1st Training Workshop & Summer School **Magnetic Nanohybrids** for Cancer Therapy

within the framework of the MaNaCa Twinning Horizon2020 project: grant agreement No 857502 (2019-2022)

email: magnacharta@physics.auth.gr

Technology & Applications

http://magnacharta.physics.auth.gr

Oral Presentations		
Num	Title & Presenting Author	Session
001	Magnetic Nanohybrids for Cancer Therapy <i>M. Angelakeris, Greece</i>	
002	Iron based "Core-Shell" Nanoparticles for Magnetic Hyperthermia of Cancer Cells A. Manukyan, Armenia	
O03	Scaling Up Magnetic Nanoparticles Production <i>K. Simeonidis, Greece</i>	Materials & Structure
004	Characterization of nanomaterials using transmission electron microscopy <i>M. Spasova, Germany</i>	Mater
005	Nano-Theranostics based on magnetic ferrite nanoparticles <i>C. Dendrinou, Greece</i>	
O 06	Application of X-ray absorption fine structure spectroscopies for the study of Fe3-xMnxO4 nanoparticles M. Katsikini, Greece	
007	Tuning structure and Magnetic Properties of Nanoparticles for Enhanced Heating Performance <i>P. Trohidou, Greece</i>	<u>م</u>
008	Basics of Magnetometry and How to Apply on Nanoparticles U.Wiedwald, Germany	Magnetism & Properties
009	Introduction to X-Ray Magnetic Circular Dichroism T. Feggeler, Germany	/agn€ Prop
010	Core-Shell and Bi-phasic MNPs for cancer therapy: Structure and properties A. S. Kamzin, Russia	2
011	Ferromagnetic Resonance: Theory and Applications for Magnetic Nanoparticles A.Semisalova, Germany	
012	Magnetic liposomes as versatile clinical carriers G.Litsardakis, Greece	ints
013	Magnetite-Gold nanohybrids as ideal platforms for theranostics <i>M. Efremova, Germany</i>	l Constraints
014	The Blood-Brain-Barrier as target for magnetic nanoparticle imaging and opening <i>U. Hofmann, Germany</i>	
015	Cancer nanomedicine: considerations for the in vitro experimental design <i>C. Spiridopoulou, Greece</i>	Biomedica
016	How cells respond to magnetic field? Magnetic hyperthermia for Cancer Treatment <i>R. Tzoneva, Bulgaria</i>	Bio
017	Enhancing cancer immunotherapy through Nanotechnology <i>C. Chlichlia, Greece</i>	S
018	Magnetic nanoparticles for cancer therapy and diagnostics: effects of morphology and coating <i>M. Abakumov, Russia</i>	spect
019	Cell membrane-coated magnetic nanocubes for the treatment of glioblastoma <i>C. Tapeinos, Italy</i>	cific A
O20	The Radiobiological Basis of Radiation Therapy and Hyperthermia S. Spirou, Greece	r Spe
021	Magnetic Particle Imaging Applications in Cancer Inflammation, Theranostics, and Cell Tracking <i>N. Carvou, UK</i>	Cancer Specific Aspects
022	Combinatory, Magnetic or Non-magnetic cancer modalities? <i>T. Samaras, Greece</i>	

Magnetite-Gold nanohybrids as ideal platforms for theranostics

Mariia Efremova^{1,2,3,4}, Yulia A. Nalench⁴, Eirini Myrovali⁵, Victor A. Naumenko⁶, Anastasiia S. Garanina^{3,4} Maxim A. Abakumov^{4,6}, Marina Spasova⁷, Makis Angelakeris⁵, Michael Farle⁷, Alexander G. Savchenko⁴, Natalia L. Klyachko^{3,4}, Alexander Majouga^{3,4,8}, Ulf Wiedwald^{4,7}

¹ Technical University of Munich, 81675 Munich, Germany
² Helmholtz Zentrum München, 85764 Neuherberg, Germany
³ Lomonosov Moscow State University, 119991 Moscow, Russia
⁴ National University of Science and Technology «MISIS», 119049 Moscow, Russia
⁵ Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
⁶ Russian National Research Medical University, 117997 Moscow, Russia
⁷ University of Duisburg-Essen, 47057 Duisburg, Germany
⁸ D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia

* corresponding author: efremova33@mail.ru

In this work, we present the first size-dependent study of hybrid Fe_3O_4 -Au NPs with diameters of 6-44 nm Fe_3O_4 and 3-11 nm Au for theranostics combining the contrast enhancement in magnetic resonance imaging (MRI), the heating potential in magnetic particle hyperthermia (MPH) and dual chemical functionality for the payload delivery.

High-quality Fe₃O₄ nanocrystals with bulk-like magnetic behaviour were obtained as confirmed by the presence of the Verwey transition. The 25 nm-sized octahedral Fe₃O₄–Au hybrids showed the best characteristics for MRI and MPH. We obtained an extraordinarily high r₂relaxivity of 495 mM⁻¹·s⁻¹ along with a specific loss power of 617 W·g_{Fe}⁻¹. The functional *in vitro* hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe₃O₄–Au hybrid nanomaterials, respectively [1].

As a next step, Fe₃O₄-Au hybrids were conjugated with two fluorescent dyes or the combination of drug and dye allowing the simultaneous tracking of the nanoparticle vehicle and the drug cargo *in vitro* and *in vivo*. The delivery to tumors and payload release were demonstrated in real time by intravital microscopy [2]. Replacing the dyes by cell-specific molecules and drugs makes the Fe₃O₄-Au hybrids a unique all-in-one platform for theranostics.

References

[1] M. V. Efremova et al., Beilstein J. Nanotechnol, 2018, 9 (1), 2684–2699.

[2] M. V. Efremova et al., Sci. Rep., 2018, 8 (1), 11295.