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a b s t r a c t

Fugacity coefficients of dilute aqueous solutions of six noble gases and five simple fluids have been
correlated from ambient conditions (298 K, 0.1MPa) to high temperatures (up to 2000 K) and water
densities as high as 1500 kgm�3. A correlation is developed for the function, A∞

12 ¼ V∞
2 =kTRT , that in-

cludes known constraints: second virial coefficients at low-water densities, rigid-body behavior at high-
water densities, near-critical principles, and corresponding-states relations. Reasonable agreement with
an extensive, evaluated database of volumetric and solubility measurements has been achieved over the
entire range of conditions, though comparisons of calculated with recommended Henry's constants
suggest reconsiderations of recommendations for He and CO at temperatures above 550 K.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Thermodynamic properties of components of aqueous solutions
at high temperatures and pressures are necessary for both tech-
nological applications and for geochemical modeling of water-gas-
rock interactions. The HelgesoneKirkhameFlowers (HKF) model is
often used to calculate the Gibbs energies and other thermody-
namic functions at infinite dilution inwater of ions [1,2] and neutral
solutes [3] at high T and P. The T-P range of applicability for this
model was recently [4] extended to ~1500 K and 6 GPa. Application
of the model to neutral (noncharged) species had a limited theo-
retical basis and was later shown unable to quantitatively repro-
duce available data at near-critical and supercritical temperatures
[5e10]. Equations of state (EoS), with parameter mixing rules in the
geochemical literature are more successful at predicting thermo-
dynamic properties, including infinite-dilution fugacity co-
efficients, f∞

2 , (related to Gibbs energies) of dissolved aqueous
gases up to very high T and P. These include models frommolecular
simulation-based PVTx properties of binary water-gas systems
. Plyasunov).
[11,12], from perturbation theory [13], and others. Several literature
EoS have been coded by R.J. Bakker [14] and may be freely down-
loaded from: http://fluids.unileoben.ac.at/Computer.html. Our an-
alyses [9,10,15] show general agreement of results of these EoS up
to water densities of ~1000 kgm�3, although the differences
significantly increase - up to ~3 log10 units - at pressures in excess of
5e6 GPa. Since these EoS are intended for the use at supercritical
temperatures, their applications at subcritical temperatures, re-
portedmostly as Henry's constants, kH, are problematic. In addition,
such “classical” EoS cannot accurately describe properties in the
near-critical region where long-range density and composition
fluctuations arise [16]. These issues suggest developing property
models from alternative concepts.

One approach is to model derivative partial molar properties,
particularly the partial molar volume, V∞

2 , and use thermodynamic
manipulations to establish expressions for partial molar heat ca-
pacities, C∞

p;2, and kH [8,17,18]. The basis for this was suggested in
Ref. [7]. These models closely reproduce precise V∞

2 results over the
whole temperature range of measurements, from 298.15 up to
720 K, at pressures up to 40MPa. It has been recently shown that
early formulations are less reliable for extrapolation to higher
temperatures and densities/pressures [9,15]. A method consistent
with known theoretical constraints (at low water densities, at high
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water densities, and at the critical point of water) was proposed [9].
Using limited ambient condition data, the method was applied to
f∞
2 at 1000 and 2000 K for CO2, and at 1000 K for nonpolar CH4 and

polar substances H2S, SO2, and NH3.
The goal of the present project is to systematically generalize the

method of [9] for describing aqueous infinite-dilution fugacity co-
efficients over wide temperature and pressure ranges. The present
work treats simple fluids, that is the noble gases (He, Ne, Ar, Kr, Xe,
Rn), and compounds that are nearly spherical with dipole moments
equal to or near zero (H2, N2, O2, CO, CH4).

The method treats both water and solutes as non-ionized spe-
cies which places limits on the conditions of application. Both high
temperature [19] and high pressure [20] cause dissociation and
decomposition of water. Therefore, the upper temperature limit has
been chosen as 2000 K, based on an ab initio investigation [19] of
the H2OeH2 mixture that concluded “at 2000 K and below the
mixture is almost fully molecular”, though significant dissociation
occurs at higher temperatures. The upper limit for the water den-
sity, r*1, is taken as 1500 kgm�3. While somewhat arbitrary, this
limit is supported by the experimental observation that “at lower
pressure (below approximately 12 GPa) liquid water has a pre-
dominantly molecular character” [20]. The corresponding
maximum pressures increase from ~5.3 GPa at 500 K to ~7.7 GPa at
1000 K to ~9.7 GPa at 1500 K and to ~11.4 GPa at 2000 K. At tem-
peratures below 500 K, the maximum r*1 is determined by the PT
coordinates of the melting curve of ice [21]. It increases from
~1250 kgm�3 at 300 K to ~1350 kgm�3 at 350 K and to
~1450 kgm�3 at 475 K. We also set a lower temperature limit of
298.15 K for applying the approach, as discussed below.

The work is organized as follows: first, we give Eq. (1) for
calculating the fugacity coefficients of an infinitely dilute solute in
water, f∞

2 , through the density integration of the function A∞
12

defined in Eq. (2). As discussed previously [9], the values of A∞
12 for

many classes of neutral solutes can reliably be estimated over wide
ranges of temperature (298e2000 K) and water density
(0e1500 kgm�3). The systematic application of such estimation
methods to simple fluids is discussed in Section 2. In Section 3, the
generated values of A∞

12 (298e2000 K, 0e1500 kgm�3) for each of
the eleven solutes under consideration were fitted with Eq. (18),
with correlated fugacity coefficients compared with literature data
at supercritical (Section 3.2) and subcritical (Section 3.3)
temperatures.

2. Theory

2.1. Fundamental relations

Since the proposed method for predicting thermodynamic
properties of nonelectrolytes at infinite dilution in water has been
thoroughly explained [9,10,15], only a brief outline will be given
here. The basic equation for the calculation of f∞

2 is an isothermal
integration over density of the function A∞

12 [7].

ln f∞
2 ¼

ðr*1
o

�
A∞
12 � 1

� dr*1
r*1

� ln
PV*

1
RT

(1)

where

A∞
12 ¼ V∞

2
�
kTRT (2)

with kT ¼ 1=r*1ðvr*1=vPÞT , the isothermal compressibility of pure
solvent. Here, the subscript 2 refers to the solute and 1 to the sol-
vent. Note that here and below r*1 is in kg m�3 and V*

1 (the molar
volume of pure water) and V∞

2 are in cm3 mol�1. The superscript ∞
denotes a property at infinite dilution, and * a pure-component
property. The dimensionless quantity, A∞

12; is linearly related to
the spatial integral of the molecular solute-water direct correlation
function at infinite dilution [7] arising in Fluctuation Solution
Theory [22,23]. Theoretically, A∞

12 is a smooth, continuous, and
finite function at all conditions, including at the pure-solvent crit-
ical point, where the derivatives of the standard chemical potential
of a solute diverge [24,25]. The critical A∞

12 is finite with a value that
depends on the components [26] because the divergent V∞

2 is in the
numerator and the divergent kT is in the denominator. For an ideal
gas (IG), A∞

12 ¼ 1.
The current method predicts A∞

12 values at different tempera-
tures and water densities, considering theoretical constraints
wherever possible [9,15]. The initial departures from IG are linear in
density

A∞
12 ¼1þ 2r*1B12 þ… (3)

where B12 is the temperature-dependent water-solute cross second
virial coefficient [27,28]. At densities below ~950 kgm�3, A∞

12 is not
a strong function of temperature [7]. At densities above
~950 kgm�3 at ambient temperatures and above ~450 kgm�3 at
more than 1500 K, V∞

2 and, correspondingly, A∞
12, can be predicted

[9,15,29] on the basis of the theory of mixture of hard spheres that
depends only on density [30]. An experimental value of V∞

2 at the
standard state of 298.15 K and 0.1MPa is needed to predict A∞

12 at
high water densities. At the critical point of water, A∞

12 can be
calculated from the value of the Krichevskii parameter [24], which
is either known [31] or can be estimated [32] for many gases in
water. References [24,25] define the Krichevskii parameter as the
derivative ðvP=vxÞcV ;T ;x¼0, at the critical point of a solvent. The Kri-
chevskii parameter governs all the thermodynamic properties of
dilute solutions in the neighborhood of the solvent critical point. At
intermediate water densities, 500< r*1 <900 kgm�3, a variant of
the corresponding-states principle was proposed for estimating A∞

12
[9,29]. After values of A∞

12 are available over the whole range of
density, Equation (1) can be used to obtain f∞

2 . The variation of A∞
12

is nonmonotonic at lower temperatures (<293 K) and pressures
[29]. Though the observed low-temperature maximum disappears
at pressures in excess of ~100MPa, since our main interest is in
high-temperature behavior, we concluded that accounting for this
behavior would not beworthwhile. Thus, the low temperature limit
of the correlation was set as 298.15 K.

2.2. Application to simple fluids

2.2.1. Second cross virial coefficients
Variations of B12 with T for interactions of water with many

simple fluids (He, Ne, Ar, H2, N2, O2, CO, CH4) have been determined
from accurate ab initio intermolecular potentials and available
experimental data [33e39]. Such data have been fitted using
polynomials of the type

B12ðTÞ ¼
X4
i¼1

ai

�
T

100

�bi
(4)

Parameters of Equation (4) for various simple fluids are given in
Table 1. For water interactions with Kr, Xe, and Rn, values of B12
have been estimated as described in Ref. [40] and fitted with
Equation (4). For CH4eH2O interactions, accurate B12 values are
recommended in Ref. [36] up to 1000 K, these results were
extrapolated to 2000 K by the method of [40] and fitted with
Equation (4). The empirical method [40] is based on the application
of the Tsonopoulos corresponding-states correlation [51] to 29 bi-
nary aqueous gas-water systems, which included nonpolar



Table 1
Parameters of Equation (4) for calculating B12 in cm3 mol�1. The ai are in cm3 mol�1.

Gas He a Ne b Ar b Kr c Xe c Rn c

i ai bi ai bi ai bi ai bi ai bi ai bi

1 55.57 �0.347 45.8586 �0.30 96.1591 �0.31 308.36 �0.2 87.847 �0.1 101.91 �0.1
2 �59.25 �0.85 59.4400 �0.48 �211.074 �0.82 �333.91 �0.3 �182.245 �0.6 �235.28 �0.6
3 13.32 �1.45 �121.583 �0.69 �96.4425 �2.24 �408.10 �1.6 �659.674 �1.8 �1049.8 �1.9
4 �4.767 �2.1 �12.5141 �2.14 �12.6006 �4.60 �460.68 �3.5 �909.213 �3.8 �1571.9 �4.0

Gas H2
d N2

e O2
f CO g CH4

h

i ai bi ai bi ai bi ai bi ai bi

1 33.047 �0.21 67.595 �0.24 124.605 �0.33 493.709 �0.45 109.22 �0.2
2 �250.41 �1.50 �249.83 �1.06 �214.421 �0.73 �579.466 �0.57 �202.52 �0.6
3 285.42 �2.26 �204.38 �3.22 �102.818 �2.03 �248.146 �2.00 �235.86 �2.0
4 �186.78 �3.21 0 0 �22.360 �4.07 �271.885 �4.25 �297.63 �3.0

a [33].
b [34].
c e our fit of B12 values estimated as described in Ref. [40].
d [35].
e [37].
f [38].
g [39].
h Our fit of B12 at 298e1000 K [36] and at 1000e2000 K estimated as described in Ref. [40].

Fig. 1. Linear correlations of V∞
2 for simple fluids in water with a) Vc, critical volumes of

pure gases, and with b) a, molecular polarizability of gases.
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compounds (Ar, C2H4, n-alkanes up to n-octane, etc.), polar (CH3Cl,
HCl as examples) and hydrogen bonded compounds (alcohols,
ammonia). It was shown that the mixture-specific parameter of
Tsonopoulos correlation, k12, after a small “size” correction, de-
pends linearly on the Gibbs energy of hydration (Henry's constant
in water) of a compound at 298 K and 0.1MPa. The method [40] is
used to estimate B12 for aqueous mixtures in the absence of
experimental data.

2.2.2. Infinite-dilution partial molar volumes of simple fluids in
water at 298.15 K

Based on the theory of mixtures of hard spheres [30], values V∞
2

for simple fluids in water at Tr¼ 298.15 K and Pr¼ 0.1MPa can be
used [9,29] to calculate thermodynamic properties at high water
densities: at r*1 > 950 at 400 K, r*1> 900 at 1000 K, and at r*1> 450 for
T� 1500 K with the relation below

V∞
2 ðT; PÞ ¼ V∞

2 ðTr ; PrÞ
r*1ðTr; PrÞ
r*1ðT ; PÞ

(5)

All simple fluids are very poorly soluble in water at ambient
conditions. As a consequence, V∞

2 values [41e49] of most of these
gases inwater at 298.15 K are knownwith significant uncertainties.
For example, the V∞

2 data [49] at 298.15 and 303.15 K differs up to
4 cm3mol�1 (for O2, Ar) and even 6 cm3mol�1 (for CH4). The effects
of the small temperature dependence of 298 and 303 K are unlikely
to explain the differences, so they must arise from experimental
error. In addition, the only experimental data point for Kr in water
[44] is surprisingly close to V∞

2 of argon. Also, the data points for Xe
[48] may be affected by formation of clathrates at the 33.4MPa
pressure of the measurements. Finally, no data are reported for Ne
and Rn. The lack of complete measurements has required devel-
oping empirical estimates of V∞

2 for a number of simple fluids in
water at 298.15 K and 0.1MPa, as described below.

The reported results for Ar, H2, N2, O2, CO, and CH4, for which
there are consistent values from various research groups, were
accepted. Also accepted, although with a larger uncertainty, was
the reported value for He [49].

Several relations to correlate V∞
2 in water at 298.15 K and

0.1MPa have been proposed in the literature. According to the
corresponding-states principle (CSP) [50,51], results of V∞

2 =Vc vs. T/
Tc for simple fluids should lie on a single curve, while variations for
other solute families will be different. As discussed in Ref. [44], V∞
2

varies approximately linearly with Vc, the critical volume of the
pure solute. Fig. 1a confirms that observation with:
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V∞
2 ¼15:8þ 0:215Vc (6)

when all values are in cm3mol�1. Note that for “quantum gases”He,
Ne, and H2 the so-called “classical” values of Vc have been used, as
recommended for corresponding-states relations [51].

A correlation between V∞
2 and the molecular polarizability of a

solute, a, has been suggested [52]. Fig. 1b indicates that relation is
approximately linear:

V∞
2 ¼22:5þ 6:27a (7)

where the molecular polarizability is given in Å3 units.
The concept of an empty layer of thickness dsph devoid of water

around a spherical nonpolar solute of van der Waals radius of rvdW
suggests the following approximation (e.g., [30], [53])

V∞
2 ¼ 4p

3

�
rvdW þ dsph

�3
(8)

The theory for mixtures of hard spheres [30] predicts that for
small rvdW , dsph is large and decreasing, converging to a constant
value at large rvdW : Fig. 2a confirms this behavior; among the
several relations that equally well approximate the data, Equation
(9) has been selected:
Fig. 2. Evaluation of dsph, the solute-solvent border thickness, from correlation of V∞
2

with the van der Waals (a) or Lennard-Jones (b) radii of solutes.
dsph ¼ 0:50þ 7:0ðrvdWÞ�10 (9)

where both dsph and rvdW are given in Å units. The necessary values
of rvdW are taken from Refs. [54,55]. A final proposed measure of
molecular size in solution is the radius given by the Lennard-Jones
intermolecular potential model, rLJ: Our correlation for this form is

dsph ¼ 0:53þ 1:50
�
rLJ

��6 (10)

where both dsph and rLJ are given in Å units.
The results from all of these models are presented in Table 2. No

compelling argument favors one method over the others, so all
proposed relations have been employed as listed in the ninth col-
umn of Table 2. The average of values from Equations (7) to 10),
listed in the tenth column of Table 2, have been used in subsequent
calculations.
2.2.3. Values of the Krichevskii parameter and vapor-liquid
distribution coefficients of simple fluids in water

Values of the A∞
12 at the critical point of water can be calculated

with the relation [56]:

A∞
12

�
Tc; r*1;c

�
¼ AKr

V*
1;c

RTc
(11)

where V*
1;c is the critical molar volume of water, and AKr is the

(constant) Krichevskii parameter [24,57]. For most simple fluids in
water, values of AKr are known with high precision [31], mainly
from high-temperature values of solute distribution between
equilibrium vapor and liquid phases of water [58].

The distribution coefficient is defined as KD ¼ lim
x;y/0

y=x, where y
and x are the mole fractions of solute in the coexisting vapor and
liquid phases, respectively. At the solvent's critical point, where
both phases are identical, KD is unity. Expanding the chemical po-
tential of a solute about the solvent's critical point, reveals a
theoretical relation for the temperature dependence of KD at near-
critical conditions [59]

RTln KD ¼ 2AKr,

h
r*1;L � r*1;c

i
�
r*1;c

�2 (12)

where L designates the liquid phase of water. In Eq. (12) the
proper dimension of density is in mol cm�3, with r*1;c
¼ 0.017874mol cm�3. Analysis of available data shows that Equa-
tion (12) is valid not only close to the critical point, but is also
reliable as much as 150 K below water's critical temperature,
Tc¼ 647.096 K [58]. In order to obtain KD values at from 298.15 to Tc,
we applied a temperature function to Equation (12), similar to that
proposed in Ref. [60]:

RTlnKD ¼ 2AKr

h
r*1;L � r*1;c

i
�
r*1;c

�2
�
1þ a1tþ a2t

1:5 þ a3t
2 þ a4t

2:5
�

(13)

where t ¼ 1� T=Tc. The parameters of Equation (13) are given in
Table 3. For all solutes except Rn, values of AKr are taken from
Ref. [31], and KD values are from the recommendations of [58]. For
Rn, for which no experimental high-temperature data exist, AKr
has been estimated from the Gibbs energy of hydration at 298.15 K,
as proposed in Ref. [32]. Estimation of KD has been made as
described in Ref. [61]: first, data for the enthalpy of hydration and



Table 2
Values of V∞

2 simple fluids at 298.15 K, 0.1MPa, see text.

Solute V∞
2 (experimental)
cm3 mol�1

Methoda V∞
2 (selected), cm3 mol�1 rvdW,

Å
rLJ ,
Å

Vc, cm3 mol�1 a,
Å3

Estimated V∞
2 , cm3 mol�1 Accepted V∞

2 , cm3 mol�1

He 24.6 b Vibr 24.6± 3.0 c 1.40 d 1.28 e 37.5 e,f 0.208 g

Ne 1.54 d 1.41 e 40.3 e,f 0.381 g 24.5 (Eq. (6))
24.9 (Eq. (7))
24.5 (Eq. (9))
24.4 (Eq. (10))

24.6

Ar 32.7 b

31.0 h

29.4 i

32.6 k

31.71 l

Vibr
MF
Pycn
Vibr
Dilat

31.5± 1.7 m 1.88 d 1.77 e 74.57 e 1.664 g

Kr 32.8 k Vibr 2.02 d 1.83 e 91.20 e 2.498 g 35.4 (Eq. (6))
38.4 (Eq. (7))
40.7 (Eq. (9))
34.8 (Eq. (10))

37.3

Xe 42.7 n Vibr 2.16 d 2.02 e 118.0 e 4.005 g 41.2 (Eq. (6))
48.0 (Eq. (7))
47.6 (Eq. (9))
43.1 (Eq. (10))

45.0

Rn 2.20 o 140.0 e ~4.8 p 45.9 (Eq. (6))
52.4 (Eq. (7))
49.8 (Eq. (9))

49.4

H2 23.1 b

26.7 k

25.20 l

26 q

Vibr
Vibr
Dilat
Dilat

26.1± 1.3 r 1.36 s,t 1.41 e 51.5 e,f 0.787 g

N2 33.1 b

35.5 i

34.3 h

35.7 k

40 q,u

Vibr
Pycn
MF
Vibr
Dilat

34.7± 1.9 m 1.84 v 1.90 e 90.10 e 1.710 g

O2 32.1 b

30.6 i

31.1 h

33.2 k

30.38 l

31 q

Vibr
Pycn
MF
Vibr
Dilat
Dilat

31.4± 1.1 m 1.73 v 1.73 e 73.37 e 1.562 g

CO 37.3 k

36 q
Vibr
Dilat

36.7± 2.0 c 1.86 v 1.85 e 93.1 e 1.953 g

CH4 32.0 b,u

36.8 w

34.5 k,u

37.42 l

36.3 x

37 q

Vibr
Vibr
Vibr
Dilat
Dilat
Dilat

37.0± 1.0 m 1.89 v 1.88 e 98.6 e 2.448 g

a Methods: Vibr e Vibrating tube; MF e Magnetic Float; Pycn e Pycnometer; Dilat e Dilatometer.
b [49].
c Our estimate of uncertainty.
d [54].
e [51].
f “Classical value”, different for quantum fluids from measured values (57.3 for He, 41.70 for Ne, 64.2 for H2).
g Computational Chemistry Comparison and Benchmark DataBase of NIST at http://cccbdb.nist.gov/exp2x.asp.
h [45].
i [46].
k [44.
l [43].

m the uncertainty for the confidence level of 0.95.
n [48], P¼ 33.41MPa, i.e. the field of stability of a clathrate.
o [55].
p The online table of Schwerdtfeger P. at http://ctcp.massey.ac.nz/Tablepol2017.pdf.
q [41].
r as selected in Ref. [10].
s Calculated from the rvdW for an atom and the bond distance l for diatomic molecule as explained in Ref. [54].
t rvdW¼ 1.20 Å [54] and l¼ 0.741 Å
u not used as an outlier.
v calculated from the van der Waals volume of a molecule [54].
w [47], P is between 28 and 35MPa.
x [42].
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Table 3
Parameters of Equation (13) for the temperature dependence of KD, including values
of the Krichevskii parameter.

Solute AKr ; MPa a1 a2 a3 a4

He 169a �0.64158 2.6892 �4.7045 2.8472
Ne 186a 0.89014 �5.2142 7.3096 �3.1790
Ar 172a 2.1975 �11.567 18.343 �9.7146
Kr 169a 3.2541 �16.669 26.307 �13.870
Xe 150a �0.77542 3.2312 �3.7738 0.68247
Rn 143b �4.0737 12.064 �9.2242 0
H2 170a �2.1784 9.9059 �16.433 9.0854
N2 178a 0.36979 �2.7266 4.7343 �2.8881
O2 171a 0.23481 �1.9722 3.3344 �2.0638
CO 174a 2.5753 �13.013 20.252 �10.535
CH4 164a 0.0 �0.49212 1.2971 �1.2985

a [31, including errata].
b [32].

A.V. Plyasunov et al. / Fluid Phase Equilibria 498 (2019) 9e2214
the heat capacity of hydration of Rn in water at 298.15 K [62]
allowed prediction of the Gibbs energies of hydration of Rn up to
473 K. These were converted into kH values for Rn in the mole
fraction scale. Then, vapor phase fugacity coefficients of Rn at
infinite dilution in the aqueous vapor (V) phase, f∞

2;V , were calcu-
lated using B12 from Equation (4), leading to values of KD found
from KD ¼ kH=ðP*1;sf∞

2;V Þ, where P*1;s is the water saturation pres-
sure. Finally, estimated values of AKr and KD were fitted to Equation
(13). The accuracy of our high-temperature results for Rn is not as
good as for other gases, where KD values are reliable to within a few
percent for T> 400 K and are much more accurate for T< 400 K.
Fig. 3. Values A∞
12;red for simple fluids in water from various sources of information.

Curves are calculated with Equation (16) using parameters in Table 4. Numbers (500,
…, 900) designate water densities in kg m�3.
2.2.4. Estimation of A∞
12 values at densities of water between 500

and 900 kgm�3

We have shown [9,29] that corresponding-states relations exist
for the reduced A∞

12 function, A∞
12; red, defined as

A∞
12;red ¼ A∞

12
�
T ; r*1

�
A∞
12

�
Tr; r*1;r

� (14)

where properties with the subscript r refer to 298.15 K and 0.1MPa.
Values of A∞

12; red are quite similar within many classes of organic
compounds (alcohols, amines, etc.) in water [9]. At specified con-
ditions, the values of A∞

12;red decrease from simple fluids to normal
fluids to polar compounds to hydroxides [9,29]. Data-based values
of A∞

12; red are available up to 700 K. The extrapolation of A∞
12; red to

higher temperatures is based on the observation [9], following from
the theory of mixtures of hard spheres [30], that the high-
temperature limit of A∞

12; red is equal to A*
11; red, where A*

11;red ¼
A*
11ðT ;r*1Þ

A*
11ðTr ;r*1;rÞ

with the reduced bulk modulus, A*
11 ¼ V*

1
kTRT

. Since A*
11; red is

knownwith high precision up to very high T and P from an accurate
water EoS [63], A∞

12; red values are also known at T> 1200 K at
moderate and high water densities. Note that while the IAPWS-95
EoS for water [63] was recommended only to 1273 K and 1 GPa, its
authors stated that “IAPWS-95 can be extrapolated up to extremely
high pressures and temperatures”, giving us confidence that the
properties up to 2000 K and 10 GPa are reliable. Combining
experimental data at moderate temperatures and water densities
with the known high-temperature limits, estimates of A∞

12; red were
made for several classes of solutes, including simple fluids, at water
densities between 500 and 900 kgm�3 and temperatures from
600 K to 2000 K [9].

To extend the correlation for A∞
12; red to ambient temperatures,

high precision data for KD can be used in the following way. Values
of KD can be obtained using Equation (1) for the liquid (L) and for
the vapor (V) phases of water.

lnKD ¼ ln
f∞
2;L

f∞
2;V

¼
ðr*1;L

r*1;V

�
A∞
12 � 1

� dr*1
r*1

(15)

Matching calculated and experimental KD values constrains the
variation of A∞

12 between the densities of coexisting vapor and
liquid phases of water, which are not observable because they are in
the metastable or unstable two-phase range.

This allows the use of two sources of information about A∞
12; red

of simple fluids at moderate water densities: 1) the precise exper-
imental data on V∞

2 for CH4 [47], together with the somewhat less
accurate V∞

2 values for Ar [48] up to 700 K (the values at rounded
water densities, obtained by interpolation of experimental data, are
shown as stars in Fig. 3); and 2) values obtained by imposing
agreement between experiment and values of KD calculated from
Equation (15) for Ar, chosen as the basis (values of A∞

12; red, esti-
mated in this way, are shown as yellow circles in Fig. 3). The results
from the various sources are shown in Fig. 3 with different symbols
denoting the sources of the values. These data for A∞

12; red from 298
to 2000 K at water densities of 500, 600, 700, 800 and 900 kgm�3

have been correlated as

A∞
12;red ¼ aþ bT þ cT2 (16)

with the parameters a, b, and c given in Table 4.

2.3. Evaluation of the isothermal course of A∞
12 at various water

densities

The above methods have been used to estimate A∞
12 as a function

of T and r*1. A convenient representation for interpolation and
smoothing of isothermal variations with water density is the
function [9,15].

Y ¼ �
A∞
12 �1

��
r*1 (17)

which has a smaller range of variations compared to A∞
12. At r*1

¼ 0 Equation (3) gives Y equal to 2B12, providing a high-precision
intercept for Y. Estimated values of Y, as discussed above, are
available at r*1 � 500 kgm�3, and at near-critical temperatures and
the critical density, through the Krichevskii parameter. Over the
density range of 100e400 kgm�3, we have no independent



Table 4
Parameters of Equation (16) at different water densities.

r*1; kg m�3 a 104b, K�1 108c, K�2

500 0.0147 1.512 �4.223
600 0.0987 10.42 �2.873
700 0.2179 3.796 �1.058
800 0.3849 �0.205 �0.249
900 0.6933 �2.074 4.145
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estimates of A∞
12, however, as experience shows, the contribution of

this region to the integral for the fugacity coefficient, Eq. (1), is
important. Therefore, over the density range of 100e400 kgm�3

we varied Y values to smoothly join the points between r*1 equal to
0 and 500 kgm�3, forming a convex function. The properly selected
A∞
12 give at their integration, see Eq. (15), a good agreement with

experimental values of KD. Such a procedure was especially
important for reliability when T< 500 K.

Fig. 4 shows Y for He and Xe in water at three temperatures:
298.15, 647.1 (zTc), and 2000 K. The values at r*1 ¼ 0, have been
calculated from B12 values from Eq. (4), with parameters from
Table 1. The star at the critical temperature Tc and critical density
has been calculated from Eq. (11) using AKr values in Table 3. The
circles for r*1 ¼ 500e900 kgm�3 were calculated as described in
Section 2.2.4 by using Eq. (16) to obtain A∞

12;red, and Eq. (14) to
convert results to A∞

12 with V∞
2 at 298.15 K, 0.1MPa from Table 2,

while those for r*1 � 1000 kgm�3 have been obtained from the
hard-sphere relations of Section 2.2.2, Eq. (5), with V∞

2 at 298.15 K,
Fig. 4. Values of the auxiliary function Y of Equation (17) for He and Xe at infinite
dilution in water at 298.15, 647.1, and 2000 K.
0.1MPa from Table 2. Note that there are Y values along the 298.15 K
isotherm at densities where two phases coexist, so these values are
for metastable and unstable conditions. This is similar to the van
derWaals loop for pure-component vapor-liquid equilibria from an
EoS. The variation shown is required to reproduce experimental KD
values at 298.15 K. The lines in Fig. 4 are from the global formula
described below.
3. Results and discussion

3.1. Global fit of results

Tabulation of A∞
12 estimates was made for more 700 conditions

for each solute for 13 temperatures between 298.15 and 623.15 K
with a step of 25 K; at 633.15, 643.15, 647.10, 673.15 K; for nine
temperatures between 700 and 1500 K with a step of 100 K; and at
1700 and 2000 K. The data were fitted with the function

A∞
12 ¼1þ r*1

h
ao þ a1r

*
1 þ a2

�
r*1
�2 þ a3

�
r*1
�3 þ a4

�
r*1
�4

þ a5
�
r*1
�6i

(18)

where

ao ¼ 2UB12 (19)

with U¼ 10�3

Mw
z55:508,10�6 to convert B12 volume units of cm3

mol�1 to m3 kg�1. The other temperature-dependent coefficients
are

ai ¼
X7
n¼1

ainT
�n
r (20)

where Tr ¼ T=Tc with Tc ¼ 647.096 K [63]. For example, a1 ¼
a11T

�1
r þ a12T

�2
r þ a13T

�3
r þ a14T

�4
r þ a15T

�5
r þ a16T

�6
r þ a17T

�7
r .

An equation similar to Eq. (18) was used in Refs. [9,10], but without
the a4 term. It was found that addition of this term decreased the
sum of squared errors by about 20e30%. Table 5 give the values of
the ain.

Evaluating Equation (1) gives infinite-dilution fugacity co-
efficients of solute (2) in solvent (1)

ln f∞
2 ¼ r*1

h
ao þ a1

2
r*1 þ

a2
3
�
r*1
�2 þ a3

4
�
r*1
�3 þ a4

5
�
r*1
�4 þ a5

7
�
r*1
�6i

� ln
PV*

1
RT

;

(21)

where r*1 is in kg m�3 and V*
1 is in cm3 mol�1.
3.2. Comparison with literature data at supercritical temperatures

3.2.1. Infinite-dilution fugacity coefficients
Fig. 5 (for T¼ 750 K) and Fig. 6 (for T¼ 1500 K) compare values

of f∞
2 from the presented method with those from three literature

EoS: computer-simulation generated PVTX properties of binary
water-gas systems (SUPERFLUID [11]), and [12], and a perturbation-
theory EoS [13]. Figs. S1 and S2 of the Supplementary Materials
show corresponding graphs for 1000 and 2000 K. Generally, results
of all works are in reasonable agreement, although they are based
on various computational approaches. Note that the EoS of [13] is
not recommended for conditions of T< 750 K and P< 50MPa; and
SUPERFLUID EoS [11] for Ar and N2 should not be used for
P< 500MPa. Our values at low supercritical temperatures are



Table 5
Parameters of Eq. (20) for different solutes.

i n/
Y

1 2 3 4 5 6 7

He
1 0.330171∙10�4 �0.956234∙10�4 1.66334∙10�4 �1.64667∙10�4 0.835003∙10�4 �2.05151∙10�5 1.96847∙10�6

2 0.168282∙10�7 �0.134021∙10�6 0.162366∙10�6 �0.0632820∙10�6 0.111715∙10�7 �0.0342337∙10�7 0.0731267∙10�8

3 0.296736∙10�10 0.0354800∙10�9 �0.115563∙10�9 0.0630922∙10�9 �0.00984355∙10�9 0.00413077∙10�10 0
4 �0.228315∙10�13 0.0724047∙10�12 �0.0251653∙10�12 0 �0.0470755∙10�13 0.283931∙10�14 �0.485251∙10�15

5 0.290321∙10�20 �1.64964∙10�20 1.08055∙10�20 �1.41333∙10�21 0 0 0

Ne

1 0.272235∙10�4 �0.990487∙10�4 1.07231∙10�4 �0.527256∙10�4 0.215489∙10�4 �0.977109∙10�5 2.02335∙10�6

2 0.146673∙10�7 �0.0307540∙10�6 0.374800∙10�6 �0.573740∙10�6 3.19327∙10�7 �0.687621∙10�7 0.364859∙10�8

3 0.488631∙10�10 �0.208907∙10�9 �0.132675∙10�9 0.414531∙10�9 �0.232656∙10�9 0.406685∙10�10 0
4 �0.318303∙10�13 0.207455∙10�12 �0.126351∙10�12 0 0.0192703∙10�13 0.8040190∙10�14 �2.40858∙10�15

5 0.0843029∙10�20 �1.53649∙10�20 0.846021∙10�20 �0.444989∙10�21 0 0 0

Ar

1 3.31120∙10�4 �16.9690∙10�4 34.2329∙10�4 �34.5364∙10�4 18.5501∙10�4 �50.9746∙10�5 56.4098∙10�6

2 �6.38608∙10�7 3.26991∙10�6 �6.28720∙10�6 5.93872∙10�6 �29.5699∙10�7 7.49049∙10�7 �7.55633∙10�8

3 5.22779∙10�10 �2.26188∙10�9 3.54594∙10�9 �2.59097∙10�9 0.902573∙10�9 �1.24931∙10�10 0
4 �1.57202∙10�13 0.605600∙10�12 �0.562860∙10�12 0 2.46531∙10�13 �12.3992∙10�14 19.9139∙10�15

5 1.10779∙10�20 �4.96735∙10�20 4.68195∙10�20 �12.5029∙10�21 0 0 0

Kr

1 3.37502∙10�4 �18.0856∙10�4 37.8160∙10�4 �38.9855∙10�4 21.0871∙10�4 �57.5198∙10�5 62.4522∙10�6

2 �5.89268∙10�7 3.45089∙10�6 �7.26941∙10�6 7.27048∙10�6 �37.0316∙10�7 9.23612∙10�7 �8.83522∙10�8

3 3.15911∙10�10 �1.92919∙10�9 3.93134∙10�9 �3.52677∙10�9 1.43707∙10�9 �2.18517∙10�10 0
4 0.227397∙10�13 0.136816∙10�12 �0.255015∙10�12 0 2.35063∙10�13 �15.1326∙10�14 28.2990∙10�15

5 �1.48330∙10�20 2.42315∙10�20 �1.61166∙10�20 4.71965∙10�21 0 0 0

Xe

1 2.46371∙10�4 �14.2013∙10�4 32.3087∙10�4 �35.7220∙10�4 20.1886∙10�4 �56.5366∙10�5 62.4672∙10�6

2 �2.59311∙10�7 2.31057∙10�6 �6.14630∙10�6 7.10728∙10�6 �38.8621∙10�7 9.95998∙10�7 �9.55320∙10�8

3 �0.659378∙10�10 �0.662369∙10�9 2.91966∙10�9 �3.67398∙10�9 1.73832∙10�9 �2.81519∙10�10 0
4 1.98125∙10�13 �0.453872∙10�12 0.241266∙10�12 0 1.75538∙10�13 �15.7832∙10�14 33.5822∙10�15

5 �2.96836∙10�20 8.00940∙10�20 �7.34314∙10�20 19.0536∙10�21 0 0 0

Rn

1 2.29992∙10�4 �16.5568∙10�4 44.6590∙10�4 �57.1003∙10�4 37.1623∙10�4 �119.633∙10�5 151.402∙10�6

2 �5.73390∙10�7 4.51594∙10�6 �11.2419∙10�6 13.0822∙10�6 �77.5109∙10�7 22.7877∙10�7 �26.3489∙10�8

3 5.91825∙10�10 �3.95159∙10�9 7.84421∙10�9 �6.92661∙10�9 2.80369∙10�9 �4.30147∙10�10 0
4 �1.57576∙10�13 1.08196∙10�12 �1.30155∙10�12 0 8.63588∙10�13 �51.0940∙10�14 91.6656∙10�15

5 �0.0431787∙10�20 �4.66333∙10�20 5.66059∙10�20 �17.4462∙10�21 0 0 0

H2

1 1.02969∙10�4 �3.77391∙10�4 5.15786∙10�4 �3.10456∙10�4 0.670948∙10�4 0.581482∙10�5 �3.01150∙10�6

2 �1.51880∙10�7 0.454209∙10�6 �0.320341∙10�6 �0.126678∙10�6 2.59977∙10�7 �1.164377∙10�7 1.74266∙10�8

3 2.25633∙10�10 �0.614891∙10�9 0.474883∙10�9 �0.144575∙10�9 0.0214011∙10�9 �0.0229158∙10�10 0
4 �1.06420∙10�13 0.304710∙10�12 �0.155026∙10�12 0 �0.0232358∙10�13 0.795336∙10�14 �1.67248∙10�15

5 1.18910∙10�20 �4.03882∙10�20 2.50264∙10�20 �3.25879∙10�21 0 0 0

N2

1 1.71614∙10�4 �7.87088∙10�4 14.4505∙10�4 �13.1668∙10�4 6.31582∙10�4 �15.4929∙10�5 15.4923∙10�6

2 �2.11747∙10�7 1.05405∙10�6 �1.87483∙10�6 1.55157∙10�6 �6.40910∙10�7 1.32852∙10�7 �1.15412∙10�8

3 1.63879∙10�10 �0.636905∙10�9 0.858253∙10�9 �0.486214∙10�9 0.100180∙10�9 �0.0328645∙10�10 0
4 �0.439095∙10�13 0.204020∙10�12 �0.162376∙10�12 0 0.427314∙10�13 �1.24034∙10�14 0.473523∙10�15

5 0.270801∙10�20 �2.12050∙10�20 1.73572∙10�20 �3.34712∙10�21 0 0 0

O2

1 1.14609∙10�4 �4.78505∙10�4 8.15298∙10�4 �6.79959∙10�4 2.83409∙10�4 �5.55452∙10�5 3.85476∙10�6

2 �0.995565∙10�7 0.418916∙10�6 �0.665720∙10�6 0.465682∙10�6 �1.17181∙10�7 �0.0324792∙10�7 0.364776∙10�8

3 0.742646∙10�10 �0.168799∙10�9 0.132150∙10�9 �0.0453310∙10�9 �0.00489050∙10�9 0.0424158∙10�10 0
4 �0.160987∙10�13 0.0654708∙10�12 �0.0108608∙10�12 0 �0.210736∙10�13 1.41196∙10�14 �2.73644∙10�15

5 0.0811105∙10�20 �1.09479∙10�20 0.470839∙10�20 0.960803∙10�21 0 0 0

CO

1 2.98880∙10�4 �15.5113∙10�4 31.4220∙10�4 �31.4446∙10�4 16.4808∙10�4 �43.4599∙10�5 45.4478∙10�6

2 �4.58140∙10�7 2.51278∙10�6 �4.97136∙10�6 4.69613∙10�6 �22.6036∙10�7 5.31538∙10�7 �4.72948∙10�8

3 3.07899∙10�10 �1.43490∙10�9 2.38664∙10�9 �1.83690∙10�9 0.666573∙10�9 �0.939165∙10�10 0
4 �0.654523∙10�13 0.303023∙10�12 �0.274778∙10�12 0 1.08504∙10�13 �5.24611∙10�14 8.04952∙10�15

5 0.388032∙10�20 �2.63707∙10�20 2.35466∙10�20 �4.84078∙10�21 0 0 0
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Table 5 (continued )

i n/
Y

1 2 3 4 5 6 7

CH4

1 2.97057∙10�4 �16.1247∙10�4 34.4063∙10�4 �36.0221∙10�4 19.5874∙10�4 �53.2147∙10�5 57.0850∙10�6

2 �4.49849∙10�7 2.93254∙10�6 �6.71023∙10�6 7.07104∙10�6 �36.8944∙10�7 9.22213∙10�7 �8.66110∙10�8

3 1.61007∙10�10 �1.37627∙10�9 3.44496∙10�9 �3.48885∙10�9 1.51742∙10�9 �2.38812∙10�10 0
4 0.766418∙10�13 �0.0700448∙10�12 �0.0767257∙10�12 0 1.97840∙10�13 �14.2101∙10�14 28.0351∙10�15

5 �1.50262∙10�20 3.06667∙10�20 �2.51644∙10�20 6.99891∙10�21 0 0 0
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closest to those of [13], while at the highest temperature, 2000 K,
our results usually are higher than all literature EoS. This would
lead to lower concentrations than from other models at the same
conditions. Generally, high-temperature thermodynamic proper-
ties of simple fluids at high dilution in water appears to be
reasonably well constrained by consistent results of several studies,
including the current one: at densities above 1000 K the agreement
of various EoS is usually within 1 log10 unit, which likely reflects the
uncertainty of high-density predictions. In the absence of precise
experimental results at supercritical temperatures, a more definite
conclusion is not warranted.
3.3. Comparison with literature data at subcritical temperatures

Data on the properties of dilute solutions of simple fluids in
water at subcritical temperatures are known with high precision,
especially at temperatures below 373 K. For example, see recom-
mendations on values of kH and KD by Fern�andez-Prini et al. [58].
This section compares our results with these recommendations.
3.3.1. Comparisons of KD and introduction of reference KD values
As discussed in Section 2.2.4, Equation (15) allows the calcula-

tion of KD from the “volumetric” information

lnKD ¼ ln f∞
2;L � ln f∞

2;V (22)

where L and V designate the coexisting liquid and vapor phases of
water. Fig. 7 shows comparisons of the recommended values of
lnKD [58] with those calculated from Equation (22). In all cases, the
difference is less than 0.11 ln units (less than 0.05 log10 units) or
11%. Unfortunately, this accuracy in KD is not within the experi-
mental uncertainty of 1% at temperatures below 373 K.

It is expected that the principal error in the present model is in
the calculation of f∞

2;L: To improve upon our accuracy, fugacity co-
efficients of solutes for liquid, f∞

2;L, have been evaluated from

ln f∞
2;L ¼ lnKDðrecomÞ þ ln f∞

2;V (23)

with lnKDðrecomÞ calculated from Equation (13). The corrected
values of f∞

2;L are given in the Excel file “Supplementary Materials”.
3.3.2. Comparison of Henry's constants
Henry's constant, kH, is defined in Ref. [58] as

kH ¼ lim
x2/0

ðf2=x2Þ (24)

where f2 and x2 are the fugacity and mole fraction of a solute. The
fugacity of a solute is given by f2 ¼ Pf2x2 [50]. Applying this defi-
nition to the vapor-liquid envelope of water, the relation between
kH and KD is [26,59]:
kH ¼ KDf
∞
2;VP

*
1;s (25)

with P*1;s the water saturation pressure. Using KD values computed
with Equation (13) in Equation (25), Henry's constants have been
calculated for the solutes under consideration and compared with
the recommendations of [58]. The results are shown in Fig. 8.

For Xe, N2, and O2 over the whole temperature range from
298.15 to 647.1 K (Tc) the agreement of recommended kH values
with those from Equation (25) is very good, within 0.08 ln units
(<0.04 log10 units); for Ne, Ar, and CH4 the agreement is satisfactory
e within 0.18 ln units (<0.08 log10 units). However, for He, Kr, and
H2 the deviations increase significantly as T increases above 600 K.
At 647.1 K (Tc) the differences are 1.3, 0.45, and 0.68 ln units,
respectively (~0.6, 0.2 and 0.3 log10 units). For CO, the disagreement
begins at lower temperatures, growing from ~0.2 ln units (~0.09
log10 units) at 500 K to more than 0.4 ln units (~0.18 log10 units) for
T> 550 K. The greatest deviations are generally at temperatures
above those of the measurements.

The differences arise from using the present calculated values of
f∞
2;V and those estimated in Ref. [58] that employed the Peng-

Robinson EOS. To assess which result should be accepted, values
of f∞

2;V have been calculated using B12 with Eq. (26) that should be
sufficiently accurate up to approximately 1/2 the water critical
density:

ln f∞
2;V z

2
V*
1
B12 � ln

PV*
1

RT
(26)

The density of saturated water at T ~ 633 K is r*1z 144 kgm�3 or
~45% of the critical water density. Fig. 9 compares f∞

2;V values from:
1) kH and KD data of [58]; 2) results of this work; 3) Equation (26)
for He and CO. The SupplementaryMaterial shows the results for all
solutes where a comparison is possible.

Because the correct lower density formulation with B12 is
incorporated in the present approach, the overall results of this
work are very close to those from predictions of Equation (26). For
He and CO, values of f∞

2;V employed in Ref. [58] at temperatures
above 450e500 K are systematically lower those evaluated from
the truncated virial EoS. This suggests that the recommended
values for kH should be revised at least for He and CO.

Japas and Levelt Sengers [59] have derived a linear relationship
for the asymptotic variation of kH near the solvent's critical point,

RT ln
kH
f *1

¼h0 þ AKr

�
r*1;L � r*1;c

�
�
r*1;c

�2 (27)

where f *1 is the pure water fugacity, which can be calculated using
an EoS for H2O [63]. The present work suggests that the last term in
Equation (27) should be appended by an expanded form, similar to
that of Equation (13). This leads to a correlation that accurately
reproduces kH from 298.15 to 647.1 K (t ¼ 1 � T=TcÞ:



Fig. 5. Comparison of predictions of this work (lines) at 750 K with results of literature EoS, given by symbols: triangles e [11], circles ([12], coded by Ref. [14]), squares e [13].
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Fig. 6. Comparison of predictions of this work (lines) at 1500 K with results of literature EoS, given by symbols: triangles e [11], circles ([12], coded by Ref. [14]), squares e [13].
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Fig. 7. The difference between recommended values of lnKD [58] and those calculated
with Equation (22).

Fig. 8. Differences between recommended values of lnkH [58] and those calculated
with Equation (25).

Fig. 9. The values of the fugacity coefficients evaluated in this work, calculated with
Equation (26) and determined from kH and KD data of [58] for (a) He and (b) CO.

Table 6
Values of parameters h0 � h4 of Equation (28) for calculating Henry's constants, kH,
of solutes in water for T from 298.15 to 647.1 K.

Solute h0, J mol�1 h1 h2 h3 h4

He 14101.4 �16.7925 64.5104 �79.1439 31.8977
Ne 14003.0 39.5335 �138.405 163.732 �65.1344
Ar 13082.5 49.6717 �181.137 225.384 �95.0142
Kr 12448.0 70.1943 �255.179 314.861 �131.292
Xe 10168.7 40.0254 �136.713 168.492 �73.2324
Rn 8611.8 28.5425 �128.408 198.412 �101.063
H2 13008.3 2.97582 �3.69394 0 0.871058
N2 13270.4 27.2763 �95.0488 117.070 �50.1020
O2 13158.3 26.5351 �95.6743 120.939 �52.6848
CO 13017.7 72.6866 �266.528 331.484 �139.000
CH4 12327.5 20.3832 �68.5418 84.8780 �37.5232
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RT ln
kH
f *1

¼h0 þ AKr

�
r*1;L � r*1;c

�
�
r*1;c

�2
�
1þ h1t

1:25 þ h2t
1:5 þ h3t

1:75

þ h4t
2
�
:

(28)

where the parameters h0 � h4 are given in Table 6. This relation
should not be used at temperatures outside of 298e647.1 K.

3.3.3. Calculation of f∞
2 at high pressures (water densities) below Tc

Values of f∞
2 along subcritical isotherms (T< 647.1 K) for com-

pressed liquid water (for P > P*1;s, the water saturation pressure) can
be obtained from

ln f∞
2 ¼ ln f∞

2;L þ r*1

h
ao þ a1

2
r*1 þ

a2
3
�
r*1
�2 þ a3

4
�
r*1
�3 þ a4

5
�
r*1
�4

þ a5
7
�
r*1
�6i� r*1;s

	
ao þ a1

2
r*1;s þ

a2
3

�
r*1;s

�2 þ a3
4

�
r*1;s

�3

þ a4
5

�
r*1;s

�4 þ a5
7

�
r*1;s

�6
� ln
P r*1;s

P*1;s r*1
;

(29)

where r*1;s is the density of liquid water at P*1;s and ln f∞
2;L is defined

in Equation (23). Fig. 7 shows that the correction is small, always <
0.11 ln unit.
4. Summary

Equations with parameters have been given for the thermody-
namic properties of He, Ne, Ar, Kr, Xe, Rn, H2, N2, O2, CO, and CH4 at
infinite dilution in water from 298 to 2000 K and water densities
from 0 to 1500 kgm�3. Eq. (18) gives the correlation for A∞

12. Eq. (21)
gives the solute infinite-dilution fugacity coefficient, lnf∞

2 . This
equation can be used directly at the critical isotherm and above,
though small corrections are recommended at subcritical temper-
atures, in order to achieve the agreement with the vapor-liquid
distribution coefficients, KD of Eq. (13). In particular, we
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recommend using the small correction of Eq. (23) for the values of
the f∞

2;L, the fugacity coefficient of an infinitely diluted solute in a
liquid phase of water at saturation, calculated with Eq. (21). The
values of Henry's constants, kH, consistent with KD and fugacity
coefficients for solutes in the vapor phase of water (f∞

2;V , calculated
with Eq. (21)) are given by Eq. (28) over temperatures from 298.15
to 647.1 K. Calculated A∞

12 and f∞
2 for all solutes at various Tand P are

tabulated in the Supplementary Material in an Excel file.
Examples are shown for aqueous methane. Fig. 10a shows A∞

12
for dissolved methane as a function of water density at various
temperatures. Fig. 10b shows log10f∞

2 at the same conditions. The
partial Gibbs energy may be defined as

G2 ¼ RT ln
Pf∞

2
P+

(30)

where P+ ¼ 0.1MPa for pressures given inMPa. Fig.10c shows G2 as
a function of water density at various temperatures for dissolved
Fig. 10. Values of A∞
12 (a), log10f∞

2 (b), and G2 (c) of infinitely dilute CH4 in water over
wide T and r*1 ranges.
methane. Note that values of log10f∞
2 pass through minima at

subcritical temperatures, though these are not seen in G2.

5. Conclusions

Equations have been developed for several thermodynamic
properties of simple fluid solutes at infinite dilution in water from
298 to 2000 K and water densities from 0 to 1500 kgm�3. For this
entire range of conditions, the method based on Fluctuation Solu-
tion Theory requires only very limited and well-known property
values: the partial molar volume at infinite dilution, V∞

2 , of the
solute at 298.15 K; the second cross virial coefficient of the solute
with water, B12, and the solute's Krichevskii parameter, AKr .

Fugacity coefficients, f∞
2 ; at supercritical temperatures agree

reasonably with results of prior studies, suggesting that high-
temperature thermodynamic properties of simple fluids at high
dilution in water can now be considered known within restricted
uncertainties. Small corrections were required to achieve agree-
ment with the recommended [58] constants of distribution of
solutes between the vapor and liquid phases of water, kD. Com-
parisons of calculated Henry's constants with recommendations
[58] suggest revision of results for some solutes when T> 550 K.
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