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Abstract. It is a well-known phenomenon that the presence of critical Lagrange multipliers in
constrained optimization problems may cause a deterioration of the convergence speed of primal-dual
Newton-type methods. Regardless of the method under consideration, we develop a new local tech-
nique for avoiding convergence to critical Lagrange multipliers of equality-constrained optimization
problems. This technique consists of replacing dual iterates of the methods by a special function
of primal iterates. Under some natural assumptions, this function yields an approximation of a
Lagrange multiplier, whose quality agrees with the distance from the primal iterate to the respec-
tive stationary point, while at the same time staying away from the critical multiplier in question.
The accelerating effect of this technique is demonstrated by numerical experiments for stabilized
sequential quadratic programming, the Levenberg–Marquardt, and the LP-Newton method.
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1. Introduction. Critical Lagrange multipliers, when they exist, are known to
be specially attractive for dual sequences generated by primal-dual Newton-type meth-
ods for constrained optimization and variational problems, and this phenomenon is
the reason for typically slow convergence in such circumstances (see [17] and [16, Sec-
tion 7.1], and references therein, as well as recent related developments and extensions
of the criticality concept in [3, 4, 19, 20, 24]). The existence of critical multipliers
is quite common when the constraints are degenerate, i.e., violate some standard
constraint qualifications, and in particular, when the set of Lagrange multipliers as-
sociated to the primal solution in question is not a singleton.

Moreover, even for special modifications of the basic Newtonian schemes, de-
veloped intentionally for tackling cases of possible degeneracy, the effect of attrac-
tion to critical multipliers still exists, even though the domains of attraction usually
become somewhat smaller (see [9, 13]). Indeed, the stabilized sequential quadratic
programming (sSQP) method introduced originally in [21] (see also [15, 22] and [16,
Section 7.2.2]), the Levenberg–Marquardt (LM) method with a reasonably controlled
regularization [23] (see also [6, 8]), and the LP-Newton method (LP-N) [5], possess
very strong local convergence properties assuming that they are initialized near a
noncritical multiplier: in this case, they converge superlinearly or even quadratically
to the stationary point in question and to some nearby Lagrange multiplier, despite
degeneracy of constraints. However, the closer to a critical multiplier, the smaller
are convergence domains given rise by nearby noncritical multipliers, and eventually
the effect of attraction to critical multipliers often does not allow for those nice local
convergence properties to show up.

∗Submitted to the editors DATE.
Funding: The first author is funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) – 409756759. The second author is supported by the Russian Foundation for
Basic Research Grants 19-51-12003 NNIO a and 20-01-00106. The third author is supported by the
Volkswagen Foundation.
†Faculty of Mathematics, Technische Universität Dresden, 01062 Dresden, Germany

(andreas.fischer@tu-dresden.de, wladimir.scheck@tu-dresden.de).
‡Lomonosov Moscow State University, MSU, Uchebniy Korpus 2, VMK Faculty, OR Department,

Leninskiye Gory, 119991 Moscow, Russia (izmaf@ccas.ru).

1

mailto:andreas.fischer@tu-dresden.de
mailto:wladimir.scheck@tu-dresden.de
mailto:izmaf@ccas.ru


2 ANDREAS FISCHER, ALEXEY F. IZMAILOV, AND WLADIMIR SCHECK

In this paper, for equality-constrained optimization problems, and for a given ap-
proximation of the primal solution in question, we present a universal (i.e., not related
to any specific algorithm) local technique allowing to obtain an approximation of a
Lagrange multiplier, of the same “quality” as the primal approximation, while at the
same time staying away from the critical multiplier in question. When combined with
various stabilized/regularized Newton-type methods, this allows to further reduce the
attraction domain of this critical multiplier, which may serve for future development
of effective practical globalizations of such algorithms.

The structure of the paper is as follows. In Section 2, we give the formal problem
setting and some necessary preliminaries. Section 3 presents our new technique for
adjusting approximations of Lagrange multipliers and shows that it indeed possesses
the properties highlighted above. Then, in Section 4, we give an example of how this
technique can be incorporated into an algorithm. Specifically, we consider the primal
version of sSQP, with dual estimates satisfying some requirements, and demonstrate
that our dual estimates fulfill these requirements, in some sense. In Section 5, we
consider the case when there are no critical multipliers associated to the stationary
point in question, and demonstrate that our technique is usually not harmful. Sec-
tion 6 contains numerical results confirming the theoretical conclusion of Section 3.
We compare the local performance of the sSQP method, the Levenberg–Marquardt
method, and the LP-Newton method, with and without the technique for adjusting
dual iterates. Finally, Section 7 summarizes the obtained results and outlines some
directions for future work.

2. Problem setting and preliminaries. We consider the equality-constrained
optimization problem

(2.1) minimize
x

f(x) subject to h(x) = 0,

where the objective function f : Rn → R and the constraint mapping h : Rn → Rl
are at least twice differentiable.

The primal-dual first-order optimality conditions for problem (2.1), characterizing
its stationary points and associated Lagrange multipliers, are given by the Lagrange
optimality system

(2.2)
∂L

∂x
(x, λ) = 0, h(x) = 0,

where L : Rn × Rl → R is the Lagrangian of problem (2.1), i.e.,

L(x, λ) = f(x) + 〈λ, h(x)〉.

We note that, throughout the paper, scalar products and norms are Euclidean.
According to (2.2), stationarity of x̄ ∈ Rn means that it is feasible in (2.1), and

the set of associated Lagrange multipliers

Λ(x̄) =

{
λ ∈ Rl

∣∣∣∣ ∂L∂x (x̄, λ) = 0

}
is nonempty. It is well known that every local solution x̄ of problem (2.1), satisfying
the constraint qualification

(2.3) rankh′(x̄) = l,
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is a stationary point of this problem, and moreover, in this case Λ(x̄) is necessarily
a singleton. However, in this work we are mostly interested in those cases when x̄
is stationary, but (2.3) does not hold, implying that Λ(x̄) is an affine manifold of a
positive dimension.

Recall that a multiplier λ̄ ∈ Λ(x̄) is called critical if there exists ξ̄ ∈ kerh′(x̄)\{0}
such that

(2.4)
∂2L

∂x2
(x̄, λ̄)ξ̄ ∈ im(h′(x̄))>,

and noncritical otherwise (see [16, Definition 1.41]). Criticality of λ̄ is equivalent
to singularity of the reduced (to kerh′(x̄)) Hessian of the Lagrangian, which is the
symmetric matrix H(x̄, λ̄) of the quadratic form

(2.5) ξ →
〈
∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
: kerh′(x̄)→ R.

Throughout the paper, I stands for the identity matrix whose dimensions are
always clear from the context. By im and ker we denote the range space and the null
space of a linear operator, respectively. In addition to the standard use of big-O and
little-o notation (see, e.g., [16, Appendix A.2]), we employ the following. By O(1)
(o(1)) we denote any function whose upper limit is finite (respectively, whose limit
is zero) as its arguments tend to specified values. Furthermore, when writing O(1)x
(O(t)x, o(t)x), we always mean the product of a matrix and x, where the norm of the
matrix is O(1) (O(t), o(t), respectively).

3. Adjusting dual iterates. At the beginning of this section, let us mention
that some procedure for avoiding convergence to critical multipliers has been already
proposed in [14]. Unfortunately, this procedure employing gradient steps does not
help to accelerate the overall process.

Now, we introduce the new technique for obtaining an approximation of a La-
grange multiplier with the properties described in Section 1. For a given primal point
x ∈ Rn, consider the following optimization problem with quadratic objective function
and linear equality constraints:

(3.1) minimize
ξ

〈f ′(x), ξ〉+
1

2
‖ξ‖2 subject to h(x) + h′(x)ξ = 0.

Here, minimization is with respect to ξ ∈ Rn, while x serves as a parameter. The
impetus for using the auxiliary program (3.1) stems from [7]. There, for inequality
constrained optimization problems, a related subproblem was employed for a correc-
tion of dual multipliers. This correction aimed at saving quadratic convergence of the
Wilson method for circumstances which allow nonunique but noncritical multipliers.

Assuming that rankh′(x) = l, problem (3.1) has the unique solution ξ̃(x), and by
direct computation it can be seen that the unique Lagrange multiplier associated to
ξ̃(x) is

(3.2) λ̃(x) = λ̄(x) + λ̂(x),

where

(3.3) λ̄(x) = −(H(x))−1h′(x)f ′(x) and λ̂(x) = (H(x))−1h(x)
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with

(3.4) H(x) = h′(x)(h′(x))>.

This λ̃(x) is exactly what we suggest to use as an approximation of a Lagrange
multiplier.

In the remainder of this section, we demonstrate that this choice of λ̃(x) satisfies
the desired properties. Specifically, for a given stationary point x̄ and a critical
Lagrange multiplier λ̄ associated with it, satisfying certain assumptions, we construct
a “large” set of points x ∈ Rn (starlike with respect to x̄, and with nonempty interior),

such that for x from this set, on one hand, λ̃(x) stays separated away from λ̄, while

on the other hand, dist(λ̃(x), Λ(x̄)) behaves like O(‖x− x̄‖).
In Section 3.1, we consider the fully degenerate case, in order to deliver the main

idea without too much technicalities. The general case is considered in Section 3.2.

3.1. Fully degenerate case. Let x̄ be a stationary point of problem (2.1).
Here, we suppose that h′(x̄) = 0 (i.e, the constraints are fully degenerate). Then,
stationarity of x̄ subsumes that f ′(x̄) = 0, and Λ(x̄) = Rl.

Let λ̄ be a critical Lagrange multiplier associated to x̄, which in the fully degen-
erate case means the existence of ξ̄ ∈ Rn such that ‖ξ̄‖ = 1 and

(3.5) f ′′(x̄)ξ̄ + (h′′(x̄)[ξ̄])>λ̄ = 0.

Assume further that h is 2-regular in the direction ξ̄, i.e.,

(3.6) rankh′′(x̄)[ξ̄] = l.

Then, for any ε > 0 and δ > 0, define the set

(3.7) Kε, δ(x̄, ξ̄) =

{
x ∈ Rn \ {x̄}

∣∣∣∣ ‖x− x̄‖ ≤ ε, ∥∥∥∥ x− x̄
‖x− x̄‖

− ξ̄
∥∥∥∥ ≤ δ} .

Since

(3.8) h′(x) = h′′(x̄)[x− x̄] + o(‖x− x̄‖)

as x→ x̄, it can be easily seen that, by (3.6), there exist ε = ε(ξ̄) > 0 and δ = δ(ξ̄) > 0
such that

(3.9) rankh′(x) = l for all x ∈ Kε, δ(x̄, ξ̄)

and, further,

(3.10)
∥∥(H(x))−1

∥∥ = O(‖x− x̄‖−2) as x ∈ Kε, δ(x̄, ξ̄) tends to x̄.

Therefore, λ̄(x) and λ̂(x) are well-defined by (3.3) for any x ∈ Kε, δ(x̄, ξ̄). Moreover,
since f ′(x̄) = 0, employing (3.5) and (3.8)–(3.10) yields, for x ∈ Kε, δ(x̄, ξ̄),

λ̄(x) = −(H(x))−1h′(x)f ′(x)

= −(H(x))−1h′(x)(f ′′(x̄)(x− x̄) + o(‖x− x̄‖))
= −(H(x))−1h′(x)f ′′(x̄)(‖x− x̄‖ξ̄) +O(δ) + o(1)

= (H(x))−1h′(x)(h′′(x̄)[‖x− x̄‖ξ̄])>λ̄+O(δ) + o(1)

= (H(x))−1H ′(x)λ̄+O(δ) + o(1)

= λ̄+O(δ) + o(1)
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as δ → 0 and x → x̄. This implies that by choosing ε > 0 and δ > 0 small enough,
λ̄(x) can be made arbitrarily close to λ̄ for all x ∈ Kε, δ(x̄, ξ̄).

We now make the additional assumption that

(3.11) h′′(x̄)[ξ̄, ξ̄] 6= 0.

Observe further that

(3.12) h(x) =
1

2
h′′(x̄)[x− x̄, x− x̄] + o(‖x− x̄‖2)

as x ∈ Rn tends to x̄. Moreover, from (3.8) and the definition of H(x) in (3.4), we
obtain the existence of Γ > 0 such that

‖H(x)‖ ≤ Γ‖x− x̄‖2

holds for all x ∈ Rn close enough to x̄. Taking this into account, from the definition
of λ̂(x) in (3.3), and from (3.7) and (3.12), we have that, for x ∈ Kε, δ(x̄, ξ̄),

‖λ̂(x)‖ ≥ ‖H(x)‖−1‖h(x)‖

≥ 1

2Γ
‖x− x̄‖−2‖h′′(x̄)[x− x̄, x− x̄]‖+ o(1)

=
1

2Γ
‖h′′(x̄)[ξ̄, ξ̄]‖+O(δ) + o(1)

as δ → 0 and x→ x̄. Employing (3.11), the latter implies that by choosing ε > 0 and

δ > 0 small enough, ‖λ̂(x)‖ can be kept separated from zero by a positive constant
for all x ∈ Kε, δ(x̄, ξ̄).

Example 3.1. Consider the case when (2.1) is a fully quadratic problem with a
single constraint: let l = 1,

f(x) =
1

2
〈Ax, x〉, h(x) =

1

2
〈Bx, x〉,

where A and B are symmetric n×n matrices. Then, for x̄ = 0, it holds that h(x̄) = 0,
f ′(x̄) = h′(x̄) = 0, and the analysis above applies with any λ̄ ∈ R and ξ̄ ∈ Rn such
that ‖ξ̄‖ = 1 and

(3.13) (A+ λ̄B)ξ̄ = 0, 〈Bξ̄, ξ̄〉 6= 0,

according to (3.5) and (3.11). And indeed, by (3.3), we have that, for x ∈ Rn with
Bx 6= 0,

(3.14) λ̄(x) = −〈Ax, Bx〉
‖Bx‖2

and λ̂(x) =
1

2

〈Bx, x〉
‖Bx‖2

hold. Hence, taking, e.g., x = tξ̄ + o(t), t ∈ R \ {0}, we obtain by (3.13) that

λ̄(x) =
〈λ̄Bξ̄, Bξ̄〉
‖Bξ̄‖2

+ o(1) = λ̄+ o(1),

while

λ̂(x) =
1

2

〈Bξ̄, ξ̄〉
‖Bξ̄‖2

+ o(1),
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as t→ 0. Clearly, λ̂(x) is separated from zero for t close enough to zero, thus keeping

λ̃(x) = λ̄(x) + λ̂(x) away from the critical multiplier λ̄.
In particular, if n = 1, then (3.13) reduces to

λ̄ = −A/B, B 6= 0,

and for every x 6= 0 it holds that

(3.15) λ̄(x) = −ABx
2

B2x2
= λ̄, λ̂(x) =

1

2

Bx2

B2x2
=

1

2B
.

In this case, λ̃(x) = λ̄(x) + λ̂(x) = λ̄ + 1/(2B) does not depend on x, and does not
coincide with the unique critical multiplier λ̄ = −A/B.

For n = 2, let us consider

A =

(
a1 a
a a2

)
, B =

(
1 0
0 0

)
,

where a1, a2, and a are real parameters. From (3.14), it then follows that

λ̄(x) = −a1 − a
x2

x1
, λ̂(x) = 1/2

whenever x1 6= 0, while otherwise, both λ̄(x) and λ̃(x) are not well-defined.
Furthermore, assuming that a2 6= 0, the unique critical multiplier is

λ̄ =
a2

a2
− a1,

and (3.13) and the 2-regularity assumption (3.6) hold with ξ̄ = (θ, −θa/a2) for every
θ 6= 0. And indeed, if we take, e.g., x = tξ̄ + o(t), then

λ̃(x) = λ̄(x) + λ̂(x) = λ̄+ 1/2 + o(1),

which again agrees with the theory above.
In contrast to this, consider now x = tξ with the direction ξ distinct from ξ̄,

in which case x does not need to belong to Kε, δ(x̄, ξ̄), no matter how close to zero

t is. Observe first that if ξ1 = 0 then both λ̄(x) and λ̃(x) are not well-defined,
demonstrating that taking x within Kε, δ(x̄, ξ̄) with appropriate ε > 0 and δ > 0 is
essential for this reason already.

Furthermore, let ξ = (1, τ) with some real τ . Then, λ̄(x) and λ̃(x) are well-

defined, and λ̃(x) = λ̄(x) + λ̂(x) = −a1 − aτ + 1/2. If a = 0, then λ̃(x) = λ̄ + 1/2,

which is a successful outcome. Otherwise, λ̃(x) can be whatever, depending on τ . In

particular, if we take τ = −a/a2 + 1/(2a), then λ̃(x) = λ̄, meaning that no adjusting
of the dual iterate takes effect. This further supports the claim that taking x within
Kε, δ(x̄, ξ̄) is essential in the analysis above (and hence, in Theorem 3.4 below).

Suppose now that a2 = 0, and let a = 0 (since otherwise, there are no critical
multipliers). Then, all multipliers are critical, and hence, we cannot expect any use
of trying to adjust the dual iterate. Nevertheless, let us try to apply our technique
with, say, λ̄ = −1 (which is critical of order 2, in the terminology of [13, 18]). The
equality in (3.13) is satisfied with any ξ̄ ∈ R2, but if we take, say, ξ̄ = (0, 1), then
the 2-regularity assumption (3.6) does not hold, which in this case amounts to saying
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that Bξ̄ = 0. Now if we take x = tξ̄, then both λ̄(x) and λ̂(x) in (3.14), and hence,

λ̃(x), are not well-defined. This demonstrates that the 2-regularity assumption (3.6)
in the analysis above (and hence, the corresponding assumption for the general case
in Theorem 3.4 below) cannot be dropped.

Let us now consider

A = B =

(
1 0
0 −1

)
.

Then, there is the unique critical multiplier λ̄ = −1 (also of order 2), and both the
equality in (3.13) and 2-regularity condition (3.6) hold for any ξ̄ ∈ Rn \{0}, including,
say, ξ̄ = (1, −1), for which the inequality in (3.13) fails. Therefore, if we take x = tξ̄,

then by (3.14) it holds that λ̂(x) = 0, and λ̃(x) = λ̄(x) = λ̄, again meaning that
no any adjusting of the dual iterate takes effect. This demonstrates that assumption
(3.11) in the analysis above (and hence, the corresponding assumption (3.23) for the
general case in Theorem 3.4 below) cannot be dropped.

Finally, we show an example where all the needed assumptions are satisfied, all
the conclusions above are valid, and x is taken appropriately, but this does not help
to escape criticality, as getting far from some critical multiplier, one may get close to
another. Let

A =

(
1 0
0 −1/2

)
, B =

(
1 0
0 −1

)
.

Then, there are exactly two critical multipliers: λ̄ = λ̄1 = −1, and λ̄ = λ̄2 = −1/2,
and for the former the first equality in (3.13) holds with every ξ̄ ∈ R2 satisfying
ξ̄2 = 0, while for the latter it holds with every ξ̄ ∈ R2 satisfying ξ̄1 = 0. Since B is
nonsingular, we obtain from (3.14) that

λ̄(x) = −x
2
1 + x2

2/2

x2
1 + x2

2

, λ̂(x) =
1

2

x2
1 − x2

2

x2
1 + x2

2

for all x ∈ Rn \ {0}.

Suppose, e.g., that x2 = 0; then λ̄(x) = −1 = λ̄1 (as it should be, according to the

theory above), while λ̂(x) = 1/2, and hence, λ̃(x) = −1/2 = λ̄2. Similarly, let x1 = 0

be satisfied; then λ̄(x) = −1/2 = λ̄2 (as it should be), while λ̂(x) = −1/2, and hence,

λ̃(x) = −1 = λ̄1. Therefore, in the former case, λ̃(x) is kept away from λ̄1 (as it
should be, according to the theory above), but it coincides with the other critical

multiplier λ̄2. Similarly, in the latter case, λ̃(x) is kept away from λ̄2 (as it should
be), but it coincides with the critical multiplier λ̄1. �

The final part of Example 3.1 demonstrates that when there is more than one
critical multiplier, the goal of keeping the constructed dual estimate away from them
may not be achieved: moving it away from one critical multiplier can make it close
to another. Theoretical justification of our dual modification procedure consists of
showing that under some relevant assumptions on the primal approximations, relating
them to a specific critical multiplier λ̄ (through ξ̄ associated with the latter), the
adjusted dual approximation will be kept away from λ̄ while being still close to the
set of multipliers. In other words, each critical multiplier λ̄ gives rise to some domain
of x where our λ̃(x) possesses the needed properties. In particular, if x belongs to the

intersection of all such domains, λ̃(x) will be separated from all critical multipliers.
However, in general, none of these domains needs to be a full neighborhood of x̄.
Therefore, the adjusted dual approximation computed in the domain related to a
given critical multiplier can be close to any other critical multiplier with a different
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associated ξ̄, and such undesirable behavior is indeed possible, as demonstrated by an
artificial example above. However, in general, there is no any special reason for this
to happen, and this is confirmed by the numerical experiments in Section 6.

3.2. General case. Let x̄ be a stationary point of problem (2.1). We do not
assume anymore that h′(x̄) = 0. In this general case, 2-regularity of h at x̄ in a
direction ξ ∈ Rn consists of saying that

rank(h′(x̄) + Ph′′(x̄)[ξ]) = l,

where P stands for the orthogonal projector in Rl onto (imh′(x̄))⊥. For the use of
this concept in nonlinear analysis and optimization theory see, e.g., [1] and references
therein. 2-regularity of h at x̄ in a direction ξ is further equivalent to saying that
the linear operator H2(ξ) : kerh′(x̄) → (imh′(x̄))⊥, H2(ξ)x = Ph′′(x̄)[ξ, x], is onto.
Evidently, this property is automatic for every ξ ∈ Rn (including ξ = 0) provided
(2.3) holds. Observe further that by the result on small perturbation of the surjective
linear operator (see, e.g., [16, Lemma A.5]), and by homogeneousness of H2(·), if the
surjectivity property holds with ξ = ξ̄ for some ξ̄ ∈ Rn, ‖ξ̄‖ = 1, then it also holds for
every ξ ∈ Rn \ {0} such that ξ/‖ξ‖ is close enough to ξ̄, and moreover, there exists
N2 > 0 such that for all such ξ, and all η ∈ (imh′(x̄))⊥, the equation

H2(ξ)x = η

has a solution x(ξ, η) satisfying

‖x(ξ, η)‖ ≤ N2‖ξ‖−1‖η‖.

Let Π stand for the orthogonal projector in Rn onto kerh′(x̄).

Lemma 3.2. Let h : Rn → Rl be twice differentiable at x̄ ∈ Rn, and assume that
it is 2-regular at x̄ in a direction ξ̄ ∈ Rn, ‖ξ̄‖ = 1.

Then, there exist ε = ε(ξ̄) > 0 and δ = δ(ξ̄) > 0 such that (3.9) holds with
Kε, δ(x̄, ξ̄) defined in (3.7) and, moreover, there exists N > 0 such that for all x ∈
Kε, δ(x̄, ξ̄) and y ∈ Rl, the equation

(3.16) h′(x)ξ = y

has a solution ξ(x, y) satisfying

(3.17) ‖(I −Π)ξ(x, y)‖ ≤ N‖y‖, ‖Πξ(x, y)‖ ≤ N(‖(I − P )y‖+ ‖x− x̄‖−1‖Py‖).

Proof. The proof is essentially by applying the Lyapunov–Schmidt procedure (see,
e.g., [11, Chapter VII]; in a somehow simplified form as the system of equations to
which we apply it here is linear, and there is no need to involve any implicit function
theorems). Setting ξ1 = (I −Π)ξ, ξ2 = Πξ, we can write (3.16) as

(3.18) (I − P )y = (I − P )h′(x)ξ = H1ξ1 + (I − P )O(‖x− x̄‖)(ξ1 + ξ2),

(3.19) Py = Ph′(x)ξ = Ph′′(x̄)[x− x̄, ξ1 + ξ2] + Po(‖x− x̄‖)(ξ1 + ξ2),

where H1 : (kerh′(x̄))⊥ → imh′(x̄), H1ξ1 = h′(x̄)ξ1, is an invertible linear operator.
By the standard result on small perturbation of an invertible linear operator (see, e.g.,
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[16, Lemma A.6]), we then have that for any fixed ξ2, if ε > 0 is small enough, equation
(3.18) with respect to ξ1 has the unique solution ξ1(x, y, ξ2), and this solution satisfies

(3.20) ξ1(x, y, ξ2) = O(1)(I − P )y +O(‖x− x̄‖)ξ2.

Substituting this expression into (3.19), we come to the linear equation

(H2(x− x̄) + Po(‖x− x̄‖))ξ2 = PO(‖x− x̄‖)(I − P )y + Py

with respect to ξ2. By the result on small perturbation of a surjective linear oper-
ator, and by the observations accompanying the definition of 2-regularity above, we
conclude that this equation has a solution ξ2(x, y) satisfying

ξ2(x, y) = O(1)(I − P )y +O(‖x− x̄‖−1)Py

provided ε > 0 and δ > 0 are small enough. Substituting this solution into (3.20), we
obtain a solution ξ(x, y) = ξ1(x, y, ξ2(x, y)) + ξ2(x, y) of (3.16), satisfying (3.17).

Lemma 3.3. Under the assumptions of Lemma 3.2, there exist ε = ε(ξ̄) > 0,
δ = δ(ξ̄) > 0, and N > 0, such that H(x) defined in (3.4) is nonsingular for every
x ∈ Kε, δ(x̄, ξ̄), and for every y ∈ Rl it holds that

(3.21) ‖(I − P )(H(x))−1y‖ ≤ N(‖(I − P )y‖+ ‖x− x̄‖−1‖Py‖),

(3.22) ‖P (H(x))−1y‖ ≤ N(‖x− x̄‖−1‖(I − P )y‖+ ‖x− x̄‖−2‖Py‖).

The proof again relies on the Lyapunov–Schmidt procedure and is similar to the
one of Lemma 3.2. We skip the proof since it is much more technical and does not
contain new ideas.

Theorem 3.4. Let f : Rn → R and h : Rn → Rl be twice differentiable at x̄ ∈ Rn,
and let x̄ be a stationary point of problem (2.1), with an associated Lagrange multiplier
λ̄ ∈ Rl which is critical, i.e., there exists ξ̄ ∈ kerh′(x̄) such that ‖ξ̄‖ = 1 and (2.4)
holds. Assume that h is 2-regular at x̄ in a direction ξ̄, and

(3.23) h′′(x̄)[ξ̄, ξ̄] 6∈ imh′(x̄).

Then, there exist ε = ε(ξ̄) > 0, δ = δ(ξ̄) > 0, and γ = γ(ξ̄) > 0, such that λ̃(x) is
well-defined by (3.2)–(3.4) for any x ∈ Kε, δ(x̄, ξ̄), and

(3.24) ‖λ̃(x)− λ̄‖ ≥ γ,

(3.25) dist(λ̃(x), Λ(x̄)) = O(‖x− x̄‖)

as x→ x̄.

Proof. From (2.4) we have that there exists η̄ ∈ Rl such that

(3.26) f ′′(x̄)ξ̄ + ((h′′(x̄)[ξ̄])>λ̄ = (h′(x̄))>η̄.

For any ε > 0 and δ > 0, and for any x ∈ Kε, δ(x̄, ξ̄), employing (3.7) we have

h′(x) = h′(x̄) + h′′(x̄)[x− x̄] + o(‖x− x̄‖)
= h′(x̄) + h′′(x̄)[‖x− x̄‖ξ̄] +O(δ‖x− x̄‖) + o(‖x− x̄‖).(3.27)
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Hence, by the inclusion λ̄ ∈ Λ(x̄) and by (3.26), it follows that

f ′(x) = f ′(x̄) + f ′′(x̄)(x− x̄) + o(‖x− x̄‖)
= f ′(x̄) + f ′′(x̄)(‖x− x̄‖ξ̄) +O(δ‖x− x̄‖) + o(‖x− x̄‖)
= −(h′(x̄))>λ̄− (h′′(x̄)[‖x− x̄‖ξ̄])>λ̄+ ‖x− x̄‖(h′(x̄))>η̄

+O(δ‖x− x̄‖) + o(‖x− x̄‖)
= −(h′(x))>λ̄+ ‖x− x̄‖(h′(x̄))>η̄ +O(δ‖x− x̄‖) + o(‖x− x̄‖)
= −(h′(x))>λ̄+ ‖x− x̄‖(h′(x))>η̄ +O(δ‖x− x̄‖) + o(‖x− x̄‖)(3.28)

as δ → 0 and x→ x̄.
Assume now that ε > 0 and δ > 0 are chosen according to Lemma 3.3. Then, for

any x ∈ Kε, δ(x̄, ξ̄), the matrix H(x) is invertible and λ̄(x) and λ̂(x) are well-defined
by (3.3). Thus, using (3.28), we obtain

λ̄(x) = −(H(x))−1h′(x)f ′(x)

= (H(x))−1H(x)λ̄− ‖x− x̄‖(H(x))−1H(x)η̄

−(H(x))−1h′(x)(O(δ‖x− x̄‖) + o(‖x− x̄‖))
= λ̄− ‖x− x̄‖η̄ − (H(x))−1h′(x̄)(O(δ‖x− x̄‖) + o(‖x− x̄‖))
−(H(x))−1(O(δ‖x− x̄‖2) + o(‖x− x̄‖2))

for any x ∈ Kε, δ(x̄, ξ̄). By estimates (3.21) and (3.22) from Lemma 3.3, we now have

(3.29) (I − P )λ̄(x) = (I − P )λ̄+O(‖x− x̄‖),

as x→ x̄, and

(3.30) Pλ̄(x) = Pλ̄+O(δ) + o(1)

as δ → 0 and x→ x̄.
We will further need the following relations which can be easily derived from the

first equality in (3.27), and the definition of H(x) in (3.4), employing symmetry of P :

(3.31) (I − P )H(x)(I − P ) = h′(x̄)(h′(x̄))> +O(‖x− x̄‖),

(3.32)
(I − P )H(x)P = (h′(x̄) +O(‖x− x̄‖))(Ph′′(x̄)[x− x̄] + o(‖x− x̄‖))> = O(‖x− x̄‖),

(3.33)
PH(x)(I − P ) = (Ph′′(x̄)[x− x̄] + o(‖x− x̄‖))(h′(x̄) +O(‖x− x̄‖))> = O(‖x− x̄‖),

(3.34) PH(x)P = Ph′′(x̄)[x− x̄](Ph′′(x̄)[x− x̄])> + o(‖x− x̄‖2) = O(‖x− x̄‖2)

as x→ x̄. Moreover, observe that

(3.35) (I − P )h(x) = h′(x̄)(x− x̄) +O(‖x− x̄‖2),

(3.36) Ph(x) =
1

2
Ph′′(x̄)[x− x̄, x− x̄] + o(‖x− x̄‖2)
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as x → x̄. Then, taking into account the equality P 2 = P , the definition of λ̂(x)
in (3.3), relations (3.32) and (3.35), the definition of Kε, δ(x̄, ξ̄) in (3.7), and the
inclusion ξ̄ ∈ kerh′(x̄), it follows

(I − P )H(x)(I − P )λ̂(x) = (I − P )H(x)λ̂(x)− (I − P )H(x)P 2λ̂(x)

= h′(x̄)(x− x̄) +O(‖x− x̄‖2) +O(‖x− x̄‖)Pλ̂(x)

= ‖x− x̄‖h′(x̄)ξ̄ +O(δ‖x− x̄‖) +O(‖x− x̄‖2)

+O(‖x− x̄‖)Pλ̂(x)

= O(δ‖x− x̄‖) +O(‖x− x̄‖2) +O(‖x− x̄‖)Pλ̂(x)(3.37)

for any x ∈ Kε, δ(x̄, ξ̄). In addition, for these x, exploiting (3.7) and (3.36), we get

PH(x)(I − P )2λ̂(x) + PH(x)P 2λ̂(x) = PH(x)(I − P )λ̂(x) + PH(x)Pλ̂(x)

= PH(x)λ̂(x)

=
1

2
Ph′′(x̄)[x− x̄, x− x̄] + o(‖x− x̄‖2)

=
1

2
‖x− x̄‖2Ph′′(x̄)[ξ̄, ξ̄]

+O(δ‖x− x̄‖2) + o(‖x− x̄‖2).(3.38)

Thanks to (3.31), the linear operator Lx : imh′(x̄)→ imh′(x̄) defined by

Lxξ = (I − P )H(x)ξ = (I − P )H(x)(I − P )ξ

is invertible for all x ∈ Rn in some neighborhood of x̄, with the inverse being uniformly
bounded. Therefore, since the left hand side of (3.37) is nothing else than Lx(I −
P )λ̂(x), equation (3.37) leads to

(3.39) (I − P )λ̂(x) = O(‖x− x̄‖)Pλ̂(x) +O(δ‖x− x̄‖) +O(‖x− x̄‖2).

Now, substituting this expression into (3.38), and employing (3.33)–(3.34), we obtain

(3.40) O(‖x− x̄‖2)Pλ̂(x) =
1

2
‖x− x̄‖2Ph′′(x̄)[ξ̄, ξ̄] +O(δ‖x− x̄‖2) + o(‖x− x̄‖2)

as δ → 0 and x→ x̄.
From now on, we employ assumption (3.23) or, in other terms, Ph′′(x̄)[ξ̄, ξ̄] 6= 0.

Then, by choosing ε > 0 and δ > 0 small enough, it follows from (3.40) that γ̂ > 0
exists with

‖Pλ̂(x)‖ ≥ γ̂ for all x ∈ Kε, δ(x̄, ξ̄).

Using (3.2) and (3.30), we then have

‖λ̃(x)− λ̄‖ ≥ ‖P (λ̃(x)− λ̄)‖ ≥ ‖Pλ̂(x)‖ − ‖P (λ̄(x)− λ̄)‖ ≥ 1

2
γ̂

for any x ∈ Kε, δ(x̄, ξ̄) provided ε > 0 and δ > 0 are chosen sufficiently small. Thus,
(3.24) must hold with γ = γ̃/2.

Observe now that (3.22) from Lemma 3.3, together with (3.35) and (3.36), implies

that Pλ̂(·) is bounded on Kε, δ(x̄, ξ̄) whenever ε > 0 is small enough. This and (3.39)
further yields

(3.41) (I − P )λ̂(x) = O(‖x− x̄‖)
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as x ∈ Kε, δ(x̄, ξ̄) tends to x̄. Combining this with (3.29) and (3.30), we conclude

that λ̃(·) is bounded on Kε, δ(x̄, ξ̄) with the specified ε > 0 and δ > 0. Moreover,
from (3.29) and (3.41) we obtain

λ̃(x) = λ̄+ P (λ̃(x)− λ̄) + (I − P )(λ̃(x)− λ̄) = λ̄+ P (λ̃(x)− λ̄) +O(‖x− x̄‖)

and, since λ̄ + P (λ̃(x) − λ̄) ∈ Λ(x̄), we finally conclude that (3.25) holds as x ∈
Kε, δ(x̄, ξ̄) tends to x̄.

Remark 3.5. If the subspace of ξ̄ ∈ kerh′(x̄) satisfying (2.4) has the dimension
higher than 1 (meaning that λ̄ is critical of order higher than 1 [13, 18]), and if h is
2-regular at x̄ in at least one direction ξ̄ in this subspace, satisfying (3.23), then the
set Ξ of such ξ̄ with ‖ξ̄‖ = 1 is open and dense in the intersection of this subspace with
the unit sphere, as its complement is the intersection of null sets of some nontrivial
homogeneous polynomials. In this case, Theorem 3.4 is applicable with all ξ̄ ∈ Ξ. In
particular, if we take any closed Ξ ⊂ Ξ, then the assertion of Theorem 3.4 will be
valid with some ε = ε(Ξ) > 0, δ = δ(Ξ) > 0, and γ = γ(Ξ) > 0, for all x from the
union of Kε, δ(x̄, ξ̄) over ξ̄ ∈ Ξ. This allows to further enlarge, in this case, the set

of points x ∈ Rn for which λ̃(x) possesses the needed properties, still keeping this set
starlike with respect to x̄.

If there exists more than one critical multiplier associated with x̄, Theorem 3.4 can
be applicable with any of them, with associated ξ̄ satisfying the needed requirements.
Recall however the final part of Example 3.1.

4. Primal stabilized sequential quadratic programming. One of the al-
gorithms being tested in Section 6 is sSQP, where, for a given primal iterate xk, the
corresponding dual iterate is every time re-defined as λ̃(xk) from Section 3. In this

section, we consider a class of such algorithms with a more general choice of λ̃(·), and
specify the requirements needed for quadratic convergence.

For a current primal-dual iterate (x, λ), the sSQP method, if applied to an
equality-constrained program, defines the next iterate as (x+ ξ, λ+ η), where (ξ, η)
solves the linear system

(4.1)
∂2L

∂x2
(x, λ)ξ + (h′(x))>η = −∂L

∂x
(x, λ), h′(x)ξ − ση = −h(x).

Here, the stabilization parameter σ is typically defined as

(4.2) σ = σ(x, λ) =

∥∥∥∥(∂L∂x (x, λ), h(x)

)∥∥∥∥ ,
and we will restrict ourselves to this choice. Observe that σ(x, λ) = 0 if and only if
(x, λ) solves the Lagrange system (2.2).

Assuming that σ(x, λ) > 0, we can express η from the second equation in (4.1),
and substitute it in the first equation; this yields(

∂2L

∂x2
(x, λ) +

1

σ(x, λ)
(h′(x))>h′(x)

)
ξ = −∂L

∂x
(x, λ)− 1

σ(x, λ)
(h′(x))>h(x).

Now, if we fix some mapping λ̃ : Rn → Rl, and everywhere substitute λ by λ̃(x), we
obtain the fully primal process with the next iterate defined as x+ ξ, where ξ solves
the linear system
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(4.3)

(
∂2L

∂x2
(x, λ̃(x)) +

1

σ(x, λ̃(x))
(h′(x))>h′(x)

)
ξ

= −∂L
∂x

(x, λ̃(x))− 1

σ(x, λ̃(x))
(h′(x))>h(x).

Algorithm 4.1 Primal stabilized SQP

1: Fix a mapping λ̃ : Rn → Rl. Choose x0 ∈ Rn and set k = 0.
2: If σ(xk, λ̃(xk)) = 0, where σ(·) is defined in (4.2), then stop.
3: Compute ξk ∈ Rn as a solution of the linear system (4.3) with x = xk.
4: Set xk+1 = xk + ξk, increase k by 1, and go to step 2.

Theorem 4.1. Let f : Rn → R and h : Rn → Rl be twice differentiable near
x̄ ∈ Rn, with their second derivatives being Lipschitz-continuous with respect to x̄,
i.e.,

f ′′(x)− f ′′(x̄) = O(‖x− x̄‖), h′′(x)− h′′(x̄) = O(‖x− x̄‖)

as x→ x̄. Let x̄ be a stationary point of problem (2.1). Moreover, with the mapping

λ̃ : Rn → Rl used in Algorithm 4.1, suppose that there exists a mapping π : Rn → Rl
satisfying the following assumptions:

(A1) λ̃(x)− π(x) = O(‖x− x̄‖) as x→ x̄.
(A2) There exists a compact subset of Λ(x̄), consisting of noncritical multipliers,

such that π(x) belongs to this subset for all x close enough to x̄.
Then, for every x0 ∈ Rn close enough to x̄, Algorithm 4.1 either finitely termi-

nates at x̄, or generates an infinite sequence {xk} convergent to x̄, and the rate of
convergence is quadratic.

Assumptions (A1) and (A2) imply that λ̃(·) must be bounded near x̄.

Proof. We first show that the assumptions (A1) and (A2) imply

(4.4) ‖x− x̄‖ = O(σ(x, λ̃(x)))

as x → x̄. To this end suppose the contrary, i.e., there exists a sequence {xk}
convergent to x̄, such that xk 6= x̄ for all k and

(4.5)
σ(xk, λ̃(xk))

‖xk − x̄‖
→ 0

as k →∞. According to (A2), passing to a subsequence, if necessary, we can suppose

that {π(xk)} converges to some noncritical λ∗ ∈ Λ(x̄) and, due to (A1), {λ̃(xk))}
converges to the same λ∗. Since λ∗ is noncritical, the latter implies the error bound

‖x− x̄‖ = O(σ(x, λ))

as (x, λ)→ (x̄, λ∗) (see [15, Proposition 1], [16, Proposition 1.43]), and hence,

‖xk − x̄‖ = O(σ(xk, λ̃(xk)))
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as k →∞, contradicting (4.5).

In particular, if σ(x, λ̃(x)) = 0 for x close enough to x̄, then from (4.4) it follows
that x = x̄.

Now, recall the matrix H(x̄, λ̄) introduced in Section 2 as the symmetric matrix
of the quadratic form defined in (2.5), where λ̄ denotes a multiplier in Λ(x̄). This
matrix is nonsingular if and only if λ̄ is noncritical. Therefore, we observe that, for x
sufficiently close to x̄, assumption (A2) implies nonsingularity of H(x̄, π(x)) and the
uniform boundedness of its inverse. The latter follows by the compactness of the set
of noncritical multipliers to which π(x) belongs.

For any x ∈ Rn, by assumptions (A1) and (A2), we further have

∂L

∂x
(x, λ̃(x)) =

∂L

∂x
(x, π(x)) + (h′(x))>(λ̃(x)− π(x))

=
∂2L

∂x2
(x̄, π(x))(x− x̄) + (h′(x̄))>O(‖x− x̄‖) +O(‖x− x̄‖2)(4.6)

and

(4.7)
∂2L

∂x2
(x, λ̃(x)) =

∂2L

∂x2
(x, π(x))+O(‖λ̃(x)−π(x)‖) =

∂2L

∂x2
(x̄, π(x))+O(‖x−x̄‖)

as x→ x̄. Moreover, assuming that σ(x, λ̃(x)) > 0, setting

∆(x) =
1

σ(x, λ̃(x))
(h′(x)− h′(x̄))>,

and employing (4.4), we have

1

σ(x, λ̃(x))
(h′(x))>h(x) =

1

σ(x, λ̃(x))
(h′(x̄))>h(x) + ∆(x)h(x)

=
1

σ(x, λ̃(x))

(
(h′(x̄))>h′(x̄)(x− x̄) + (h′(x̄))>O(‖x− x̄‖2)

)
+∆(x)h′(x̄)(x− x̄) + ∆(x)O(‖x− x̄‖2)

=
1

σ(x, λ̃(x))
(h′(x̄))>h′(x̄)(x− x̄) + (h′(x̄))>O(‖x− x̄‖)

+∆(x)h′(x̄)(x− x̄) +O(‖x− x̄‖2)(4.8)

and

1

σ(x, λ̃(x))
(h′(x))>h′(x) =

1

σ(x, λ̃(x))
(h′(x̄))>h′(x) + ∆(x)h′(x)

=
1

σ(x, λ̃(x))

(
(h′(x̄))>h′(x̄) + (h′(x̄))>O(‖x− x̄‖)

)
+∆(x)h′(x̄) + ∆(x)O(‖x− x̄‖)

=
1

σ(x, λ̃(x))
(h′(x̄))>h′(x̄) + (h′(x̄))>O(1)

+∆(x)h′(x̄) +O(‖x− x̄‖)(4.9)

as x→ x̄.
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As in Section 3.2, let Π denote the orthogonal projector in Rn onto kerh′(x̄).
Again, we set x1 = (I −Π)x and x2 = Πx for any x ∈ Rn. Using (4.6)–(4.9), we now
decompose the left- and right-hand side of equation (4.3) by multiplying them with
I −Π and Π as follows:

(I −Π)

(
∂2L

∂x2
(x, λ̃(x)) +

(h′(x))>h′(x)

σ(x, λ̃(x))

)
ξ = (I −Π)

∂2L

∂x2
(x̄, π(x))ξ

+
(h′(x̄))>h′(x̄)ξ1

σ(x, λ̃(x))
+ (h′(x̄))>O(1)ξ

+(I −Π)∆(x)h′(x̄)ξ1

+(I −Π)O(‖x− x̄‖)ξ,(4.10)

(I −Π)

(
−∂L
∂x

(x, λ̃(x))− (h′(x))>h(x)

σ(x, λ̃(x))

)
= −(I −Π)

∂2L

∂x2
(x̄, π(x))(x− x̄)

− (h′(x̄))>h′(x̄)(x1 − x̄1)

σ(x, λ̃(x))

−(h′(x̄))>O(‖x− x̄‖)
−(I −Π)∆(x)h′(x̄)(x1 − x̄1)

+(I −Π)O(‖x− x̄‖2)(4.11)

and

Π

(
∂2L

∂x2
(x, λ̃(x)) +

(h′(x))>h′(x)

σ(x, λ̃(x))

)
ξ = Π

∂2L

∂x2
(x̄, π(x))ξ

+Π∆(x)h′(x̄)ξ1 + ΠO(‖x− x̄‖)ξ,(4.12)

Π

(
−∂L
∂x

(x, λ̃(x))− (h′(x))>h(x)

σ(x, λ̃(x))

)
= −Π

∂2L

∂x2
(x̄, π(x))(x− x̄)

−Π∆(x)h′(x̄)(x1 − x̄1)

−ΠO(‖x− x̄‖2)(4.13)

as x→ x̄.
After multiplying both sides of each of the equalities (4.10)–(4.11) by σ(x, λ̃(x)),

and taking into account (4.3), a lengthy reordering of terms yields

(4.14)

(
(h′(x̄))>h′(x̄) + (I −Π)O(‖x− x̄‖)

)
ξ1 = −(h′(x̄))>h′(x̄)(x1 − x̄1)

−(I −Π)O(‖x− x̄‖)ξ2
−(I −Π)O(‖x− x̄‖2),

where the linear operator ξ1 → (h′(x̄))>h′(x̄)ξ1 : (kerh′(x̄))⊥ → (kerh′(x̄))⊥ is non-
singular. The latter implies that for all x close enough to x̄, and for any ξ2, the linear
equation (4.14) with respect to ξ1 has a unique solution, and it satisfies

(4.15) ξ1 = −(x1 − x̄1) +O(‖x− x̄‖)ξ2 +O(‖x− x̄‖2)

as x→ x̄.
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Furthermore, again taking into account (4.3), from (4.12)–(4.13) we obtain

Π

(
∂2L

∂x2
(x̄, π(x)) +O(‖x− x̄‖)

)
ξ2 = −Π

(
∂2L

∂x2
(x̄, π(x)) +O(‖x− x̄‖)

)
ξ1

−Π∆(x)h′(x̄)ξ1 −Π
∂2L

∂x2
(x̄, π(x))(x− x̄)

−Π∆(x)h′(x̄)(x1 − x̄1)

−ΠO(‖x− x̄‖2).

Substituting ξ1 in the right-hand side of this equality by the expression from (4.15),
we get

(4.16) (H(x̄, π(x)) + ΠO(‖x− x̄‖)) ξ2 = −H(x̄, π(x))(x2 − x̄2)−ΠO(‖x− x̄‖2).

In the first part of this proof, we showed that the matrix H(x̄, π(x)) is invertible with
a uniformly bounded inverse for x close enough to x̄. Therefore, the linear equation
(4.16) has a unique solution and it satisfies

(4.17) ξ2 = −(x2 − x̄2) +O(‖x− x̄‖2).

Substituting this into (4.15), we conclude that

(4.18) ξ1 = −(x1 − x̄1) +O(‖x− x̄‖2)

as x→ x̄. Combining (4.17) and (4.18) we finally obtain

x+ ξ − x̄ = O(‖x− x̄‖2).

This clearly implies the desired assertion.

For one (rather theoretical) possibility of choosing λ̃(·), suppose that by some
chance we are aware of a noncritical multiplier λ̄ ∈ Λ(x̄). Then, we might take

λ̃(·) = π(·) ≡ λ̄.

Ideally, we would be able to show that λ̃(·) defined according to Section 3 satisfies
the assumptions of Theorem 4.1, but it seems hardly possible to do this to full extent.
On the one hand, Theorem 3.4 with the assertions (3.25) and (3.24) guarantees As-
sumptions (A1) and (A2), respectively. On the other hand, these assertions are valid
only under the conditions in the theorem which, in particular, restrict x to belong to
set(s) Kε, δ(x̄, ξ̄) with ξ̄ related to critical multipliers(s) associated with x̄. The union
of such sets may not be a full neighborhood of x̄.

Therefore, Theorem 4.1 cannot serve for full justification of Algorithm 4.1 with
our choice of λ̃(·), but it somehow explains its numerical success demonstrated in

Section 6. Observe finally that convergence of the sequence {λ̃(xk)} is not claimed in

Theorem 4.1, and indeed, with our choice of λ̃(·), convergence of these sequences is
often not observed.

5. When there are no critical multipliers. The procedure developed in Sec-
tion 3 is intended to avoid attraction to critical multipliers associated with a stationary
point in question. However, one cannot know in advance if such multipliers exist or
not, and therefore, it is important to verify that this procedure is at least not harmful
in the absence of critical multipliers. This is the subject of the current section.

We start with the case when the constraint qualification (2.3) holds, implying that
the Lagrange multiplier associated to a stationary point x̄ is unique: Λ(x̄) = {λ̄},
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where λ̄ ∈ Rl necessarily satisfies λ̄ = λ̄(x̄) = λ̃(x̄) with λ̄(·) and λ̃(·) defined in
(3.2)–(3.3). Assume further that this λ̄ is noncritical. Then, one can easily check that

Theorem 4.1 is applicable with the specified λ̃(·), which in this case is well-defined on
a whole neighborhood of x̄, and with π(·) ≡ λ̄: both assumptions (A1) and (A2) are

satisfied. Therefore, Algorithm 4.1 with this choice of λ̃(·) locally uniquely defines
sequences {xk} converging to x̄, and the rate of convergence is quadratic. Moreover,

since λ̃(·) is continuous at x̄, it holds that {λ̃(xk)} converges to λ̄.
We next consider the more general case when (2.3) may not hold, and hence, Λ(x̄)

need not be a singleton, but all λ̄ ∈ Λ(x̄) are noncritical. We will need the following
error bound result for the case of linear constraints, which can be readily derived from
[12, Theorem 2] and Hoffman’s lemma (see, e.g., [2, Theorem 2.200]).

Proposition 5.1. Let f : Rn → R be twice differentiable at x̄ ∈ Rn, and h :
Rn → Rl be affine: h(x) = Ax + b, A ∈ Rl×n, b ∈ Rl. Let x̄ be a stationary point of
problem (2.1), and assume that

(5.1) 〈f ′′(x̄)ξ, ξ〉 > 0 for all ξ ∈ kerA \ {0}

(which is equivalent to saying that the standard second-order sufficient optimality con-
dition holds, as in case of linear constraints, it does not depend on the choice of a
Lagrange multiplier associated to x̄).

Then, there exists M > 0 such that

(5.2) ‖x− x̄‖+ dist(λ, Λ(x̄)) ≤Mσ(x, λ)

for all x ∈ Rn close enough to x̄, and all λ ∈ Rl.
The specificity of this result when compared to, say, [16, Proposition 1.43] is that

there are no any restrictions on λ in (5.2), and in particular λ is not assumed to be
close to any given multiplier, or even to the set Λ(x̄).

Proposition 5.1 allows to show that our choice of λ̃(·) satisfies estimate (3.25)
from Theorem 3.4 under the sole assumption of 2-regularity of constraints, and in
particular, without any criticality or noncriticality assumptions on multipliers.

Corollary 5.2. Let f : Rn → R and h : Rn → Rl be twice differentiable at
x̄ ∈ Rn, and let x̄ be a stationary point of problem (2.1). Assume that h is 2-regular
at x̄ in a direction ξ̄ ∈ Rn, ‖ξ̄‖ = 1.

Then, there exist ε = ε(ξ̄) > 0 and δ = δ(ξ̄) > 0 such that λ̃(x) is well-defined by

(3.2)–(3.3) for any x ∈ Kε, δ(x̄, ξ̄), λ̃(·) is bounded near x̄, and (3.25) holds as x→ x̄.

Proof. Since x̄ is a stationary point of problem (2.1), we have that problem (3.1)
with x = x̄ has the unique solution at 0, which is also the unique stationary point
of this problem, and the set of associated Lagrange multipliers coincides with Λ(x̄).
Observe that (5.1) holds with f substituted by the objective function of problem
(3.1). Therefore, Proposition 5.1 is applicable to problem (3.1) with x = x̄, yielding
the existence of M > 0 such that

(5.3) ‖ξ‖+ dist(λ, Λ(x̄)) ≤Mσ̄(ξ, λ)

for all ξ ∈ Rn close enough to 0, and all λ ∈ Rl, where σ̄ : Rn × Rl → R+,

(5.4) σ̄(ξ, λ) =

∥∥∥∥(∂L∂x (x̄, λ) + ξ, h′(x̄)ξ

)∥∥∥∥ .
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Let ε > 0, δ > 0, N > 0, and ξ(·, ·) be defined according to both Lemmas 3.2 and
3.3. Then, for every x ∈ Kε, δ(x̄, ξ̄), problem (3.1) has a feasible point ξ(x, −h(x)),
for which from (3.17) we derive the estimate

‖ξ(x, −h(x))‖ = O(‖x− x̄‖)

as x → x̄. This implies, in particular, that for the optimal value v(x) of problem
(3.1), it holds that

(5.5) lim sup
x∈Kε, δ(x̄, ξ̄), x→x̄

v(x) ≤ 0.

We next show that for x ∈ Kε, δ(x̄, ξ̄), for the unique solution ξ̃(x) of problem

(3.1) it holds that ξ̃(x) → 0 as x → x̄. Suppose the contrary, i.e., there exists γ > 0
and a sequence {xk} ⊂ Kε, δ(x̄, ξ̄) convergent to x̄, such that

(5.6) ‖ξ̃(xk)‖ ≥ γ

is satisfied for all k.
If {ξ̃(xk)} has a accumulation point ξ̃, then by the constraint in (3.1) we get that

ξ̃ ∈ kerh′(x̄). Therefore, by the stationarity of x̄ in (2.1), it holds that 〈f ′(x̄), ξ̃〉 = 0.

Passing to a subsequence, if necessary, we may assume that the entire sequence {ξ̃(xk)}
converges to ξ̃. Hence, by (5.6),

v(xk) = 〈f ′(xk), ξ̃(xk)〉+
1

2
‖ξ̃(xk)‖2 ≥ 1

4
γ2

follows for all k large enough, which contradicts (5.5).

It remains to consider the case when ‖ξ̃(xk)‖ → ∞ as k →∞. But this immedi-
ately implies that

v(xk) = 〈f ′(xk), ξ̃(xk)〉+
1

2
‖ξ̃(xk)‖2 → +∞

as k →∞, which again contradicts (5.5).
We have thus demonstrated that by further reducing ε > 0, if necessary, one can

force ξ̃(x) to be arbitrarily close to 0 for all x ∈ Kε, δ(x̄, ξ̄).
Observe now that by the choice of ε > 0, δ > 0, and N > 0 according to

Lemma 3.3, it follows that λ̃(x) is well-defined by (3.2)–(3.3) for any x ∈ Kε, δ(x̄, ξ̄),

and the estimates (3.21)–(3.22) hold. We next show that λ̃(·) is bounded near x̄.
Indeed, fix any λ̄ ∈ Λ(x̄) (which is nonempty since x̄ is assumed stationary in

problem (2.1)). Then,

f ′(x) = f ′(x̄) +O(‖x− x̄‖) = −(h′(x̄))>λ̄+O(‖x− x̄‖) = −(h′(x))>λ̄+O(‖x− x̄‖)

and, hence,

h′(x)f ′(x) = −H(x)λ̄+h′(x)O(‖x− x̄‖) = −H(x)λ̄+h′(x̄)O(‖x− x̄‖) +O(‖x− x̄‖2)

as x→ x̄. Assuming now that x ∈ Kε, δ(x̄, ξ̄), we derive that

(5.7) (H(x))−1h′(x)f ′(x) = −λ̄+(H(x))−1h′(x̄)O(‖x− x̄‖)+(H(x))−1O(‖x− x̄‖2),
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where the right-hand side can readily be checked to be bounded according to (3.21)
and (3.22). At the same time,

(5.8) (H(x))−1h(x) = (H(x))−1h′(x̄)(x− x̄) + (H(x))−1O(‖x− x̄‖2),

and (3.21) and (3.22) imply that the right-hand side of this equality is bounded as
well.

Combining (3.2)–(3.4) with boundedness of the right-hand sides in (5.7)–(5.8),

we conclude that λ̃(x) remains bounded for all x ∈ Kε, δ(x̄, ξ̄) close to x̄.
With this property at hand, and employing (5.3) and (5.4), for all x ∈ Kε, δ(x̄, ξ̄)

we finally derive the estimates

‖ξ̃(x)‖+ dist(λ̃(x), Λ(x̄)) ≤Mσ̄(ξ̃(x), λ̃(x))

= M

∥∥∥∥(∂L∂x (x̄, λ̃(x)) + ξ̃(x), h′(x̄)ξ̃(x)

)∥∥∥∥
≤M

∥∥∥∥(∂L∂x (x, λ̃(x)) + ξ̃(x), h(x) + h′(x)ξ̃(x)

)∥∥∥∥
+M

(∥∥∥∥∂L∂x (x, λ̃(x))− ∂L

∂x
(x̄, λ̃(x))

∥∥∥∥
+ ‖h(x) + (h′(x)− h′(x̄))ξ̃(x)‖

)
= O(‖x− x̄‖)

as x→ x̄. This yields (3.25).

Assuming now that all Lagrange multipliers are noncritical, Corollary 5.2 implies
the existence of a set U ⊂ Rn which is starlike with respect to x̄, with only excluded
directions being those in which h is not 2-regular at x̄, and such that our λ̃(·) is well-
defined on U , and satisfies both assumptions (A1) and (A2) of Theorem 4.1 for x ∈ U
with, say, π(x) defined as the projection of λ̃(x) onto Λ(x̄). As in Section 4, U may
not be a full neighborhood of x̄. Observe, however, that if there exists at least one
direction of 2-regularity of h at x̄, then the set of such directions is open and dense
in the unit sphere, and hence, U is “large” (asymptotically dense at x̄).

When h is not 2-regular at x̄ in any direction, Algorithm 4.1 with our choice
of λ̃(·) may have no reasonable local convergence properties, even in the absence of
critical multipliers.

Example 5.3. The problem

minimize
x

x2 subject to x3 = 0.

has the solution x̄ = 0. Any λ ∈ R is an associated noncritical Lagrange multiplier.
For any x 6= 0, (3.2)–(3.3) yield λ̃(x) = −5/(9x), and then it can be seen that for
xk close to 0, Algorithm 4.1 defines xk+1 ≈ 1.25xk. Therefore, convergence of the
primal sequence to the solution x̄ = 0 is not possible, and this is due to the lack of
2-regularity of constraints at this solution. �

Observe, however, that the constraints in this example are atypical in the class
of degenerate constraints, as the second derivative of h vanishes at x̄.

6. Numerical results. The algorithms being tested in this section are stabilized
Newton-type methods mentioned in Section 1. Specifically, we consider the
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• sSQP, the stabilized sequential quadratic programming method,
• LM1, the Levenberg-Marquardt method with regularization parameter chosen

as the Euclidean residual of the Lagrange system (2.2),
• LM2, the Levenberg–Marquardt method with regularization parameter cho-

sen as the squared Euclidean residual, and
• LP-N, the LP-Newton method.

For comparison, these methods are used with or without the technique for adjusting
approximations of Lagrange multipliers as introduced in Section 3. As shortcut, we
will refer to this technique by DM (which stands for “dual modification”).

The experiments were performed in a Matlab environment. In particular, the
subproblems occurring in each step of sSQP, LM1, and LM2 were solved by standard
Matlab tools for systems of linear equations, while the linear programming problems
in LP-N were solved by cplexlp from CPLEX Studio IDE 12.7.1, with standard
settings except for the following:

• LPoptions.simplex.tolerances.feasibility = 1e-9 (default is 1e-6).
• LPoptions.simplex.tolerances.optimality = 1e-9 (default is 1e-6).
• LPoptions.barrier.convergetol = 1e-10 (default is 1e-8).
• options.LPoptions.lpmethod = 2 (dual simplex-method; default is auto-

matic selection of an optimizer).
When the DM technique is not well-defined, i.e., when solving the linear system

H(xk)λ̃ = h(xk)− h′(xk)f ′(xk)

defining λ̃(xk) ends up with a failure, we resort to the minimum norm least squares
solution of this system.

The algorithms were terminated if the Euclidean residual of the Lagrange system
(2.2) was smaller than 1e-12, if solving a subproblem failed, if the Euclidean norm of
a computed step was smaller than 1e-14, or if the number of iterations exceeded 200.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

(a) sSQP

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

(b) sSQP with DM technique

Fig. 6.1: Iterative sequences.

We first show the effect of the procedure for adjusting dual iterates on a very
simple example, namely, Example 3.1 with n = l = 1 and A = B = 2. This means,
we consider the problem

minimize
x

x2 subject to x2 = 0.
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Fig. 6.2: Iteration count.

Figure 6.1 demonstrates the primal-dual solution set {0}×R as the thick vertical line,
the primal-dual solution corresponding to the unique critical Lagrange multiplier λ̄ =
−1, and some iterative sequences generated by the sSQP, without the technique for
adjusting dual iterate (Figure 6.1a), and with this technique applied at each iteration
(Figure 6.1b), initialized at the same points. It is evident that adjusting dual iterate
prevents convergence to the critical multiplier. In fact, all sequences in Figure 6.1b
converge to the same limit (0, −3/4), which agrees with (3.15): in this particular case,

λ̃(x) = −3/4 for all x. Different values of dual starting points are used in Figure 6.1b
only to emphasize that they are actually irrelevant: for a given primal starting point,
they all give rise to the same next iterate.

Furthermore, Figure 6.2 shows how the iteration count of the sSQP until successful
termination depends on starting points, without the technique for adjusting dual
iterate (Figure 6.2a), and with this technique applied at each iteration (Figure 6.2b).
The positive effect of the latter is evident. Moreover, Figure 6.2a shows very clearly
the domain of attraction to the critical multiplier (the set with bright color), and
it fully agrees with convergence results obtained in [13]. At the same time, there
is no such domain in Figure 6.2b: it is eliminated by the dual adjusting technique.
Figure 6.2b also shows that values of dual starting points do not affect the performance
in any way.

We now proceed with systematic testing for a set of randomly generated optimiza-
tion problems with quadratic objective functions and quadratic equality constraints,
employing the generator described in [14]. The entries of all randomly generated
arrays take values in [−10, 10]. For each triple (n, l, r) of nonnegative integers, we
generated 100 problems with n variables and l constraints, such that x̄ = 0 is a
stationary point of each problem, and rankh′(x̄) = r (with r < l).

Observe further that problems generated this way are nonconvex, can be un-
bounded below, and may have stationary points other than the one of interest, namely
other than x̄ = 0.

Therefore, convergence to other stationary points is certainly a possibility, as well
as failure of convergence. Convergence to x̄ = 0 was declared when at termination
the Euclidean norm of the last iterate was not larger than 1e-5. The statistics on crit-
icality and convergence rate estimates, reported below, is concerned with such cases
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(d) LP-N

Fig. 6.3: Convergence to x̄ = 0.

only, other runs were disregarded. Interestingly, if the dual modification technique is
applied, the primal sequences usually converge to 0 more often or at least as frequent
as without dual modification, see Figure 6.3.

Since we are mostly interested in the behavior of the algorithms near critical
multipliers, we have selected for our analysis only those problems in which critical
multipliers do exist. The latter was verified by running pure SQP method for every
generated problem, which, as mentioned in Section 1, has a strongest tendency to
produce dual sequences convergent to critical multipliers when they exists. In cases
when SQP failed or did not demonstrate convergence to x̄ = 0 (see above), or when
the smallest absolute value of the eigenvalues of H(xk, λk) at termination was greater
than 1e-5, the problem was disregarded, and the next one was tried, until 100 problems
(presumably) possessing critical multipliers were generated. Moreover, the dual points
λ̄ at termination were stored for these problems as approximate critical multipliers
associated to x̄ = 0. We emphasize that when performing this procedure, we have
encountered very few problem instances for which the existence of critical multipliers
has not been detected, and therefore, this procedure did not affect much the set of test
problems. However, it gave us a possibility to initialize algorithms near approximate
critical multipliers λ̄ which were not known otherwise.
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(d) LP-N

Fig. 6.4: Cases of convergence to critical multipliers.

The same test for approximate criticality of the dual point at termination (em-
ploying the eigenvalues of H(xk, λk) as described above) was used for all algorithms
involved in the experiments.

For each problem generated as described above, we ran the algorithms from 10
starting points (x0, λ0) with random x0 satisfying ‖x0‖ = 0.1. Therefore, we per-
formed 1000 runs in total for each triple (n, l, r). As for λ0, we used two different
choices:

• λ0 = λ̄(x0), where λ̄(·) is defined according to (3.3). This is quite a typical
choice of a dual approximation from a known primal one, as it corresponds
to the least-squares solution of the first equation in (2.2) with x = x0.

• λ0 satisfying ‖λ0 − λ̄‖ = 0.1 is taken randomly.
Our third option for each of the algorithms is the use the technique for adjusting
dual iterate at every iteration, i.e., every iterate (xk, λk) obtained by an algorithm

was replaced by (xk, λ̃(xk)). Observe that in this case, dual starting points are not
needed.

The data we report on is as follows. For each triple (n, l, r), we count the number
Cx of detected cases of convergence to x̄ = 0. Out of the latter, we compute the
number Cλ of cases when convergence to a critical multiplier was detected, the number
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(d) LP-N

Fig. 6.5: Superlinear rate: E > 1.1.

E1.1
x of cases when the experimental convergence rate E was greater than 1.1, and the

number E1.5
x of cases when E was greater than 1.5. The experimental convergence

rate is defined as

E = max

{
log ‖xk‖

log ‖xk−1‖
,

log ‖xk−1‖
log ‖xk−2‖

}
,

where k is the iteration number at termination. For a related definition of an exper-
imental convergence rate see [10]. In order to better cope with numerical problems
close to the stationary point x̄ = 0, the rate E now relies on values for (xk, xk−1) and
(xk−1, xk−2). If E is greater than 1, this gives a sign that the primal convergence
rate is superlinear (of approximate order E). Therefore, one might expect E1.1

x to be
close to Cx − Cλ, and, indeed, this can be often observed. However, we note that E
is only an approximation of the real convergence rate.

We report on the results obtained for triples (n, l, r) with n = 25, l ∈ {1, . . . , n−
1}, and r ∈ {0, . . . , l − 1}. The picture for the other values of n which we tried looks
quite similar.

The results are shown in Figures 6.4–6.6 in the following form. For each of the
two specified options for defining the dual starting point, and for DM used at each
step, we present the average values of Cλ (Figure 6.4), E1.1

x (Figure 6.5), and E1.5
x
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Fig. 6.6: Superlinear rate: E > 1.5.

(Figure 6.6) as functions of the relative rank deficiency rrd = (l− r)/l. These graphs
are based on all runs converging to x̄ = 0. Since Cλ, E1.1

x , and E1.5
x show certain

oscillations we used a smoothing procedure (some kind of a moving average) in order
to improve the visibility of the principal dependency of these values on the relative
rank deficiency rrd. This procedure is described in detail in the following paragraph.
Before, let us make a remark on the DM-curve in picture (d) of Figure 6.6. The
steep descent of this curve is due to the fact that the solver cplexlp shows numerical
problems if the relative rank deficiency rrd = (l− r)/l is close to 1, i.e., if the rank of
h′(x̄) is close or equal to 0.

For a triple (n, l, r), we initially have some values of Cλ, E1.1
x , and E1.5

x . Then,
we calculate the values of rrd, and sort them in the increasing order, keeping the
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correspondence with the values of Cλ, E1.1
x , and E1.5

x :

(rrd1, Cλ, 1, E
1.1
x, 1, E

1.5
x, 1)

...
(rrdi, Cλ, i, E

1.1
x, i, E

1.5
x, i)

...
(rrdN , Cλ,N , E

1.1
x,N , E

1.5
x,N ),

with rrdi ≤ rrdi+1 for all i = 1, . . . , N − 1 where N is the total number of different
triples (n, l, r) used (with n = 25 fixed). Now, for each i = 1, . . . , N − 6, the value
of the “smoothed” relative rank deficiency srrdi is calculated as the average over i-th
and 6 consecutive values of rrd in the above sorting, and the same is done to calculate
the values of “smoothed” sCλ, sE1.1

x , and sE1.5
x :

srrdi =

i+6∑
j=i

rrdj

 /7,

sCλ, i =

i+6∑
j=i

Cλ, j

 /7, sE1.1
x, i =

i+6∑
j=i

E1.1
x, j

 /7, sE1.5
x, i =

i+6∑
j=i

E1.5
x, j

 /7.

Since this smoothing procedure preserves the order in the new set of “smoothed”
relative rank deficiency values, we can regard these new data as “smoothed” repre-
sentation of Cλ, E1.1

x , and E1.5
x . For generating the graphs in Figure 6.3 with the Cx

values, we have used the same smoothing procedure.
The numerical results reported above support quite convincingly the theoretical

analysis in Section 3. Specifically, the use of the procedure for adjusting dual iterates
totally suppresses the tendency of convergence to critical multipliers (see Figure 6.4),
and has an evident positive effect on the convergence rate.

7. Conclusions. We have proposed the technique of adjusting dual iterates of
primal-dual optimization algorithms. Theoretical and numerical results presented in
this paper put in evidence that this technique often allows to avoid attraction to crit-
ical Lagrange multipliers, and accordingly, to accelerate convergence of Newton-type
methods. Further developments will include incorporating this technique into some
globally convergent algorithms, as well as extensions to problems involving inequality
constraints.
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