, (13) is satisfied with α = 1 only if σ ≤ 15/32.

Note that we do not discuss what can be done in cases where the Newton equation (2)
has no solution, or when the Newton direction vk exists but provides a poor descent. The
inclusion of corresponding remedies, like safeguarding techniques, would shift the focus
of this paper away from our main aim. Thus, global convergence of Algorithm 1 is not an
issue here. Rather, in Section 4, we will concentrate on the development of conditions that,
close to a singular solution, guarantee the well-definedness of the Newton direction and its
acceptance by the linesearch in Step 3 of Algorithm 1 with unit stepsize.

We next discuss an extrapolation technique, as a tool for accelerating the local rate of
linear convergence. This underlines that the unit stepsize is important to have. Moreover, to
prepare the corresponding developments in Section 4, we provide examples demonstrating
that obtaining a unit stepsize is not at all automatic as it is for nonsingular solutions.

Extrapolation for accelerating the Newton method in the case of singular solutions is
naturally suggested by the convergence pattern in Proposition 1, and is well-known from
[8]. In its simplest form, it consists of generating an auxiliary sequence {ûk} obtained by
doubling the Newton step, i.e.,

ûk+1 = uk +2vk. (14)

Of course, this would not help to achieve the superlinear convergence rate (of the nonsin-
gular case). However, it follows from [8, Theorem 4.1] that under the key 2-regularity as-
sumption above, {ûk} converges linearly with the asymptotic ratio of 1/4 (instead of 1/2 for
{uk}), from all points in the domain of convergence of Newtonian sequences {uk}, which
are themselves not affected by this acceleration technique in any way. Moreover, by in-
creasing the “depth” of extrapolation, the asymptotic ratio of the linear convergence of the
corresponding auxiliary sequences can be made arbitrarily small. Algorithm 1 can be easily
modified to incorporate extrapolation: the latter is not concerned with any serious compu-
tational overhead (just one extra evaluation of Φ is needed to assess if the obtained ûk+1

satisfies the stopping criterion), and does not affect the main iteration sequence.
The numerical experiments in Section 5 show that already the simple extrapolation of

“depth” 1 based on formula (14) may lead to significant improvements, provided that the
unit stepsize is ultimately accepted.

Yet another existing acceleration technique is 2- or 3-step overrelaxation [8], but we will
not discuss any details in the current paper, as our focus here is on principal difficulties to
be encountered by any acceleration technique (whether existing or expected in the future)
when it comes to globalization of convergence.

In any case, the key question for establishing properties of Algorithm 1 on local conver-
gence and its rate, even together with some acceleration technique, is the ultimate acceptance
of the unit stepsize. Convergence rate and overall success of extrapolation and overrelaxation
depends on following the convergence pattern of the basic Newton method, established in [6,
Lemma 3.2] and [8, Theorem 2.1] (and summarized in the statement of Proposition 1). As
we demonstrate now by examples, this question is highly nontrivial, unlike in cases of con-
vergence to a nonsingular solution (for the latter, see, e.g., [12, Theorem 5.4]), and requires
special attention.

We start with a very simple example showing that one should further restrict the values
of σ in (12), in order to expect acceptance of the unit stepsize in this setting.

Example 1 Let p= 1, and Φ(u) = u2. The unique solution of (1) with this Φ is ū= 0, where
Φ ′(ū) = 0, and Φ is 2-regular at ū in every nonzero direction v.
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By direct computation we obtain that for every uk ̸= 0, the unique solution of (2) is
vk = −uk/2. Therefore, uk + vk = uk/2, Φ(uk + vk) = (uk)2/4, and it is now evident that
(12) holds with α = 1 if and only if σ ≤ 3/4.

Let us mention that this restriction on σ would fully agree with the theoretical justifica-
tion in Section 4.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Example 2

-0.1 -0.08 -0.06 -0.04 -0.02 0

-0.02

0

0.02

0.04

0.06

0.08

(b) Example 3

Fig. 1: Iterative sequences.

Example 2 Let p = 2, Φ(u) = (u1 + au2
2/2, u2

2/2), where a ∈ R is a parameter. In this ex-
ample, and in all the examples below, we use subscripts “1” and “2” to denote components
of vectors. This notation usually agrees with our use of these subscripts in decompositions
of vectors into the sum of orthogonal components. The unique solution of (1) with this Φ is
ū = 0, kerΦ ′(ū) = {v ∈ R2 | v1 = 0}, and Φ is 2-regular at ū in every direction v ∈ R2 with
v2 ̸= 0, and in particular, in every nonzero direction in kerΦ ′(ū).

For simplicity, the iteration index k is omitted within this example. By direct computa-
tion we obtain that, for every u ∈ R2 with u2 ̸= 0, the unique solution of (2) with uk = u is
vu = (−u1,−u2/2). Therefore, u+ vu = (0, u2/2), Φ(u+ vu) = (au2

2/8, u2
2/8), and hence,

∥Φ(u+ vu)∥=
1
8

√
a2 +1u2

2.

Then, it can be seen that the set

W = {u ∈ R2 | u2 ̸= 0, ∥Φ(u+ vu)∥> (1−σ)∥Φ(u)∥}

of points in R2 such that the stepsize condition (12) does not hold with α = 1 is nonempty
if and only if a2 −16(1−σ)2 +1 > 0. In this case, W consists of u satisfying

a−u2
2 < u1 < a+u2

2, (15)

where

a± =−a
2
±

√
a2 −16(1−σ)2 +1

8(1−σ)
.
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The set W is shown in Figure 1a (for a =
√

15 and σ = 0.1) as the area between the two
parabolas. Observe that, when nonempty, W is asymptotically thin, i.e., its complement
contains a set which is starlike with respect to ū and asymptotically dense. However, note
that W contains points arbitrarily close to ū. Hence, acceptance of the unit stepsize fails at
those points.

What is even worse is that the set W has a nonempty intersection with Kε,δ (v̄) for v̄ =
(0,±1) spanning kerΦ ′(ū), for any choices of ε > 0 and δ > 0. Recall that according to
Proposition 1, the sequences of the Newton method are well-defined when initialized within
Kε,δ (v̄) with ε > 0 and δ > 0 small enough, and moreover, the latter can be chosen in
such a way that these sequences do not leave Kε̄ , δ̄ (v̄) with any pre-fixed ε̄ > 0 and δ̄ > 0.
Unfortunately, acceptance of the unit stepsize along such sequences cannot be guaranteed.

Another important observation is that a+ < 0 holds if and only if σ ∈ (0, 3/4), which
fully agrees with part b) of Lemma 2 below. If a+ > 0, then the set W contains kerΦ ′(ū)\{0}
in its interior, and in view of the last assertion of Proposition 1, even “typical” acceptance
of the unit stepsize might be problematic in this case, even though the set in question is
asymptotically thin.

Figure 1a also shows one particular sequence generated by the damped Newton method
in Algorithm 1. Solid lines always show a single step. The starting point u0 = (−2, 1) and
the following iterate u1 lie in the area between the two parabolas, meaning that the step
length is less than 1. The dashed lines show where the corresponding full Newton steps
would end. All further steps of the algorithm are Newton steps with unit stepsize.

The next modification of Example 2 demonstrates that, unlike in that example, even
when the full Newton step is accepted, there is no guarantee in general that it will be accepted
at the next iteration.

Example 3 Let p = 2, Φ(u) = (u1 +
√

15u2
2/2, u1u2 +u2

2/2). With this Φ , (1) has two solu-
tions; the one of interest is ū = 0, where kerΦ ′(ū) = {v ∈ R2 | v1 = 0}, and Φ is 2-regular
at ū in every direction v ∈ R2 with v1 + v2 ̸= 0, and in particular, in every nonzero direction
in kerΦ ′(ū).

Figure 1b shows some quite typical run of the Newton method, with the same meaning
of dashed and solid lines as in Figure 1a. One can see that the method enters, after one step,
the area where the full Newton step is not accepted, but then leaves this area after two halved
steps.

The examples above put in evidence that acceptance of the unit stepsize by Algorithm 1
is not at all automatic, even when the Newton direction is well defined, and even arbitrarily
close to the solution. Nevertheless, in the next section, we demonstrate that under the as-
sumptions of Proposition 1, there exists a set which is starlike with respect to ū and asymp-
totically dense, and such that when initialized within this set, Algorithm 1 is well-defined,
converges to ū, and ultimately accepts the unit stepsize.

4 Asymptotic acceptance of the unit stepsize

The next result might be regarded quite expected, in view of Example 2 (compare (15) with
(16) and (18) below). Nevertheless, the argument involves a rather subtle interplay between
first- and second-order terms of Φ .

Lemma 2 Under the assumptions of Proposition 1, the following assertions hold:
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(a) For every σ ∈ (0, 1), there exist ε̄ = ε̄(v̄) > 0, δ̄ = δ̄ (v̄) > 0, and Γ̄ > 0, such that for
every uk ∈ Kε̄ , δ̄ (v̄) satisfying

∥uk
1 − ū1∥ ≥ Γ̄ ∥uk

2 − ū2∥2, (16)

there exists a unique solution vk of the Newton equation (2), and it holds that

∥Φ(uk + vk)∥ ≤ (1−σ)∥Φ(uk)∥. (17)

(b) For every σ ∈ (0, 3/4), there exist ε̄ = ε̄(v̄)> 0, δ̄ = δ̄ (v̄)> 0, and γ̄ = γ̄(v̄)> 0, such
that for every uk ∈ Kε̄, δ̄ (v̄) satisfying

∥uk
1 − ū1∥ ≤ γ̄∥uk

2 − ū2∥2, (18)

there exists a unique solution vk of the Newton equation (2), and (17) holds.

Proof To simplify the presentation, assume without loss of generality that ū = 0. Let ε̄ > 0
and δ̄ ∈ (0, 1) be chosen according to Lemma 1. Then, for every uk ∈ Kε̄, δ̄ (v̄), there exists
the unique vk solving (2), and this vk satisfies (3)–(6). Furthermore, condition v̄ ∈ kerΦ ′(0)
means that v̄1 = 0, and hence,

∥uk
1∥

∥uk∥
=

∥∥∥∥ uk
1

∥uk∥
− v̄1

∥∥∥∥≤
∥∥∥∥ uk

∥uk∥
− v̄

∥∥∥∥≤ δ̄ ,

implying that

∥uk
1∥ ≤ δ̄∥uk∥ ≤ δ̄ (∥uk

1∥+∥uk
2∥).

Therefore,

∥uk
1∥ ≤

δ̄
1− δ̄

∥uk
2∥. (19)

Combined with (3)–(6), this further implies that

uk = O(∥uk
2∥), vk = O(∥uk

2∥) (20)

as uk → 0.
Furthermore, since vk solves (2), employing Taylor’s formula, (3)–(6), (19), and (20),

we obtain that

Φ(uk + vk) = Φ(uk)+Φ ′(uk)vk +
1
2

Φ ′′(uk)[vk, vk]+O(∥vk∥3)

=
1
2

Φ ′′(uk)[vk, vk]+O(∥vk∥3)

=
1
2

Φ ′′(0)[vk, vk]+O(∥uk∥∥vk∥2)+O(∥vk∥3)

=
1
8

Φ ′′(0)[uk
2, uk

2]+O(∥uk
1∥∥uk

2∥)+O(∥uk
1∥2)+O(∥uk

2∥3)

=
1
8

Φ ′′(0)[uk
2, uk

2]+O(δ̄∥uk
2∥2)+O(∥uk

2∥3), (21)
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and

Φ(uk) = Φ ′(0)uk +
1
2

Φ ′′(0)[uk, uk]+O(∥uk∥3)

= Φ ′(0)uk
1 +

1
2

Φ ′′(0)[uk
2, uk

2]+O(∥uk
1∥∥uk

2∥)+O(∥uk
1∥2)+O(∥uk

2∥3)

= Φ ′(0)uk
1 +

1
2

Φ ′′(0)[uk
2, uk

2]+O(δ̄∥uk
2∥2)+O(∥uk

2∥3). (22)

We first prove item (a). Suppose that (16) is satisfied. Let ν̄ > 0 be the smallest nonzero
singular value of Φ ′(0). Then, from (22), we have that

∥Φ(uk)∥ ≥ ν̄Γ̄ ∥uk
2∥2 +O(∥uk

2∥2)≥ νΓ̄ ∥uk
2∥2

for every pre-fixed ν ∈ (0, ν̄), provided ε̄ > 0 is small enough while Γ̄ > 0 is large enough.
On the other hand, from (21) it follows that

Φ(uk + vk) = O(∥uk
2∥2).

Hence, (17) holds provided ε̄ > 0 is small enough while Γ̄ > 0 is large enough.
We now proceed with the proof of item (b). Observe first that 2-regularity of Φ at 0 in

the direction v̄ ∈ kerΦ ′(0)\{0} implies that

Φ ′′(0)[v̄, v̄] ̸∈ imΦ ′(0),

and hence,
ΠΦ ′′(0)[v̄, v̄] ̸= 0. (23)

Furthermore, since v̄1 = 0,∥∥∥∥ uk
2

∥uk∥
− v̄

∥∥∥∥=

∥∥∥∥ uk
2

∥uk∥
− v̄2

∥∥∥∥≤
∥∥∥∥ uk

∥uk∥
− v̄

∥∥∥∥≤ δ̄ .

Taking into account that ∥v̄∥ = 1, the latter further implies that uk
2/∥uk

2∥ → v̄ as δ̄ → 0.
Therefore, by (23), there exists γ = γ(v̄)> 0 such that

∥Φ ′′(0)[uk
2, uk

2]∥ ≥ ∥ΠΦ ′′(0)[uk
2, uk

2]∥ ≥ γ∥uk
2∥2, (24)

provided δ̄ > 0 is small enough.
Next, fix any

ν ∈
(

0,
3−4σ

8(2−σ)

)
(25)

(recall that within (b), σ ∈ (0, 3/4)). By further decreasing ε̄ > 0 and δ̄ > 0 if necessary, we
obtain from (21) and (24) that

∥Φ(uk + vk)∥ ≤
(

1
8
+ν

)
∥Φ ′′(0)[uk

2, uk
2]∥. (26)

Suppose now that (18) is satisfied. Then, again employing (24), from (22) we obtain that

∥Φ(uk)∥ ≥
(

1
2
−ν

)
∥Φ ′′(0)[uk

2, uk
2]∥ (27)

provided ε̄ > 0, δ̄ > 0 and γ̄ > 0 are small enough.
Combining (26) and (27), and employing (25), we now conclude that (17) is satisfied.

This completes the proof. ⊓⊔
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Note that Example 2 demonstrates, in particular, that assertion (b) of Lemma 2 does not
hold for σ ≥ 3/4.

The next example shows that the requirement of 2-regularity is essential in Lemma 2.
Observe that in the case of full singularity, i.e. when Φ ′(0) = 0, condition (18) holds auto-
matically (with any γ̄ > 0) for every uk ∈ Rp, since uk

1 = 0.

Example 4 Let p = 2, Φ(u) = (u2
1 +uq

2, u1u2), where q ≥ 3 is an integer. Then, the unique
solution of (1) is ū = 0, Φ ′(0) = 0, and Φ is 2-regular at 0 in every direction v̄ ∈ R2 with
v̄1 ̸= 0. The iteration system (2) of the Newton method takes the form

(uk
1)

2 +(uk
2)

q +2uk
1v1 +q(uk

2)
q−1v2 = 0, uk

1uk
2 +uk

2v1 +uk
1v2 = 0. (28)

Suppose that uk
1 = 0, uk

2 ̸= 0, which implies that uk does not need to belong to any domain
of acceptance of the full step as specified in Lemma 2, since Φ is not 2-regular at 0 in this
direction uk. Then, (28) is uniquely solved by vk

1 = 0, vk
2 =−uk

2/q, and hence,

Φ(uk + vk) =

((
1− 1

q

)q

(uk
2)

q, 0
)
, Φ(uk) = ((uk

2)
q, 0).

Therefore, (17) holds if and only if (
1− 1

q

)q

≤ 1−σ ,

implying

σ ≤ 1−
(

1− 1
q

)q

≤ 1−
(

1− 1
3

)3

<
3
4

(recall that q ≥ 3).
Moreover, the Jacobian Φ ′(u) is singular at points u ∈R2 satisfying 2u2

1−quq
2 = 0. Con-

sider now Newton steps computed at points of a sequence {uk} approaching 0 and staying
close to the curve of singular points: let uk

1 = atq/2
k , uk

2 = tk > 0, where the scalar a is taken
close to

√
q/2. By similar considerations as above, it can be seen that

∥Φ(uk + vk)∥= |(1−A)A|at(q+2)/2
k +o(t(q+2)/2

k ), ∥Φ(uk)∥= at(q+2)/2
k +o(t(q+2)/2

k )

as tk → 0, where

A = A(a) =
q−1−a2

q−2a2 .

Therefore, (17) may hold for small tk > 0 only provided |(1−A)A| < 1, which is not the
case for a close to

√
q/2.

According to Lemma 2, the full Newton step is guaranteed to be accepted by linesearch
(12) for any iterate uk ∈ Kε̄, δ̄ outside of the set

W = {u ∈ Rp | γ̄∥u2 − ū2∥2 < ∥u1 − ū1∥< Γ̄ ∥u2 − ū2∥2}. (29)

Inside of this set, we have no guarantee that the full step is accepted; we shall thus refer
to W as the “troublesome” set. Note that the set W is asymptotically thin: its complement
contains a subset defined by the inequality ∥u1 − ū1∥ ≥ Γ̄ ∥u2 − ū2∥2, which is starlike with
respect to ū and asymptotically dense, with the only excluded directions being those in
kerΦ ′(ū) (unless Φ ′(ū) = 0, in which case W = /0); recall that u− ū ∈ kerΦ ′(ū) implies
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u1 − ū1 = 0. Moreover, the intersection of this subset with Kε̄ , δ̄ (v̄) is asymptotically dense
within Kε̄, δ̄ (v̄). Nevertheless, as long as W contains points arbitrarily close to ū, there is
always a risk that the full Newton step will not be accepted on some iteration, no matter
how close uk is to ū. Therefore, we proceed with the investigation of how the iterates can
(or better cannot) enter W . The key role in these considerations will be played by inequality
(18), as we shall show that, in our setting, it always holds after a finite number of iterations.
This, in turn, means that the iterates eventually leave the troublesome set W . Nevertheless,
assertion (a) of Lemma 2 will be needed in Lemma 6 and in Remark 1 below.

Lemma 3 Under the assumptions of Proposition 1, for every γ̄ > 0, there exist ε̄ = ε̄(v̄)> 0
and δ̄ = δ̄ (v̄) > 0 such that, for every uk ∈ Kε̄ , δ̄ (v̄), the Newton equation (2) has a unique
solution vk, and it holds that

∥uk
1 + vk

1 − ū1∥ ≤ γ̄∥uk
2 + vk

2 − ū2∥2. (30)

Proof Assume again for simplicity that ū = 0, and let ε̄ > 0 and δ̄ ∈ (0, 1) be first chosen
according to Lemma 1. Then, for every uk ∈ Kε̄ , δ̄ (v̄), there exists the unique vk solving (2),
this vk satisfies (3)–(6), and relations (19)–(20) hold. Therefore, we get

∥uk
1 + vk

1∥= O(∥uk∥∥uk
1∥)+O(∥uk∥3) = O(δ̄∥uk

2∥2)+O(∥uk
2∥3),

and

∥uk
2 + vk

2∥=
1
2
∥uk

2∥+O(∥uk
1∥)+O(∥uk∥2) =

1
2
∥uk

2∥+O(δ̄∥uk
2∥)+O(∥uk

2∥2),

which evidently implies (30) provided ε̄ > 0 and δ̄ > 0 are small enough. ⊓⊔

Combining Proposition 1 with Lemmas 2 and 3, we come to the following statement.

Proposition 2 Let the assumptions of Proposition 1 be satisfied. Then, for every σ ∈ (0,
3/4), one can choose ε = ε(v̄)> 0 and δ = δ (v̄)> 0 according to this proposition in such
a way that if (17) holds for k = 0, it is valid for all k ∈ N.

Our next goal is to understand what can be done with this “if (17) holds for k = 0” in
Proposition 2. Example 2 demonstrates that (17) cannot be guaranteed for u0 ∈ Kε ,δ (v̄), no
matter how small ε > 0 and δ > 0 are. At the same time, Example 3 suggests that the iterates
might have the chance to leave the troublesome set W (given by (29)), where the full step
may not be accepted. And indeed, we are going to show now that, after some finite number
of steps, the iterates must leave the set W , while still staying in Kε ,δ (v̄) with the needed
values of ε > 0 and δ > 0. Then, at that moment of exit from the set W where the full step
may not be accepted, Proposition 2 will come into play.

This part of the analysis requires several steps before Proposition 3 is obtained.

Lemma 4 Let the assumptions of Proposition 1 be satisfied. Then, for every σ ∈ (0, 1),
there exist ε̄ = ε̄(v̄)> 0, δ̄ = δ̄ (v̄)> 0, and ᾱ = ᾱ(v̄)> 0 such that, for every uk ∈ Kε̄, δ̄ (v̄),
the Newton equation (2) has a unique solution vk, and (12) holds for all α ∈ (0, ᾱ].

Proof Under the smoothness assumptions of Proposition 1, Φ ′ is Lipschitz-continuous near
ū with some constant ℓ > 0, and hence,

∥Φ(u+ v)−Φ(u)−Φ ′(u)v∥ ≤ ℓ

2
∥v∥2
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holds for all u∈Rp close to ū, and all v∈Rp close enough to 0 (see, e.g., [12, Lemma A.11]).
Therefore, assuming again that ε̄ > 0 and δ̄ ∈ (0, 1) are chosen according to Lemma 1, we
have that for every uk ∈ Kε̄, δ̄ (v̄) there exists the unique vk solving (2), it satisfies the second
relation in (20), and then for all α ∈ (0, 1] it holds that

∥Φ(uk +αvk)∥ ≤ (1−α)∥Φ(uk)∥+Lα2∥uk
2∥2,

with some L > 0 independent of uk and α , provided ε̄ > 0 is small enough. This implies that
(12) always holds if

α ≤ (1−σ)

L
∥Φ(uk)∥
∥uk

2∥2
. (31)

It remains to employ the expansion in (22) and (24), implying that

∥Φ(uk)∥ ≥ ∥ΠΦ(uk)∥ ≥ γ∥uk
2∥2,

provided ε̄ > 0 and δ̄ > 0 are small enough. This yields that the right-hand side of (31) is
separated from zero by some positive constant not depending on uk. ⊓⊔

With Lemma 4 at hand, we are now ready to show that the iterates generated by Algo-
rithm 1 cannot stay in the troublesome set W infinitely long. Specifically, we show that (32)
below must hold on some iteration eventually, which means that the corresponding iterate is
not in W , see (29).

Lemma 5 Let the assumptions of Proposition 1 be satisfied. Then, for every σ ∈ (0, 1) and
θ ∈ (0, 1), there exist ε̄ = ε̄(v̄)> 0 and δ̄ = δ̄ (v̄)> 0 such that, if a sequence {uk}⊂Kε̄ , δ̄ (v̄)
is generated by Algorithm 1, then

∥uk
1 − ū1∥ ≤ γ̄∥uk

2 − ū2∥2 (32)

holds for some k.

Proof Let us assume again that ū = 0, and ε̄ > 0 and δ̄ ∈ (0, 1) are chosen according to
Lemma 1. Then, for every uk ∈ Kε̄ , δ̄ (v̄) there exists the unique vk solving (2), this vk satisfies
(3)–(6), and (20) holds. This leads to

uk+1
1 = uk

1 +αkvk
1 = (1−αk)uk

1 +O(∥uk
1∥∥uk

2∥)+O(∥uk
2∥3), (33)

and

uk+1
2 = uk

2 +αkvk
2 =

(
1− 1

2
αk

)
uk

2 +O(∥uk
1∥)+O(∥uk

2∥2). (34)

Let us now suppose that uk violates (32) for some k ∈ N. Then, (33) and (34) imply the
existence of C > 0 and c > 0 such that

∥uk+1
1 ∥ ≤ (1−αk)∥uk

1∥+C(∥uk
1∥∥uk

2∥+∥uk
2∥3)≤

(
1−αk +

2C
γ̄
∥uk

2∥
)
∥uk

1∥

and, with (19),

∥uk+1
2 ∥ ≥

(
1− 1

2
αk

)
∥uk

2∥− c(∥uk
1∥+∥uk

2∥2)≥
(

1− 1
2

αk − c
(

δ̄
1− δ̄

+∥uk
2∥
))

∥uk
2∥
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follows. Therefore, we obtain

∥uk+1
1 ∥

∥uk+1
2 ∥2

≤
1−αk +

2C
γ̄
∥uk

2∥(
1− 1

2
αk − c

(
δ̄

1− δ̄
+∥uk

2∥
))2

∥uk
1∥

∥uk
2∥2

. (35)

According to Lemma 4, we may assume that there exists α̂ ∈ (0, 1] independent of uk such
that αk ∈ [α̂, 1]. It can be easily seen that the function φ : [0, 1]→ R, φ(α) = (1−α)/(1−
α/2)2, is monotonically decreasing with φ(0) = 1, φ(1) = 0. Therefore, q̂ = φ(α̂) ∈ [0, 1),
and φ(α) ≤ q̂ for all α ∈ [α̂, 1]. Then, by the uniform continuity argument, we obtain that
for every q ∈ (q̂, 1) it holds that

1−αk +
2C
γ̄
∥uk

2∥(
1− 1

2
αk − c

(
δ̄

1− δ̄
+∥uk

2∥
))2 ∈ (0, q],

provided ε̄ > 0 and δ̄ > 0 are small enough. Inequality (35) now yields

∥uk+1
1 ∥

∥uk+1
2 ∥2

≤ q
∥uk

1∥
∥uk

2∥2
.

Since q ∈ (0, 1), this implies that if uk violates (32) for all sufficiently large k, then we have
that ∥uk

1∥/∥uk
2∥2 → 0 as k → ∞. But then ∥uk

1∥/∥uk
2∥2 ≤ γ̄ for all sufficiently large k, which

contradicts the violation of (32). ⊓⊔

Remark 1 If we assume in addition that there exists Γ̄ > 0 such that the sequence {uk} in
Lemma 5 satisfies

∥uk
1 − ū1∥ ≤ Γ̄ ∥uk

2 − ū2∥2 (36)

for all k (cf. Lemma 2), then it can be seen from the proof of Lemma 5 that the number
of steps before exiting the troublesome set W is actually uniformly bounded: there exists a
positive integer κ independent of {uk}, such that (32) holds for some k ∈ {1, . . . , κ}.

Lemma 6 Let the assumptions of Proposition 1 be satisfied. Then, for every ε̄ > 0, δ̄ > 0,
σ ∈ (0, 1), and θ ∈ (0, 1), and for every γ̄ > 0, there exist ε = ε(v̄) > 0 and δ = δ (v̄) > 0
such that, for every starting point u0 ∈ Kε,δ (v̄), Algorithm 1 uniquely defines the sequence
{uk}, and {uk} ⊂ Kε̄, δ̄ (v̄).

Proof Assume again that ū = 0. Without loss of generality, we can further assume that ε̄ > 0
and δ̄ > 0 are chosen according to both Lemmas 1 and 4 (an explanation can be found in
the proof in [9, Theorem 1]). Then, for every uk ∈ Kε̄ , δ̄ (v̄), there exists the unique vk solving
(2), and this vk satisfies (3)–(6), implying (33)–(34).

The rest of the proof is by following the lines of the proof in [9, Theorem 1], with the
necessary modifications related to the fact that in [9, Theorem 1], (33)–(34) are used with
αk = 1, while here possible values of αk are characterized by Lemma 4. It is also important
to observe that αk can be less than 1 only when (36) holds with Γ̄ > 0 from Lemma 2. Then
(33) gives

uk+1
1 = O(∥uk

2∥2),

and hence, this estimate holds for uk ∈Kε̄ , δ̄ (v̄), no matter which αk is accepted at this iterate.
⊓⊔
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By putting together Lemma 2, Proposition 2, and Lemmas 5–6, we obtain the following
result.

Proposition 3 Let the assumptions of Proposition 1 be satisfied. Then, for every ε̄ > 0,
δ̄ > 0, σ ∈ (0, 3/4), and θ ∈ (0, 1), there exist ε = ε(v̄)> 0 and δ = δ (v̄)> 0 such that, for
every starting point u0 ∈ Kε,δ (v̄), Algorithm 1 uniquely defines the sequence {uk}, {uk} ⊂
Kε̄, δ̄ (v̄), and (17) holds for all k large enough.

We next analyze what happens if the starting point of the algorithm is close to ū but
perhaps is not in Kε ,δ (v̄), with ε > 0 and δ > 0 from Proposition 3. We first show that in
this case the full Newton step typically leads to Kε ,δ (v̄) for an appropriate direction v̄.

Lemma 7 Let Φ : Rp → Rp be twice differentiable near ū ∈ Rp, with its second derivative
Lipschitz-continuous with respect to ū. Let ū be a solution of (1).

Then, for every ε > 0 and δ > 0, and every v ∈ Rp such that Φ is 2-regular at ū in
the direction v, and π(v) ̸= 0 (with π defined by (6)), there exists τ > 0 such that, for every
t ∈ (0, τ], the Newton equation (2) for k = 0 and u0 = ū+ tv has a unique solution v0, and
u0 + v0 ∈ Kε ,δ (π(v)/∥π(v)∥).

Proof Again assume for simplicity that ū = 0. The existence and uniqueness of v0 solving
(2) with k = 0 for τ > 0 small enough follows by Lemma 1, and this v0 satisfies (4) and
(5). Therefore, taking into account that according to (6) and the definition of B(·), π(·) is
homogeneous on its domain, we obtain that

u0 + v0 =
1
2

tπ(v)+O(t2), (37)

which further implies that

∥u0 + v0∥= 1
2

t∥π(v)∥+O(t2)

as t → 0. Then clearly ∥u0 + v0∥ ≤ ε if τ > 0 is small enough, and∥∥∥∥ u0 + v0

∥u0 + v0∥
− π(v)

∥π(v)∥

∥∥∥∥=

∥∥∥∥ π(v)+O(t)
∥π(v)∥+O(t)

− π(v)
∥π(v)∥

∥∥∥∥= O(t)

as t → 0. This implies that ∥∥∥∥ u0 + v0

∥u0 + v0∥
− π(v)

∥π(v)∥

∥∥∥∥≤ δ

if τ > 0 is small enough. ⊓⊔

We finally show that the full Newton step from such starting points (close to ū but
perhaps not in Kε,δ (v̄)) is indeed accepted by linesearch in Algorithm 1.

Lemma 8 Let Φ : Rp → Rp be twice differentiable near ū ∈ Rp, with its second derivative
Lipschitz-continuous with respect to ū. Let ū be a solution of (1). Then, for every v ∈ Rp

such that Φ is 2-regular at ū in the direction v, and v ̸∈ kerΦ ′(ū), there exists τ > 0 such
that, for every t ∈ (0, τ], the Newton equation (2) for k = 0 and u0 = ū+ tv has a unique
solution v0, and (17) is satisfied with k = 0 for this v0.
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Proof We again assume for simplicity that ū = 0. By the same argument as in the proof of
Lemma 7, we obtain the existence and uniqueness of v0, and the relation (37). Implying, in
particular, that

v0 =−tv+
1
2

tπ(v)+O(t2) = O(t)

as t → 0. Then, by (2), we obtain that

Φ(u0 + v0) = Φ(u0)+Φ ′(u0)v0 +O(∥v0∥2) = O(t2),

while
Φ(u0) = Φ ′(0)u0 +O(∥u0∥2) = tΦ ′(0)v+O(t2)

as t → 0. Since Φ ′(0)v ̸= 0, the last two relations imply the needed assertion. ⊓⊔

Example 3 demonstrates that, when initialized with u0 − ū far from kerΦ ′(ū), it can
be quite typical that the Newton method enters the troublesome set W (given by (29)) in
one step. It is interesting to note that such behavior in this example is caused solely by the
presence of the mixed term u1u2 in the second component of Φ , which does not allow the
step to pass further and to “slip through” W . In the absence of this term (like in Example 2),
adding any higher- (than second-) order terms would not result in this effect: using (3)–
(6), it can be seen that entering W can be avoided if, say, the restriction of ΠΦ ′′(ū)[u0] on
(kerΦ ′(ū))⊥ is identically zero.

However, in general, entering Kε ,δ (π(v)/∥π(v)∥) by one step of Algorithm 1 (i.e., the
behavior established in Lemmas 7 and 8) does not solve the problem of subsequent possi-
ble rejection of the full step by itself. Fortunately, when complemented by Proposition 3,
Lemmas 7 and 8 give the needed result, also employing Proposition 1. Specifically, our final
result reads as follows.

Theorem 1 Let Φ : Rp →Rp be twice differentiable near ū ∈Rp, with its second derivative
Lipschitz-continuous with respect to ū. Let ū be a solution of (1), and assume that there
exists v̄ ∈ kerΦ ′(ū)\{0} such that Φ is 2-regular at ū in the direction v̄. Then, there exists
a set U ⊂ Rp starlike with respect to ū, with possibly excluded directions being only those
v ∈ S for which Φ is not 2-regular at ū in the direction v or in the direction π(v) (with π
given by (6)), and such that, for every starting point u0 ∈U, Algorithm 1 with σ ∈ (0, 3/4)
uniquely defines the sequence {uk}, and (17) holds for all k large enough. Moreover, {uk}
converges to ū with the linear rate (10), and the sequence {(uk − ū)/∥uk − ū∥} converges to
some v ∈ kerΦ ′(ū).

Proof Take any v ∈ S such that Φ is 2-regular at ū in both directions v and π(v). Since
Φ ′(ū) is singular (as it has a nontrivial null space), this implies that π(v) ̸= 0 .

Select ε = ε(π(v)/∥π(v)∥) > 0 and δ = δ (π(v)/∥π(v)∥) > 0 according to Proposi-
tion 1 applied with v̄ substituted by π(v)/∥π(v)∥ (and with any pre-fixed ε̄ > 0 and δ̄ > 0).
Redefine ε̄ as ε(π(v)/∥π(v)∥), and δ̄ as δ (π(v)/∥π(v)∥).

Select ε = ε(π(v)/∥π(v)∥)> 0 and δ = δ (π(v)/∥π(v)∥)> 0 according to Proposition 3
applied with v̄ substituted by π(v)/∥π(v)∥, and with ε̄ > 0 and δ̄ > 0 specified above.

Finally, if v ̸∈ kerΦ ′(ū), select τ(v)> 0 according to Lemmas 7 and 8 applied with the
specified ε > 0 and δ > 0; otherwise put τ(v) = ε(v) (observe that in this case, according to
(6), v = π(v) = π(v)/∥π(v)∥). It remains to define U as the union of the sets {ū+ tv | 0 <
t ≤ τ(v)} over all v ∈ S such that Φ is 2-regular at ū in both directions v and π(v). By the
definition of τ(v), this set possesses all the needed properties. ⊓⊔
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Observe that the excluded directions of the set U are those v satisfying either detB(v) =
0, or detB(v) ̸= 0 but detB(detB(v)π(v)) = 0, and all such v are contained in the null sets
of the corresponding two homogeneous polynomials which are both nontrivial provided Φ
is 2-regular in at least one direction in kerΦ ′(ū). This implies that under the assumptions of
Theorem 1, the set of excluded directions is thin, which means that the convergence domain
is “large”.

5 Numerical illustrations

In this section, we provide some numerical examples and the related statistics concerning
ultimate acceptance of the unit stepsize, and the effect of acceleration by extrapolation. The
algorithms being tested are the following (the abbreviations correspond to the names of rows
in the tables below, and also to what appears in the captions of figures):

– NM (for “Newton Method”) is Algorithm 1 without any modifications, and with param-
eter values σ = 0.01 and θ = 0.5.

– EP (for “ExtraPolation”) is NM including the generation of an auxiliary sequence {ûk}
according to (14).

Algorithm NM terminates after an iterate uk is generated satisfying

∥Φ(uk)∥ ≤ 10−14. (38)

For Algorithm EP, and k ≥ 1, (38) is replaced by

min{∥Φ(uk)∥, ∥Φ(ûk)∥} ≤ 10−14. (39)

Convergence to the primal solution of interest ū is declared when, at successful termination,
it holds that

∥uk − ū∥ ≤ 10−4

(with uk replaced by ûk for EP if the minimum in (39) is achieved by the second number).
If successful termination did not occur after 200 iterations, or if at some iteration the linear
solver failed to solve the Newton equation (2), or the backtracking procedure in Algorithm 1
produced a trial value α such that α∥vk∥ ≤ 10−10, the process was terminated declaring
failure.

We start with runs for some specific test problems with singular solutions. In our ex-
periments we used about 20 problems, taken from various sources in the literature. Here,
we opted to report only on a selection of them, to demonstrate some representative patterns
of the local convergence behavior. Namely, we report on problems from Examples 2 (with
a =

√
15), 3, and 4 (with q = 3), presented above, and also the following problem which is

of interest because it violates the key assumption of Proposition 1 and Theorem 1.

Example 5 Let p = 2, Φ(u) = (u1(u2
1 + u2), u2(1+ u2)). In this case, the unique singular

solution of (1) is ū = 0 (while there are other nonsingular solutions (−1,−1), (0,−1),
(1,−1)). We have that kerΦ ′(ū) = {v ∈R2 | v2 = 0}, and that Φ is not 2-regular at ū in any
direction from kerΦ ′(ū).

For each of these problems, we performed 100 runs from random starting points uni-
formly distributed in a box centered at the solution of interest, with the edge lengths of 0.2.
The results are summarized in Table 1. The meaning of the first two columns in the tables is
obvious; the other columns are as follows:
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Table 1: Results for selected test problems

Problem Method % runs with # iterations # last full steps % last full steps

convergence min ∅ max min ∅ max min ∅ max

Ex. 2 NM 100 13 19.3 21 13 19.3 21 100 100 100

a =
√

15 EP 100 2 2.0 2 2 2.0 2 100 100 100

Ex. 3 NM 96.0 13 20.0 24 12 19.2 22 80.0 96.3 100

EP 96.0 5 8.3 12 3 7.6 10 50.0 91.5 100

Ex. 4 NM 100 15 19.8 23 15 19.7 23 94.4 99.9 100

q = 3 EP 100 1 9.3 21 1 9.3 21 80.0 99.9 100

Ex. 5 NM 100 6 20.4 24 6 20.4 24 94.4 99.9 100

EP 100 5 18.7 22 5 18.7 22 93.8 99.8 100
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Fig. 2: Example 4: iteration count.

– Column 3: percentage of runs with convergence to the solution of interest ū = 0.
– Columns 4–6: mimimum/average/maximum number of iterations over cases of conver-

gence to ū = 0.
– Columns 7–9: mimimum/average/maximum number of last full steps over cases of con-

vergence to ū = 0.
– Columns 10–12: mimimum/average/maximum percentage of last full steps with respect

to the number of all iterations, over cases of convergence to ū = 0.

The results in Table 1 for Examples 2 and 3 fully agree with the theory presented above.
The overall accelerating effect of EP in these examples is evident. For Example 3, the rare
cases when convergence to the solution of interest was not observed are concerned with
convergence to another solution.

For Example 4, in Figure 2 we additionally show the dependence of the iteration count
until successful termination on starting points. Observe that in this example, 2-regularity
does not hold in a direction v with v1 = 0, which belongs to kerΦ ′(ū) = R2, and once the
NM iterates get close to this direction, the convergence pattern of Proposition 1 becomes
violated, and stays so, and the acceleration effect of EP is lost in such cases. However, the
overall accelerating effect of EP is still evident.
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Furthermore, Example 5 violates the key assumption of Proposition 1, and no accelerat-
ing effect is observed for EP, even though the full step is ultimately accepted.

Table 2: Results for random test problems

(p, r) Method % runs with # iterations # last full steps % last full steps

convergence min ∅ max min ∅ max min ∅ max

(2, 0) NM 100 16 20.7 22 16 20.7 22 100 100 100

EP 100 1 1.0 1 1 1.0 1 100 100 100

(2, 1) NM 98.7 13 21.0 38 13 20.8 25 41.7 99.0 100

EP 98.7 4 6.6 27 3 6.3 18 22.2 97.7 100

(5, 0) NM 100 20 22.0 23 20 22.0 23 100 100 100

EP 100 1 1.0 1 1 1.0 1 100 100 100

(5, 2) NM 99.2 20 23.0 34 19 22.8 26 58.8 99.1 100

EP 99.2 5 7.9 21 5 7.7 15 33.3 97.7 100

(5, 4) NM 93.1 9 22.4 44 9 21.8 27 40.9 97.8 100

EP 93.1 4 8.4 32 4 7.8 18 18.8 95.4 100

(10, 0) NM 100 22 22.9 24 22 22.9 24 100 100 100

EP 100 1 1.0 1 1 1.0 1 100 100 100

(10, 3) NM 99.5 22 24.2 31 20 23.8 28 74.2 98.6 100

EP 99.5 6 8.6 18 5 8.3 15 53.8 96.5 100

(10, 7) NM 93.1 20 24.4 32 18 23.7 28 62.1 97.2 100

EP 93.1 7 9.9 20 6 9.1 17 35.3 93.7 100

(10, 9) NM 82.3 16 23.7 77 16 22.8 28 24.7 96.9 100

EP 82.3 6 9.8 65 5 8.9 17 10.8 93.7 100

We next report numerical results for randomly generated linear-quadratic test problems
of the form

Φ(u) = Au+
1
2

B[u, u].

The generation is as follows: A ∈Rp×p is a matrix of a specified rank r, with random entries
uniformly distributed in [−10, 10], B[u, u] = (⟨B1u, u⟩, . . . , ⟨Bpu, u⟩) with Bi ∈ Rp×p being
symmetric matrices with random entries uniformly distributed in [−10, 10], i = 1, . . . , p.
With these choices, ū = 0 is always a solution of (1), and it is a singular solution if r < p.
Observe, however, that this solution does not need to be unique, and convergence to other
solutions is certainly possible. This is the main reason why the numbers in column PC of
Table 2 are sometimes less than 100%.

For each pair (p, r), we generated 100 problems, and for each of these problems, we
performed 10 runs from random starting points generated exactly as before. The results of
these runs for some pairs (p, r) (the specific choice of which does not affect the overall
picture in any serious way) are summarized in Table 2. The meaning of the columns in this
table is as before.

The behavior demonstrated by Table 2 is nearly ideal, with full step being accepted
ultimately almost always (at least in cases of convergence to the solution of interest), and
with clear accelerating effect of EP.
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The very special behavior in cases when r = 0 is explained by the fact that in these
cases, Φ is a homogeneous polynomial of order 2. This implies that the Newton step from
any point uk ∈ Rp yields exactly uk/2, and hence, the EP step yields exactly 0.
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periments, and the two anonymous referees for their useful comments on the original version
of this article.
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