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Abstract The article presents an algorithm for solving the discrete logarithm
problem with an oracle, solving the Diffie-Hellman problem. Certified the dis-
crete logarithm problem is considered. The Diffie-Hellman oracle works with
elements of the original group, but with new group operations that are com-
positions of the Diffie-Hellman oracle. In particular, a universal (generic) algo-
rithm can be substituted as the Diffie-Hellman oracle. The result is improved
since 1996 - the degree of logarithm in the estimation of the complexity of
the algorithm presented is reduced to one. Of course, this does not affect the
property of polynomial reduction of the considered problems to each other,
but excludes from the evaluation in a sense unnecessary terms.
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1 Introduction

In 1996 the author published [1] a constructive deterministic algorithm solving
the discrete logarithm problem by oracle, solving the Diffie-Hellman problem
in some subsets of the original group connected by new group operations.
In 1997 V. Shoup [2] showed that the algorithm solving the Diffie-Hellman
problem in an arbitrary group (generic algorithm) cannot be simple. However,
this does not detract from the previous result, since the representation of the
elements is fixed and the group operations have a special appearance. In 2011
N. Koblitz, A. Menezes, I. E. Shparlinski published in Vietnam Journal of
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Mathematics an article [3], one of the main results of which (Theorem 2.4)
and its proof repeats the author’s 1996 result and his proof, although there is
no reference to the 1996 article. In 2019, the result of 1996 was extended by the
author of this paper to the integer factorization problem [4]. In view of such a
great interest in this topic, the 1996 theorem here is somewhat strengthened,
which, however, is not of fundamental importance for the connection between
the complexity of discrete logarithm and Diffie-Hellman problems.

2 Definitions and formulations

Let G(t,m) be arbitrary commutative cyclic group of order m with an oper-
ation that we will continue to denote +, requiring for its execution t bitwise
operations, and let L(t,m) denote the upper estimate of the number of bit op-
erations required to solve the discrete logarithm problem in the group G(t,m),
that is, known a, b ∈ G(t,m) such that

a = nb, (1)

find n ∈ Zm. Here nb is b+ · · ·+ b, where the element b repeats n times.
Without limiting the generality of further reasoning, we consider b be a

generator of the group G(t,m).
Let D(t,m) be the upper estimate of the number of bit operations re-

quired to solve the Diffie-Hellman problem: known a1, a2 and b such that
a1 = n1b, a2 = n2b, find

a3 = (n1n2)b. (2)

We will assume that D(t,m) ≥ max{t, u(m)} logm and does not decrease
by m, where u(m) is the upper bound on the number of bit operations required
to multiply modulo m.

Let D∗(t,m) ≥ max{t, u(m)} logm — also a non-decreasing by m upper
estimate of the quantity bitwise operations required to solve the same problem
using algorithms, the number of bit operations in which satisfies inequality

D∗(t,m) ≤ tD∗(C,m),

for some absolute constant C (for example, those algorithms that use only
operations, which complexity is no more than the complexity of the group
operation).

We will prove our results for the case of a certified discrete logarithm
problem, that is, when decomposition on primesw p−1, pi−1, i = 1, . . . , r, qij−
1 for primes qij | pi − 1 and so on as well primitive roots by modules p, pi, i =
1, . . . , r, qij etc. are assumed to be known. As shown in [1], the estimates
obtained remain plausible in the general case as well.

For an arbitrary m =
∏r

i=1 pi
αi consider prime factorizations of pi −

1, i = 1, . . . , r, prime factorizations of qij − 1 for primes qij | pi − 1, and
so on. The resulting branching is called the Pratt tree [5] of the number m,
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and the occurring primes are its nodes. Denote s = s(m) length of the largest
branch of the considered tree.

Note that the condition s(p) = 1 for a prime p means that it is a Fermat
prime. To date, only five Fermat primes are known (3, 5, 17, 257, 65537). It
has been proved that the remaining Fermat primes, if they exist at all, contain
more than a billion bits in their record. The following theorem is proved for
natural m, in which the Pratt tree does not contain any Fermat primes except
the five indicated ones.

Theorem 1 For the certified discrete logarithm problem under the condition
that D(t, p) ≥ max{t, u(p)} log p, and the Pratt tree of the number m does not
contain any Fermat primes except the five specified, we have

D(. . . D(D︸ ︷︷ ︸
s

L(t,m) ≤ s logmD(. . . D(D︸ ︷︷ ︸
s

(m)(t,m),m) . . . ,m), (3)

where on the right is s - multiple iteration of the function D(t,m),

L(t,m) ≤ ts logm(D∗(C,m))s. (4)

The multiplicative constants appearing in our arguments will be considered
as taken into account in the basis of logarithms, which we will not specify.

A similar estimate with s = 1, but only for prime m, satisfying the smooth-
ness condition was obtained earlier in [7].

3 Proof of the theorem

For simplicity, consider first the case where m is a prime number, m = p.
Without limiting generality, we can assume that in the equation (1) n ̸≡ 0
(mod p), and b is not an additive unit element of group G(t, p). We introduce
on the set of elements

{nb | n ̸≡ 0 (mod p)} (5)

a new group operation specified by equality

n1b⊕ n2b = (n1n2)b.

Number of bit operations, required to perform this operation is, obviously,
equal to D(t, p). Since non-zero residues on a prime module form a cyclic
group by multiplication, we get with this operation on the set (5) a cyclic
group whose order is d =

∏r
i=1 pi

αi | φ(p) = p−1, where pi, i = 1, . . . , r, are
different primes, and r = ν(p − 1), where ν(p − 1) is the number of different
prime divisors of p− 1. We denote this group G(D(t, p), p− 1). It is clear that
b is a unit of this group.

Let g be the primitive root modulo p, then gb - is a generator of the
group G(D(t, p), p− 1). This group is the direct sum of cyclic groups of order
pi

αi , i = 1, . . . , r, with generators respectively gib, where



4 Mikhail Cherepniov

gi ≡ g
p−1

pi
αi (mod p), i = 1, . . . , r.

Let n = gv (mod p). We will look for v (mod d), and then by 2u(p) log p
bit operations we will receive n. The equation (1) can be rewritten in view

a =
⊕
i

gi
nib = g1

n1b⊕ . . .⊕ gr
nrb,

where

1 ≤ ni ≤ pi
αi , v ≡ p− 1

piαi
ni (mod pi

αi), i = 1, . . . , r,

or

a = n1 · (g1b)⊕ . . .⊕ nr · (grb),

where operation · (operation of multiplication elements of the group
G(D(t, p), p − 1) by natural numbers) is defined for the operation ⊕ just as
simple multiplication by natural numbers is defined for operation +, namely,

l · (kb) = kb⊕ . . .⊕ kb︸ ︷︷ ︸
l

= klb,

where the ⊕ operation binds l elements. Observe, that l, in this case, can be
considered as a residue modulo d.

The number of bit operations required for such multiplication with the
application of the binary algorithm is obviously not superior thanD(t, p) log n.
Now to determine the number n in the expression (1) we will look for the
numbers ni and then find n by the formula

n ≡
r∏

i=1

gi
ni (mod p).

For each i = 1, . . . , r using a binary algorithm we find

ai =
p− 1

piαi
· a =

p− 1

piαi
ni · (gib).

This will require no more than ν(p−1) log (p− 1)D(t, p) bitwise operations.
Still ν(p−1) log (p− 1)(u(p)+t) bitwise operations are required for computing
gi, gib with known g and b for all i = 1, . . . , r. Then, solving the discrete
logarithm problem in a cyclic subgroup of order pi

αi of the group G(D(t, p), p−
1) generated by the element gib, find such ti, what

ai = ti · (gib). (6)

This would require L(D(t, p), pi
αi) bits operations. Moreover, it is clear that

ni
p− 1

piαi
≡ ti (mod pi

αi).
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Using Euclid’s algorithm, you can inverse p−1
pi

αi
modulo pi

αi for u(p) log pi
αi

bit operations, so the number of bit operations required to find each ni at
known ai, gib, does not exceed

L(D(t, p), pi
αi) + u(p) log pi

αi . (7)

The equation (6) can be solved in another way, namely by multiplying its
on pi

αi−1, then no more than for L(D(t, p), pi) bitwise operations, we get ti
modulo pi.

Let ti = ti0 + piti1, 0 ≤ ti0 < pi, then ai = (ti0 + piti1) · (gib). Since when
multiplied the exponents add up, then

ai ⊕ (pi − ti0) · (gib) = (ti1 + 1) · (gipib) and so on.

Number ti1 modulo pi
αi−1 is defined in no more than L(D(t, p), pi

αi−1)

bitwise operations. Required elements gi
pi

βi
b, pi

βi · ai, βi = 1, . . . , αi we can
obtain consistently by αi log piD(t, p) bit operations. Thus, in equality (7) we
can replace L(D(t, p), pi

αi) by

αi(αi log piD(t, p) + L(D(t, p), pi)).

Here α2
i log piD(t, p) - calculation of elements of the form (pi − ti0) · (gib).

Summing up, we obtain the following recurrent formula for estimates of
the complexity of the certified discrete logarithm problem:

L(t, p) ≤ D(t, p) log2 p+
∑

pi
αi∥p−1

αiL(D(t, p), pi) (8)

(we propose that D(t, p) ≥ max{t, u(p)} log p)
Repeating the same reasoning with the replacement of p by pi , etc., in

finally we come to the problem of discrete logarithm in the group of order 2,
which can be solved by brute force.

The statement of the theorem is proved by induction on s. In view of the
assumption made about the Pratt tree under the condition of our theorem, at
s(m) = 1, the complexity of the discrete logarithm problem does not exceed
the constant. Thus the basis of induction is trivial.

When considering the induction step (s ≥ 2), we take advantage of the
inequality (8) and inequality (3) with s replaced by s−1. Then under conditions
of the theorem D(t, p) ≥ max{t, u(p)} log p, and we get that

L(t, p) ≤ D(t, p) log2 p+
∑

pi
αi∥p−1

αi(s− 1) log pi D(. . . D(D︸ ︷︷ ︸
s

(t, p), p) . . .) ≤

≤ D(D(t, p), p) log p+
∑

pi
αi∥p−1

αi(s− 1) log pi D(. . . D(D︸ ︷︷ ︸
s

(t, p), p) . . .) ≤
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≤ D(. . . D(D︸ ︷︷ ︸
s

(t, p), p) . . .)

log p+ (s− 1)
∑

pi
αi∥p−1

αi log pi

 ≤

≤ s log pD(. . . D(D︸ ︷︷ ︸
s

(t, p), p) . . .),

where in formulas with dots are s-multiple iterations of the function D(t, p).
The case of an arbitrary,

m =

r∏
i=1

qi
αi ,

reduces to the above by multiplying the equality (1) by m
qi

etc., similar to the

above solution of equation (6).
The proof of inequality (4) is obvious. Theorem 1 is proven.
Note that D(x, y) into the inequality (3) (or D∗(x, y) into the inequality

(4)) may be replaced by an upper bound (satisfying the condition of the the-
orem) of the number of bit operations of any mass algorithm (that is, such,
which can be applied to any cyclic group of order y with a group operation
requiring x bit operations for its implementations.)

Some results related to the s(m) function, introduced in [1], can be found
in the works of [8–10]. However, obtaining upper estimates of s(m) that would
give a nontrivial relationship between the complexity of discrete logarithm and
Diffie-Hellman problems is still an unsolved problem.
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