УДК: 530.145

ОБ УЧЁТЕ КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ ПРИ РОЖДЕНИИ ПАР В СИЛЬНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Б.Б. Левченко

Московский государственный университет, НИИ ядерной физики им. Д.В. Скобельцына E-mail: levtchen@mail.desy.de

В рамках дираковской модели вакуума рассмотрено рождение е⁺е⁻ пар в постоянном и однородном электрическом поле при учёте кулоновского взаимодействия между е⁺ и е⁻. В квазиклассическом приближении вычислен коэффициент прохождения энергетической щели, деформированной внешним полем и электрическими полями частиц. Показатель экспоненты Соутера модифицируется точно вычисленной функцией *G*(*y*), обусловленной кулоновским взаимодействием частиц и изменением формы потенциального барьера. При *y* < 1 значения *G*(*y*) превышают единицу, свидетельствуя о подавлении рождения пар в сравнении с предсказаниями Швингера [1] и Ритуса [2]. При дальнейшем росте напряженности поля, *y* < 1 < 2, *G*(*y*) стремится к нулю и вероятность рождения пар резко растет.

Ключевые слова: сильное электрическое поле, рождение пар, эффект Швингера, кулоновское взаимодействие.

Pair Production in a Strong Electric Field with an Account of the Coulomb Interaction

B.B. Levchenko

In the framework of the Dirac model of vacuum the creation of e^+e^- pairs in a constant and uniform electric field with allowance Coulomb interaction between e^+ and e^- is considered. The transmission coefficient via the energy gap deformed by external field and the electric fields of particles is calculated in the semiclassical approximation. The Sauter exponential factor is modified by the exactly calculated function G(y) accounting Coulomb interaction of particles and changes in the shape of the potential barrier. When y < 1 the values of G(y) exceeds unity, testifying the suppression of pair production in comparison with the predictions of Schwinger [1] and Ritus [2]. With further increase in the field strength, y < 1 < 2, G(y) tends to zero and the probability of pair production has increased rapidly.

Key words: strong electric field, pair creation, Schwinger effect, coulomb interaction.

Введение

Взаимодействие сильного электромагнитного поля с вакуумом заряженных частиц приводит к его перестройке и описывается нелинейными поправками к максвелловскому лагранжиану [1, 3, 4]. Изменение лагранжевой плотности обусловливает появление мнимой части у эффективного действия, что соответствует ненулевой вероятности рождения пар частиц в поле. В дираковской карти-

не физического вакуума энергетическая щель $2m_ec^2$, разделяющая верхний и нижний континуумы, скашивается под воздействием статического электрического поля **E** [3], создавая подобие треугольного потенциального барьера на пути рождающихся частиц (рис. 1, *a*).

Задачу о «просачивании» электронов через подобный барьер в рамках теории Дирака впервые рассмотрел Соутер [5]. Решалось точно релятивистское уравнение Дирака для движения электрона в статическом и однородном электрическом поле Е и был вычислен коэффициент прохождения через барьер D(E). Коэффициент D(E) выражается через сложную комбинацию гипергеометрических функций, но в пределе слабого поля и нулевом поперечном импульсе частиц существенно упрощается, приводя к элегантному результату:

$$D(E) = \exp\{-\pi \frac{E_{cr}}{E}\},\tag{1}$$

где $E_{cr} = m_e^2 c^2 / e\hbar = 1.32 \times 10^6$ В/см, так называемое критическое поле, m_e – масса электрона, e – заряд электрона¹.

Поляризацию вакуума и обусловленную ею однопетлевую нелинейную поправку к лагранжиану Максвелла и рождение пар заряженных частиц из вакуума в сильных электрических **E** и магнитных **H** полях изучал Швингер. Так, в случае однородного и статического электрического поля вероятность $w^{(1)}$ образования e^+e^- пары в единице объема за единицу времени равна [1]

$$w^{(1)}:\frac{\alpha}{\pi^2}E^2\exp\{-\pi\frac{E_{cr}}{E}\},\qquad(2)$$

 $^{^1}$ В данной статье мы используем гауссову систему единиц СГС.

где $\alpha = e^2 / \hbar c$. Как следует из вывода (2), кулоновское взаимодействие e^+ и e^- в [1] не учитывалось. Двухпетлевая поправка к лагранжиану Гейзенберга–Эйлера, вычисленная Ритусом [4], учитывает взаимодействие зарядов в низшем приближении и модифицирует [2] формулу Швингера (2):

$$w^{(2)} = (1 + \pi \alpha) w^{(1)}.$$
 (3)

Таким образом, учет притяжения зарядов в низшем приближении приводит к тому, что вероятность рождения пар в электрическом поле возрастает, а стабильность вакуума понижается. Для системы с энергией связи порядка массы самой системы² данный результат нам представляется неожиданным. В интерпретации автора [6] радиационная поправка $\pi\alpha$ тесно связана со сдвигом массы ускоренного заряда (см. раздел 3).

Вычислительные техники, использованные при выводе (1)–(3), довольно громоздки. В последующие десятилетия были развиты удобные квазиклассические методы расчета вероятностей туннелирования (для обзора см. [7], а также [8]), позволяющие воспроизвести результаты (1) и (2), а также рассмотреть широкий спектр задач по ионизации атомов и рождению пар в нестационарных полях [7, 9–12]. Экспоненциальный фактор в формулах (1) и (2) легко воспроизводится квазиклассической формулой для проницаемости одномерного статического барьера [10, 13],

$$D \approx \exp\{-\frac{2}{\hbar} \int_{z_1}^{z_2} |p(z)| dz\}, \qquad (4)$$

при использовании релятивистского соотношения между энергией и импульсом частицы. Следует отметить, рождение e^+e^- пар в электрическом поле существенно непертурбативный эффект и формулу (2) невозможно воспроизвести в рамках теории возмущений по заряду *е* или по полю **E**. В свете непертурбативного характера эффекта Швингера

² Действительно, если e^+ и e^- находятся на расстоянии $z = r_e/2 = 1.41 \, \text{фм}$, где $r_e = \frac{e^2}{m_e c^2}$. есть основания полагать, что учёт кулоновского взаимодействия между компонентами пары по теории возмущений и вне её рамок может привести к существенно разным предсказаниям. В данной статье демонстрируется, как точный учёт кулоновского взаимодействия между e^+ и e^- изменяет показатель соутеровской экспоненты (1).

1. Квантово-механическая аналогия

Задолго до того как Швингер вывел соотношение (2) в рамках КЭД, функционально тождественный результат был получен в рамках квантовой механики. В 1928 г. Фаулер и Нордгейм развили теорию холодной эмиссии электронов из металла под действием внешнего ускоряющего электрического поля. Эмиссионный ток был представлен [14] сверткой распределения электронов из зоны проводимости по импульсам Ферми и коэффициента прохождения барьера на границе металл-вакуум, деформированного внешним полем. В следующей статье [15] Нордгейм учёл, что туннелирующий электрон притягивается к металлу под действием заряда, который он индуцирует на поверхности (силы изображения), и потенциальный барьер на границе металл-вакуум приобретает вид

$$V(z) = -\frac{e^2}{4z} - eEz, \qquad z > 0, \tag{5}$$

где *z* обозначает расстояние до поверхности, а первый член отвечает кулоновскому потенциалу взаимодействия с изображением. В результате

$$J_{FN}(E) = \frac{\alpha}{\pi^2} E^2 \exp\left(-\frac{B}{E}\vartheta(y)\right), \qquad (6)$$

что с точностью до коэффициентов, характерных для расчетов в нерелятивистской квантовой механике, совпадает с (2). Здесь $\vartheta(y)$ – так называемая функция Нордгейма [15], *E* – электрическое поле на поверхности металла, В/см, φ – работа выхода, эВ,

$$B = \frac{4\sqrt{2m}}{3e\hbar}\varphi^{3/2}, \quad y = \frac{\sqrt{e^3E}}{\varphi}.$$
 (7)

В условиях автоэлектронной эмиссии 0 < y < 1. Функция Нордгейма изменяется с ростом силы поля в пределах от $\vartheta(0) = 1$ до $\vartheta(0) = 0$, учитывая деформацию потенциального барьера под действием внешнего поля и взаимодействия электрона с его положительно заряженным зеркальным образом (эффект Шоттки). Если эффект взаимодействия зарядов не учитывать, то в (6) следует положить $\vartheta = 1$, как в [14]. Явный вид $\vartheta(y)$ таков [15]:

$$\vartheta(y) = \sqrt{\frac{1+\sqrt{1-y^2}}{2}} \cdot \left(E(\kappa) - \frac{y^2 K(\kappa)}{1+\sqrt{1-y^2}}\right), (8)$$

где $\kappa^2 = 2\sqrt{1-y^2}/(1+\sqrt{1-y^2})$, а $K(\kappa)$ и $E(\kappa)$ – полные эллиптические интегралы первого и второго рода.

Теоретическая модель полевой эмиссии Фаулера–Нордгейма подверглась многолетней и всесторонней экспериментальной проверке и показала себя вполне успешной [16–19].

Заметим, что схожесть (2) и (6) ещё больше возрастает, если формально присвоить работе выхода ϕ значение порядка ширины вакуумной щели в модели Дирака, $\phi = m_e c^2$. В этом случае коэффициент *B*, с точностью до числа порядка единицы, будет равен *E*_{cr}.

Зададимся вопросом, важным не только с точки зрения техники вычислений: могут ли расчеты в теории возмущений по заряду в пределе слабого поля воспроизвести поведение функции $\vartheta(y)$? Зная точный вид $\vartheta(y)$, ответ получить несложно. Разложение $\vartheta(y)$ при малых *у* таково:

$$\vartheta(y) = 1 + \left(\frac{3}{8}\ln\frac{y}{8} - \frac{3}{16}\right)y^2 + \left(\frac{9}{256}\ln\frac{y}{8} + \frac{51}{1024}\right)y^4 + O(y^6).$$
(9)

Наличие логарифмических множителей при степенях *у* свидетельствует о существенно непертурбативном характере функции $\vartheta(y)$ и, как следствие, невозможности представить её в виде разложения по степеням заряда (или α) вблизи *y* = 0.

2. Вычисление проницаемости барьера

Перейдем к рассмотрению рождения e^+e^- из вакуума во внешнем поле. Выберем в пространстве плоскость и зададим направление координатной оси *z* единичным вектором *n* ортогональным к плоскости. Пусть **E** – классическое электрическое поле, постоянное и однородное в пространстве, направленное так, что электрон после рождения движется в положительном направлении *z*, т.е. **E** = –*E***n**. При трехмерном движении выбранная конфигурация поля не меняет поперечного импульса частицы, p_{\perp} , который остается при этом классическим ($p_{\perp}^2 > 0$). Подбарьерное движение имеется лишь вдоль направления поля. Энергия электрона такова³:

$$\varepsilon = \sqrt{c^2 p_{\parallel}^2 + \chi^2} - m_e c^2 + V(z), \qquad (10)$$

где $\chi^2 = (cp_{\perp})^2 + (m_e c^2)^2$. Потенциальный барьер, создаваемый внешним полем и кулоновскими полями электрона и позитрона, имеет вид, показанный на рис. 1, *б*, и описывается уравнением

$$V(z) = m_e c^2 - eEz - \frac{e^2}{4|z|}.$$
 (11)

Коэффициент проницаемости будем вычислять по формуле (4), поскольку потенциальный барьер (11) плавный и широкий и условие применимости квазиклассики выполнено. Для определения точек поворота поступаем стандартным образом и находим из (10) уравнение для продольной компоненты импульса вдоль подбарьерной траектории (рис. 1):

$$|p_{\parallel}(z)| = \frac{1}{c} \sqrt{\chi^2 - \left(|\varepsilon| - eEz - \frac{e^2}{4|z|}\right)^2}.$$
(12)

³ Как следует из полной формулы Швингера [1], при рождении одной пары экспоненциальный фактор одинаков для фермионов и бозонов. При вычислении *D* можно пренебречь зависимостью от спина, тогда уравнения Дирака второго порядка идентичны уравнению Клейна–Фока– Гордона.

Рис. 1. Форма потенциального барьера V(z) между нижним и верхним континуумами: a – в присутствии сильного постоянного и однородного электрического поля [3]; δ – при учете кулоновского взаимодействия между e^- и e^+ в дираковском море (11). Вектор **АС** указывает направление туннелирования электрона

Здесь уже учтено, что в нижнем континууме $\varepsilon = -|\varepsilon|$ и под барьером $p_{\parallel}^2 < 0$. Удобно использовать обозначения – $q^2 = e^2/4$, $|\varepsilon| + \chi = 2W$ и безразмерные величины

$$R = \frac{\chi}{W}, \ u = \frac{\sqrt{eq^2 E}}{W}, \ t = \frac{eE}{W}z.$$
(13)

При помощи переменной q^2 можно проследить вклад кулоновского взаимодействия между частицами в вероятность рождения пар.

В терминах введенных величин уравнения для нахождения нулей функции $p_{||}(z)$ таковы:

$$t^2 - 2t + u^2 = 0, (14)$$

$$t^{2} - 2(1 - R)t + u^{2} = 0.$$
 (15)

Корнями уравнений (14) и (15) являются:

$$t_1 = 1 - \sqrt{1 - u^2}, \qquad (16)$$

$$t_2 = 1 + \sqrt{1 - u^2}, \tag{17}$$

$$t_3 = (1-R) - \sqrt{(1-R)^2 - u^2},$$
 (18)

$$t_4 = (1-R) + \sqrt{(1-R)^2 - u^2}.$$
 (19)

Нас интересует область $u \le 1$. Анализ корней $\{t_i\}$ и их взаимного расположения показывает, что в области энергий рожденной частицы

$$W \le \chi + \sqrt{eq^2 E}, \qquad (20)$$

классическими точками поворота $p_{\parallel}(t)$ являются положительные действительные корни t_1 и t_2 , а t_3 и t_4 – комплексные сопряженные корни.

Итак, в соответствии с (4) необходимо вычислить интеграл

$$Q(u, W) = \int_{z_1}^{z_2} |p_P(z)| dx =$$

$$= \frac{W}{eE} \int_{t_1}^{t_2} |p_P(t)| dt.$$
(21)

Интеграл в (21) относится к классу эллиптических, и его вычисление будем выполнять в соответствии с теорией эллиптических интегралов [20–22]. Для этого преобразуем (21) к виду

$$Q(u,W) = \frac{W^2}{ceE} \sum_{n=-1}^{3} B_n I_n.$$
 (22)

Здесь *I_n* обозначает эллиптические интегралы вида

$$I_{n} = \int_{t_{1}}^{t_{2}} \frac{t^{n}}{\sqrt{P(t)}} dt , \qquad (23)$$

где

$$P(t) = (t - t_1)(t_2 - t)(t - t_3)(t - t_4)$$

а коэффициентные функции *B_n* таковы:

$$B_{-1} = -u^4, \quad B_0 = 2(2 - R)u^2,$$

$$B_1 = -2[u^2 + 2(1 - R)],$$

$$B_2 = 2(2 - R), \quad B_3 = -1.$$

Интегралы I_n выражаются через полные эллиптические интегралы $K(\kappa)$, $E(\kappa)$ и $\Pi(v, \kappa)$ первого, второго рода и третьего рода соответственно. Несмотря на простоту соотношений (22) и (23), вычисления I_n и Q приводят к громоздким промежуточным выражениям⁴. Вычисления дают:

$$I_{-1} = \sqrt{\frac{2}{Ru^5}} [(1+u)\Pi(v,\kappa) - uK(\kappa)], \quad (24)$$

$$I_0 = \sqrt{\frac{2}{Ru}} K(\kappa), \qquad (25)$$

$$I_{1} = \sqrt{\frac{2}{Ru}} [(1+u)\Pi(\nu,\kappa) - uK(\kappa)], \quad (26)$$

$$I_{2} = \sqrt{\frac{2}{Ru}} [(2-R)(1+u)\Pi(\nu,\kappa) - (27) - (2+u)uK(\kappa) + 2RuE(\kappa)],$$

$$I_{3} = -\sqrt{\frac{2}{Ru}} [(2 + (2 - R)(1 + u) - u^{2})uK(\kappa) + (1 + u)(u^{2} - 4(1 - R) - \frac{3}{2}R^{2})\Pi(\nu, \kappa) - (28) - 3R(2 - R)uE(\kappa)],$$

$$v = -\frac{1}{2u}(1-u),$$
 (29)

$$\kappa^{2} = \frac{1}{2Ru} (1-u)(1-R+u).$$
(30)

Подставив аналитические результаты вычислений I_n в (22) и производя замену переменной 2u = y, приходим к следующей формуле для коэффициента проницаемости барьера:

$$D(p_{\perp}, E) = \exp\{-\frac{2}{\hbar}Q(y, W)\} =$$

$$= \exp\{-\frac{\pi}{\hbar c}\frac{W^{2}}{eE}G(y, R)\}.$$
(31)

Здесь

$$G(y, R) = \frac{1}{\pi \sqrt{R^5 y}} [(2 + y)(R - y^2)\Pi(\nu, \kappa) + y(2 + y)(y - R)K(\kappa) + 2R(2 - R)yE(\kappa)]$$

 искомая функция, точно учитывающая деформацию потенциального барьера с ростом напряженности внешнего электрического поля, где

$$v = -\frac{2-y}{2y},$$
(32)
$$\kappa^{2} = \frac{1}{4Ry}(2-y)(2-2R+y).$$

Рожденные e^- и e^+ имеют энергию $|\mathcal{E}|$, близкую к χ . Поэтому ограничимся значениями $W = \psi$, что дает R = 1. Обозначив $G(y) \equiv$ $\equiv G(y, 1)$, получаем из (32):

$$G(y) = \frac{1}{\pi\sqrt{y}} [(2+y)(1-y^2)\Pi(\nu,\kappa) + (33) + y(2+y)(y-1)K(\kappa) + 2yE(\kappa)].$$

Таким образом, коэффициент проницаемости барьера становится функцией одной переменной у:

$$D(p_{\perp}, E) = D(y) = \exp\{-\frac{\pi\alpha}{y^2}G(y)\}.$$
 (34)

Легко проверяется, что в пределе очень слабого поля, $y \to 0$, основной вклад в G(y)дает функция $\Pi(v, \kappa)$. Поэтому, с учётом асимптотического поведения при малых y, $\Pi(v, \kappa) \approx \pi \sqrt{y/2}$, находим, что G(0)=1, как и должно быть, когда взаимодействие зарядов не учитывается. Укажем также, что G(2)=0. Полный график функции G(y) показан на рис. 2. Сплошная кривая отвечает уравнению (33), а значения G(y), полученные прямым численным интегрированием (21), показаны ромбами. Тем самым мы удостоверяемся, что вычисленная аналитическая форма G(y) верна. Для сравнения на рис. 2 штрих-пунктиром показан график функции $\vartheta(y)$, вычислен-

⁴ Программы аналитических вычислений, такие как MAPLE, Mathematica, MathCad, оказались неспособными взять эти интегралы.

Рис. 2. Зависимость функций G(y), $\theta(y)$ и $G^{(2)}(y)$ от переменной *y*, характеризующей напряженность электрического поля. Сплошная кривая – функция G(y) согласно формуле (33), штрих-пунктир – функция Нордгейма $\theta(y)$ теории автоэлектронной эмиссии [15], пунктирная линия – $G^{(2)}(y)$ в приближении Ритуса. Значения G(y), полученные прямым численным интегрированием (21), показаны ромбами

ной Нордгеймом из нерелятивистского соотношения для энергии эмиссионного электрона.

График функции G(у) наглядно демонстрирует новую черту процесса рождения пары заряженных частиц в сильном поле. Полный учёт кулоновского взаимодействия электрона и позитрона приводит к подавлению рождения пары, даже при росте напряженности внешнего электрического поля. Это обусловлено тем, что направление внешнего поля всегда противоположно направлению поля между компонентами пары и результирующая локальная напряженность поля ниже номинальной величины⁵. При дальнейшем росте силы поля наступает смена режима и проницаемость потенциального барьера вновь начинает расти. Это происходит при $y = y_m$, где dG/dy = 0. Численные оценки показывают, что максимуму отвечает $y_m = 0.458596$ и $G(y_m) = 1.056069$. Здесь уместно отметить связь переменной y с электромагнитной постоянной α и напряженностью электрического поля, $y = (mc^2/\chi) \times \sqrt{\alpha E/E_{cr}}$. Таким образом, смена режима достигается в полях $E > 28.8 E_{cr}$. Только при y > 0.829698, т.е. в полях $E > 94.31E_{cr}$, значения G(y) становятся меньше единицы.

3. Сравнение двух подходов

Найденное поведение $D(p_{\perp}, E)$ коренным образом отличается от предсказания (3), основанного на учёте взаимодействия зарядов в низшем приближении. Интерпретируя результат (3) и имея только два члена, Ритус предположил [2], что учет дальнейших поправок порядка α^2 , α^3 , ... приведет к экспоненцированию ряда⁶. Таким образом, в выбранных нами обозначениях аналогом G(y)в приближении Ритуса является

$$G^{(2)}(y) = 1 - y^2 + O(y^4).$$
 (35)

Если отвлечься от интерпретации $G^{(2)}$ как проявления радиационного сдвига массы ускоренного заряда [6], то (35) означает, что произвольно слабое внешнее поле способно подавить кулоновское притяжение между близко расположенными e^+ и e^- . Это, конечно же, не так, и (35) является следствием пертурбативного подхода. На рис. 2 пунктиром показан график $G^{(2)}(y)$. Кривая $G^{(2)}$ близка в своем поведении к нерелятивистской квантово-механической функции $\vartheta(y)$.

Для сравнения разложим точную функцию G(y) вблизи y = 0 в ряд по y:

$$G(y) = 1 + \frac{4}{3\pi} K(2^{-\frac{1}{2}}) y^{3/2} - y^2 +$$

$$+ \frac{3}{5\pi} (2E(2^{-\frac{1}{2}}) - K(2^{-\frac{1}{2}})) y^{5/2} + O(y^{7/2}).$$
(36)

⁶ Полагалось, что $1 + \pi \alpha \approx \exp(\pi \alpha e E/eE)$ [2].

⁵ Например, если e^+ и e^- находятся на расстояниях 4 фм, 10 фм или 20 фм друг от друга, то напряженность поля в средней точке между частицами $E = 545.4E_{cr}$, $E = 87.3E_{cr}$ и $E = 21.8E_{cr}$ соответственно.

Числовыми коэффициентами в (36) являются значения эллиптических интегралов $K(\kappa)$ и $E(\kappa)$ при $\kappa = 1/\sqrt{2}^{7}$. Укажем важную деталь. В результате точного сокращения в (33) вкладов от разложения членов с $\Pi(\nu, \kappa)$, $K(\kappa)$ и $E(\kappa)$, из (36) выпал линейный по у член.

Наличие в (36) полуцелых степеней у свидетельствует о непертурбативном характере взаимодействия в паре. Таким образом, учёт кулоновского взаимодействия в паре по теории возмущений (35) и вне её рамок (33) привел к существенно разным предсказаниям для проницаемости статического барьера.

4. Некоторые следствия

1. Многие расширения Стандартной Модели (СМ) предсказывают существование целого ряда массивных полей слабо связанных с электромагнитным сектором СМ и массами частиц менее одного электронвольта. Популярными кандидатами являются аксионоподобные частицы, частицы с мини-зарядом, т.е. поля материи с зарядом *є* (*є* << 1), и другие (для обзора см. [23]). Быстрое развитие лазерных технологий и в особенности лазеров на свободных электронах позволяет проводить и планировать многообразные эксперименты по проверке этих предсказаний. Более того, уже сейчас в фокусе мощного лазерного луча с коротким импульсом напряженность электрического поля может достигать величины 0.01E_{cr}. Обсуждаемый здесь эффект подавления рождения заряженных частиц в сильных полях повлияет на оценку сечения рождения экзотических частиц и продолжительность экспериментов по их поиску.

2. Известно [24], что рождение пар заряженных частиц при испарении черных дыр (излучение Хоукинга [25]) можно рассматривать как туннельный процесс. При учете кулоновского притяжения в паре процесс рождения частиц в гравитационном поле будет затянут и время, требуемое на испарение первичных (квантовых) черных дыр, заметно возрастет.

Заключение

В этой работе изучалось рождение электрон-позитронной пары в статическом и однородном электрическом поле при точном учёте кулоновского взаимодействия между частицами. Вычислен коэффициент проницаемости одномерного барьера и найден точный вид непертурбативной функции G(y), учитывающей деформацию потенциального барьера с ростом напряженности поля. В слабом внешнем поле кулоновское притяжения виртуальных частиц приводит к подавлению рождения пары и дополнительной стабилизации вакуума. При дальнейшем росте напряженности поля наступает смена режима и проницаемость потенциального барьера вновь растет. Это достигается в полях $E > 28.8E_{cr}$. Данный эффект принципиально непертурбативный и не может быть обнаружен при учёте притяжения зарядов по теории возмушений.

Обсуждаемый эффект есть проявление более общего процесса. Когда число рожденных пар велико, то, как показали численные расчеты в рамках квантово-кинетического подхода [26], обратное влияние электрических полей e^+ и e^- на порождающее их поле приводит в подавлению рождения пар и возникновению плазменной неустойчивости системы частиц.

Автор признателен Б.А. Арбузову, С.П. Баранову, Е.Б. Оборневой, С.А. Смолянскому и А.И. Никишову за обсуждения рассмотренных в статье вопросов, замечания и комментарии.

Список литературы

⁷ Численное значение коэффициента при $y^{3/2}$ равно $\frac{4}{3\pi}K(2^{-\frac{1}{2}}) = 0.7868937 \cdot$

^{1.} *Schwinger J.* On gauge invariance and vacuum polarization // Phys. Rev. 1951. Vol.82. P.664–679.

^{2.} *Ритус В.И.* Лагранжева функция интенсивного электромагнитного поля // Проблемы квантовой электродинамики интенсивного поля: Тр. ФИАН СССР. М., 1986. Т.168. С.5–51.

3. *Heisenberg W., Euler H.* Folgerungen aus der Diracschen theorie des positrons // Zs. Phys. 1936. Vol.98. P.714–732.

4. *Ритус В.И.* Лагранжева функция интенсивного электромагнитного поля и квантовая электродинамика на малых расстояниях // ЖЭТФ. 1975. Т.69. С.1517–1536.

5. *Sauter F*. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs // Zs. Phys. 1931. Vol.69. P.742–764.

6. *Ритус В.И.* Сдвиг массы электрона в интенсивном поле // Проблемы квантовой электродинамики интенсивного поля: Тр. ФИАН СССР. М., 1986. Т.168. С.52–119.

7. *Попов В.С.* Метод мнимого времени в квантовой механике и теории поля // ЯФ. 2005. Т.68. С.717–738.

8. *Casher A., Neuberger H., Nussinov S.* Chromoelectric-fluxtube model of particle production // Phys. Rev. D. 1979. Vol.20. P.179–188.

9. Попов В.С. Рождение пар e^+e^- в переменном внешнем поле // ЖЭТФ. 1971. Т.61. С.1334–1342.

10. Базь А.И., Зельдович Я.Б., Переломов А.М. Рассеяние, реакции и распады в нерелятивистской квантовой механике. М.: Наука, 1971. 544 с.

11. *Popov V.S.* On Schwinger mechanism of e^+e^- pair production from vacuum by the field of optical and X-ray lasers // Phys. Lett. A. 2002. Vol.298. P.83–90.

12. Буланов С.С., Нарожный Н.В., Мур В.Д., Попов В.С. О рождении электрон-позитронных пар электромагнитными импульсами // ЖЭТФ. 2006. Т.129. С.14–29.

13. *Фрёман Н., Фрёман П.У.* ВКБ-приближение / Пер. с англ.; Под ред. А.А. Соколова. М.: Мир, 1967. 166 с.

14. *Fowler R.H., Nordheim L.W.* Electron emission in intense electric field // Proc. Roy. Soc. (London). 1928. Vol.A119. P.173–181.

15. *Nordheim L.W.* The effect of the image force on the emission and reflection of electrons by metals // Proc. Roy. Soc. (London). 1928. Vol.A121. P.626–639.

16. Good R.H., jr., Möller E.W. Field Emission // Handbuch der Physik / Ed. S. Flbgge. Berlin: Springer-Verlag, 1956. Vol.XXI. P.176–231.

17. Елинсон М.И., Васильев Г.Ф. Автоэлектронная эмиссия. М.: Физматлит, 1958. 272 с.

18. *Modinos A*. Field, thermionic and secondary electron emission spectroscopy. N.Y.: Plenum Press, 1983. 370 p.

19. *Levchenko B.B.* On field emission in high energy colliders initiated by a relativistic positively charged bunch of particles // URL: arXiv:0608135[physics]. 2006. P.1–27.

20. *Тихомандрицкий М*. Теория эллиптических интегралов и эллиптических функций. Харьков: Тип. Зильберберга, 1895. 449 с.

21. *Бейтмен Г., Эрдейи А.* Высшие трансцендентные функции: В 3 т. / Пер. с англ. М.: Наука, 1967. Т.3. 300 с.

22. Byrd P.F., Friedman M.D. Handbook of elliptic integrals for engineers and scientists: 2nd ed. N.Y.: Springer, 1971. 356 p.

23. Ahlers M., Gies H., Jaeckel J., Redondo J., Ringwald A. Laser experiments explore the hidden sector // Phys. Rev. D. 2008. Vol.77. P.095001-095009.

24. *Parikh M.K.*, *Wilczek F.*, Hawking radiation as tunneling // Phys. Rev. Lett. 2000. Vol.85. P.5042–5045.

25. *Hawking S.W.* Particle creation by black holes // Commun. Math. Phys. 1975. Vol.43. P.199–220.

26. Bloch J.S.R., Mizerny V.A., Prozorkevich A.V., Roberts C.D., Schmidt S.M., Smolyansky S.A., Vinnik D.V. Pair creation: Back reactions and damping // Phys. Rev. D. 1999. Vol.60. P.116011–116017.

27. Pervushin V.N., Skokov V.V., Reichel A.V., Smolyansky S.A., Prozorkevich A.V. The kinetic description of vacuum particle creation in the oscillator representation // Intern. J. Mod. Phys. 2005. Vol.A20. P.5689–5704.

28. *Hebenstreit F., Alkofer R., Gies H.* Pair production beyond the Schwinger formula in time-dependent electric fields // Phys. Rev. D. 2008. Vol.78. P.061701–061705.