_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УЛК 548.736

ОСОБЕННОСТИ СТРОЕНИЯ СМЕШАННЫХ КРИСТАЛЛОВ Zn_xMg_{1-x}WO₄

© 2020 г. Н. Р. Крутяк^{1,*}, Д. А. Спасский², Н. И. Сорокина³, И. А. Верин³, И. А. Тупицына⁴, А. М. Дубовик⁴

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия
 ² Институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, Москва, Россия
 ³ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия
 ⁴ Институт сцинтилляционных материалов НАН Украины, Харьков, Украина

*E-mail: kruna@mail.ru
Поступила в редакцию 02.05.2020 г.
После доработки 08.07.2020 г.
Принята к публикации 09.07.2020 г.

Исследованы особенности строения серии смешанных кристаллов $Zn_xMg_{1-x}WO_4$ (x=0,0.26,0.41,0.68,1) с использованием рентгеноструктурного дифракционного анализа, спектроскопии комбинационного рассеяния света, а также изучены люминесцентные свойства выращенных кристаллов. Установлена зависимость объема элементарной ячейки от концентрации x катиона замещения. Показано, что геометрические параметры WO_6 -октаэдров не зависят от соотношения концентраций атомов Zn и Mg в кристаллах. Установлена согласованность между люминесцентными и структурными свойствами кристаллов $Zn_xMg_{1-x}WO_4$.

DOI: 10.31857/S002347612006020X

ВВЕДЕНИЕ

В последние годы большинство новых сцинтилляционных материалов относятся к классу смешанных кристаллов (или твердых растворов замещения) [1, 2]. По сравнению со стехиометрическими смешанные кристаллы с концентрацией компонентов в диапазоне 20—80% часто имеют улучшенные сцинтилляционные характеристики, такие как сцинтилляционный выход и энергетическое разрешение, а также для них типичен меньший вклад медленных компонент затухания послесвечения [3].

Увеличение светового выхода примерно в 2 раза, зарегистрированное в Zn_xMg_{1-x}WO₄ по сравнению с их составляющими компонентами, делает эти смешанные кристаллы перспективными сцинтилляционными материалами [4]. Считают, что эффект увеличения светового выхода связан с разупорядочением подрешетки катионов замещения, которое ограничивает длину термализации носителей заряда. Разупорядочение структуры Zn_xMg_{1-x}WO₄ также проявляется в увеличении количества неэквивалентных дырочных центров захвата в смешанных кристаллах [5]. Для нанокристаллов $Zn_xMg_{1-x}WO_4$ также наблюдалось увеличение интенсивности собственной люминесценции по сравнению с монокристаллами, что может быть связано с уменьшением как длины термализации электронно-дырочных пар, так и концентрации электронных ловушек, которые возникают при образовании кислородных вакансий в результате замещения катиона [6].

Таким образом, особенности структуры смешанных кристаллов существенно влияют на релаксацию носителей заряда и определяют их оптические, люминесцентные и сцинтилляционные свойства. Целью настоящей работы было исследование особенностей строения монокристаллов $\mathbf{Zn}_x\mathbf{Mg}_{1-x}\mathbf{WO}_4$ с использованием методов рентгеноструктурного анализа, а также спектроскопии комбинационного рассеяния света и люминесцентной спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Серия смешанных кристаллов $Zn_xMg_{1-x}WO_4$ (x=0,0.3,0.5,0.7,1 в шихте) выращена методом Чохральского с использованием высокочастотного нагрева. В качестве сырья брали исходные оксиды ZnO (99.995%), MgO (99.95%) и WO₃ (99.995%). Кристалл MgWO₄ выращен из раствора-расплава путем вытягивания на вращающуюся затравку из платинового тигля.

Для проведения рентгеноструктурного анализа выбирали по одному монокристаллическому образцу каждого состава, для которого профили дифракционных пиков и сходимость интенсивностей эквивалентных по симметрии дифракци-

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структур соединений $Zn_{v}Mg_{1-v}WO_{4}$

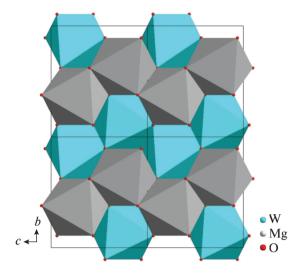
Химическая	ZnWO ₄	Mg _{0.32} Zn _{0.68} WO ₄	$Mg_{0.59}Zn_{0.41}WO_4$	$Mg_{0.74}Zn_{0.26}WO_4$	$MgWO_4$		
формула	(I)	(II)	(III)	(IV)	(V)		
Пр. гр., Z	P2/c, 2						
$a,b,c, ext{Å}$	4.6891(1),	4.6870(1),	4.6874(3),	4.6879(2),	4.6881(1),		
	5.7164(2),	5.7052(1),	5.6908(3),	5.6878(1),	5.6749(1),		
	4.9248(1)	4.9240(1)	4.9282(3)	4.9249(1)	4.9274(1)		
β, град	90.653(2)	90.597(2)	90.579(6)	90.610(2)	90.700(2)		
V, Å	132.000(6)	131.662(5)	131.453(14)	131.309(7)	131.081(4)		
$M_{\rm r}$	313.2	299.9	289.1	282.9	272.2		
D_x , г/см ³	7.881	7.565	7.303	7.155	6.895		
Излучение; λ, Å	MoK_{α} ; 0.71069						
μ , mm ⁻¹	52.41	49.88	48.36	46.54	44.14		
<i>T</i> , K	293						
Дифрактометр	Xcalibur S						
Тип сканирования	ω						
Размер образца, мм	$0.31 \times 0.20 \times 0.15$	$0.31 \times 0.21 \times 0.20$	$0.20 \times 0.16 \times 0.15$	$0.28 \times 0.23 \times 0.10$	$0.28 \times 0.24 \times 0.20$		
T_{\min}, T_{\max}	0.004, 0.086	0.005, 0.074	0.009, 0.092	0.008, 0.118	0.009, 0.096		
$\theta_{ m max}$, град	45.0						
Пределы h, k, l	$-12 \le h \le 12,$	$-12 \le h \le 12,$	$-11 \le h \le 12,$	$-12 \le h \le 11,$	$-12 \le h \le 12,$		
	$-15 \le k \le 15,$	$-15 \le k \le 15,$	$-15 \le k \le 15,$	$-15 \le k \le 15,$	$-15 \le k \le 15,$		
	$-12 \le l \le 13$	$-12 \le l \le 13$	$-13 \le l \le 13$	$-13 \le l \le 13$	$-13 \le l \le 13$		
Число отражений:	13 524/1871,	13800/1679,	13630/1797,	13732/1671,	13826/1366,		
измеренных/незави-	0.064/1833	0.076/1665	0.060/1676	0.055/1619	0.073/1352		
симых, $R_{\text{ycp}}/c I > 3\sigma(I)$			_	_			
R/wR	0.0176/0.0170	0.0174/0.0173	0.0160/0.0158	0.0136/0.0137	0.0121/0.0123		
S	2.87	2.95	2.97	2.93	2.98		
$\Delta \rho_{min}/\Delta \rho_{max}$, $\Im/Å^3$	-1.38/1.42	-1.47/1.38	-1.33/1.16	-0.90/0.91	-0.42/0.33		
Программы	CrysAlis [7], Jana2006 [8]						

онных отражений оказались наилучшими. Полный дифракционный эксперимент для пяти монокристаллов $Zn_xMg_{1-x}WO_4$ разных составов был проведен при комнатной температуре на дифрактометре Xcalibur S производства фирмы Oxford Difffraction, оборудованном двухкоординатным ССО-детектором. Интегрирование пиков, LPкоррекцию и учет поглощения по форме образца проводили по программе, входящей в пакет математического обеспечения дифрактометров Crys-Alis CCD [7]. Все остальные кристаллографические расчеты (ввод поправки на аномальное рассеяние, усреднение эквивалентных по симметрии отражений) осуществляли с использованием комплекса программ Jana2006 [8]. Модель атомной структуры кристаллов была получена методом Charge flipping по программе SUPERFLIP, входящей в состав комплекса программ Jana 2006. Уточнение структурных параметров кристаллов проведено методом наименьших квадратов в полноматричном варианте. Основные кристаллографические параметры и результаты уточнения структуры изученных монокристаллов приведены в табл. 1, основные величины межатомных расстояний — в табл. 2. Информация об исследованных структурах депонирована в Кембриджский банк структурных данных (ССDС № 2021031, 2020961, 2020948, 2020945, 2021030).

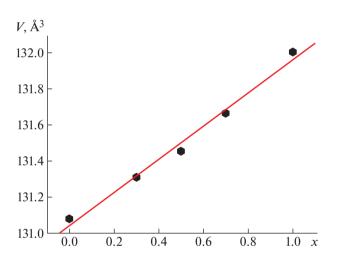
Спектры комбинационного рассеяния измеряли с использованием микроскопа Renishaw in-Via на длине волны 514 нм. Спектры фотолюминесценции получены на лабораторной установке ОФПКЭ НИИЯФ МГУ на основе спектрографа LOT-Oriel MS-257, работающего в режиме спектрографа и ССD-детектора Marconi. Источником возбуждения служила ксеноновая лампа мощностью 150 Вт. Все полученные спектры люминесценции нормировали на аппаратную функцию системы регистрации.

Расстояния	I	II	III	IV	V
W1-O1 × 2	1.906(2)	1.907(2)	1.905(2)	1.905(2)	1.904(2)
$-O1 \times 2$	2.136(2)	2.136(2)	2.135(2)	2.136(2)	2.133(2)
$-O2 \times 2$	1.786(2)	1.786(2)	1.790(2)	1.783(2)	1.788(2)
Среднее	1.943	1.943	1.943	1.941	1.942
$Zn,Mg-O1 \times 2$	2.026(2)	2.016(2)	2.024(2)	2.026(2)	2.044(2)
$-O2 \times 2$	2.089(2)	2.088(2)	2.084(2)	2.086(2)	2.081(2)
$-O2 \times 2$	2.227(2)	2.223(2)	2.208(2)	2.199(2)	2.169(2)
Срелнее	2.114	2.109	2.105	2.103	2.098

Таблица 2. Межатомные расстояния в структурах монокристаллов $ZnWO_4$ (I), $Mg_{0.32}Zn_{0.68}WO_4$ (II), $Mg_{0.59}Zn_{0.41}WO_4$ (III), $Mg_{0.74}Zn_{0.26}WO_4$ (IV) и $MgWO_4$ (V)

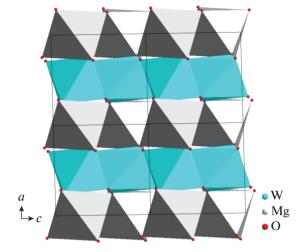

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

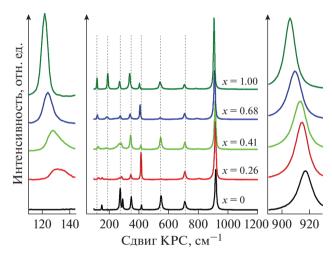
Рентгеноструктурные исследования. Поиск элементарных ячеек в исследуемых монокристаллах завершился выбором моноклинных ячеек с параметрами, указанными в табл. 1, что позволило проиндицировать более 70% измеренных рефлексов. Таким образом, установлено, что каждый смешанный кристалл $Zn_xMg_{1-x}WO_4$ не является смесью двух компонентов, а обладает оригинальной кристаллической структурой.


Уточнение структурных параметров серии смешанных монокристаллов $Zn_xMg_{1-x}WO_4$ (x == 0, 0.26, 0.41, 0.68, 1) проведено в анизотропном приближении тепловых смещений атомов в рамках пр. гр. P2/c (Z=2), установленной ранее [9–12]. Элементарная ячейка решетки моноклинной модификации монокристаллов $Zn_xMg_{1-x}WO_4$ содержит четыре независимых атома – один Mg(Zn), один W и два О. На этапе уточнения их координат и тепловых параметров в анизотропном приближении были уточнены значения заселенности атомами Zn, Mg, W и O своих кристаллографических позиций. Уточнение заселенности позиции атомами Zn и Mg осуществлялось в предположении, что позиция заселена совместно атомами цинка и магния на 100%. На картах разностной электронной плотности, построенных вблизи позиций атомов W и O для всех пяти образцов, выявлено много неинтерпретируемых пиков остаточной электронной плотности (табл. 1). Следует отметить, что минимальное количество таких пиков выявлено для монокристалла MgWO₄. Атомы W в исследуемых структурах находятся в достаточно искаженных октаэдрах (табл. 2), поэтому вполне может быть, что атомы W и окружающие их атомы кислорода разупорядочены в структуре по нескольким позициям. Однако уточнить распределение атомов W и O по нескольким близко расположенным позициям не представляется возможным из-за сильной корреляции структурных параметров. Также метод рентгеноструктурного анализа не позволил однозначно определить наличие вакансий в позициях атомов кислорода в структуре, содержащей такие тяжелые атомы, как вольфрам. Полученные в результате уточнения заселенности позиций атомов Zn и Mg в структурах химические формулы исследованных монокристаллов приведены в табл. 1.

Структура исследуемой моноклинной модимонокристаллов смешанных $Zn_xMg_{1-x}WO_4$ (x = 0, 0.26, 0.41, 0.68, 1) составлена из WO_6 - и $Mg(Zn)O_6$ -октаэдров (табл. 2, рис. 1, 2). Октаэдры с катионами одного сорта образуют зигзагообразные цепочки в направлении [001] (рис. 1). Изолированные цепочки WO₆-октаэдров, соединенных ребрами, образуют слои, перпендикулярные [100], и чередуются со слоями $Zn(Mg)O_6$ -октаэдров (рис. 2). Атом W окружен атомами O1 на расстояниях \sim 1.905 и 2.135 Å и атомами O2 на расстоянии ~1.788 Å. Наиболее удаленные от атома W атомы О1 принадлежат одновременно двум анионным комплексам WO_6^{6-} , являясь так называемыми мостиковыми ионами кислорода. Как следует из анализа табл. 2, внедрение в структуру MgWO₄ атомов цинка не приводит к каким-либо серьезным изменениям в окружении катионов вольфрама. Ощутимые изменения в структуре $Zn_xMg_{1-x}WO_4$, как и следовало ожидать, наблюдаются в $Mg(Zn)O_6$ -октаэдрах – с внедрением в структуру MgWO₄ атомов цинка увеличивается среднее межатомное расстояние (Mg,Zn)-О, что коррелирует с величинами ионных радиусов катионов ${\rm Zn^{2+}}$ (0.74 Å) и ${\rm Mg^{2+}}$ (0.66 Å) [13]. Изменения в $Mg(Zn)O_6$ -октаэдрах приводят к увеличению объема элементарной ячейки с ростом концентрации атомов цинка в кристалле (табл. 1, рис. 3).

Спектроскопия комбинационного рассеяния света. Спектроскопия комбинационного рассеяния света (**KPC**) также позволяет получить информацию об изменении состава твердых растворов. Спектры смешанных кристаллов $Zn_xMg_{1-x}WO_4$ (x=0,0.26,0.41,0.68,1) представлены на рис. 4.


Рис. 1. Проекция структуры ${\rm MgWO_4}$ на плоскость (100).


Рис. 3. Зависимость объема элементарной ячейки кристаллов $\mathrm{Zn}_x\mathrm{Mg}_{1-x}\mathrm{WO}_4$ от содержания x.

Согласно [14—16] группа полос от 300 до 900 см $^{-1}$ соответствует валентным колебаниям связей W—O в группе WO $_6$, тогда как группа низкочастотных полос до 300 см $^{-1}$ приписывается колебаниям с участием катионов цинка и магния. Таким образом, наблюдаемые в спектре ZnWO $_4$ полосы с частотами 906 (A_g), 786 (B_g), 708 (A_g), 545 (A_g), 406 (A_g) и 340 (A_g) см $^{-1}$ являются внутренними модами, а 194 (A_g) и 122 (A_g) см $^{-1}$ — внешними модами. В случае MgWO $_4$ внутренними модами выступают моды A_g при 353, 420, 551, 710 и 917 см $^{-1}$, а внешними — при 154, 277 и 294 см $^{-1}$.

Рассмотрим поведение полос КРС, соответствующих внутренней и внешней модам, в зависимости от концентрации катиона замещения в

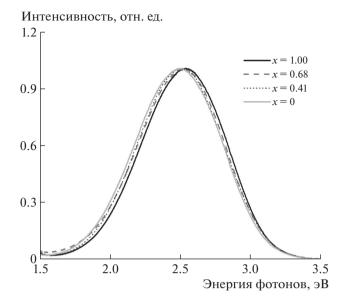

Рис. 2. Проекция структуры ${\rm MgWO_4}$ на плоскость (010).

Рис. 4. Спектры КРС кристаллов $\mathrm{Zn}_x\mathrm{Mg}_{1-x}\mathrm{WO}_4$. Изменение полос при ~120 (слева) и 910 см $^{-1}$ (справа) в увеличенном масштабе.

 $Zn_xMg_{1-x}WO_4$. Наиболее интенсивная полоса КРС для всех кристаллов наблюдается при ~910 см⁻¹, типичная для вольфрамитов и соответствует симметричным внутренним колебаниям октаэдра WO_6 [16]. Полоса смещается в низкочастотную область при увеличении x от нуля до единицы (рис. 4, правая панель). Аналогичное поведение характерно и для моды при ~120 см⁻¹ (рис. 4, левая панель), которая связана с внешними колебаниями при участии катиона Zn (в случае $MgWO_4$ мода отсутствует).

Наблюдаемый сдвиг полос согласуется с увеличением объема кристаллической решетки по мере изменения *х*. Профиль полосы, соответствующей внутренней моде, не зависит от концентра-

Рис. 5. Спектры люминесценции кристаллов ${\rm Zn_xMg_{1-x}WO_4}$ при ${\rm \lambda_{Bo36}}$ = 300 нм, T = 300 К.

ции катионов (правая панель рис. 4). Полоса, соответствующая внешней моде, появляется и существенно сужается с увеличением x, что отражает постепенное замещение катионов Мд катионами Zn (левая панель рис. 4). Представленные результаты также указывают, что каждый из кристаллов $Zn_xMg_{1-x}WO_4$ обладает своей оригинальной структурой и не может быть рассмотрен как смесь макроскопических включений составляющих твердых растворов кристаллов ZnWO₄ и MgWO₄. Это утверждение основывается на наблюдаемом постепенном смещении максимумов колебательных мод. Если бы смешанный кристалл представлял собой смесь фаз (т.е. ZnWO₄ и MgWO₄), можно было бы ожидать присутствия двух пиков, характерных для конечных составов, которые проявлялись бы с относительной интенсивностью, заданной значением x, как это наблюдалось в случае $CdW_{1-x}Mo_xO_4$ [17].

Люминесцентная спектроскопия. В спектрах люминесценции $Zn_xMg_{1-x}WO_4$ (рис. 5) наблюдалась одна широкая полоса при 2.5 эВ (495 нм), которая связана с излучательным распадом экситонов, автолокализованных на комплексах WO_6^{6-} [18]. Положение максимума и форма полосы практически не зависят от значения x. Максимум полосы смещается лишь на 0.04 эВ в высокоэнергетическую область с увеличением x от нуля до единицы. Слабая зависимость фотолюминесценции исследованных смешанных кристаллов от концентрации катионов хорошо согласуется с результатами рентгеноструктурных исследований, так как внедрение в структуру $MgWO_4$ атомов цинка не приводит к каким-либо серьезным из-

менениям в геометрии комплексов WO_6^{6-} , которые являются центрами свечения.

выводы

По данным рентгеноструктурного анализа установлено, что все кристаллы $Zn_xMg_{1-x}WO_4$ (x = 0, 0.26, 0.41, 0.68, 1) кристаллизуются в структурном типе вольфрамита. Анализ особенностей их строения выявил зависимость объема элементарных ячеек от соотношения атомов Zn и Mg в кристалле. Объем увеличивается с ростом концентрации атомов цинка в кристалле. Внедрение в структуру MgWO₄ атомов цинка не приводит к каким-либо серьезным изменениям в окружении катионов вольфрама. Показано, что атомы W находятся в искаженных кислородных октаэдрах. В спектрах люминесценции $Zn_xMg_{1-x}WO_4$ наблюдалась одна широкая полоса, связанная с излучательным распадом экситонов, автолокализованных на комплексах WO₆. Слабая зависимость положения максимума полосы люминесценции от концентрации катионов замещения Zn и Mg хорошо согласуется с незначительными изменениями в окружении катионов вольфрама с ростом концентрации атомов Zn в структуре MgWO₄.

Авторы выражают благодарнсть В. Нагирному за измерение спектров КРС.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Минобрнауки РФ (проект RFMEFI62119X0035) в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части изучения особенностей строения кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lecoq P., Gektin A., Korzhik M. Inorganic Scintillators for Detector Systems. Physical Principles and Crystal Engineering. Cham: Springer International Publishing, 2017. 408 p.
- Sidletskiy O. // Phys. Status Solidi. A. 2018. V. 215. P. 1701034.
- 3. Gektin A.V., Belsky A.N., Vasilev A.N. // IEEE Trans. Nucl. Sci. 2014. V. 61. P. 262.
- 4. Spassky D., Omelkov S., Mägi H. et al. // Opt. Mater. 2014. V. 36. P. 1660.
- Krutyak N., Spassky D., Nagirnyi V. et al. // Opt. Mater. 2019. V. 96. P. 109362.
- 6. *Malyukin Y., Seminko V., Maksimchuk P. et al.* // Opt. Mater. 2019. V. 98. P. 109455.
- Rigaku Oxford Diffraction. CrysAlis PRO Software System. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. 2018.
- 8. *Petricek V., Dusek M., Palatinus L.* // Z. Kristallogr. 2014. B. 229. S. 345.
- 9. Keeling R.O. // Acta Cryst. 1957. V. 10. P. 209.

- 10. Лимаренко Л.Н., Носенко А.Е., Пашковский М.В., Футорский Д.Л. Влияние структурных дефектов на физические свойства вольфраматов. Львов: Вища школа, 1978. 160 с.
- 11. *Morell D.J.*, *Cantrell J.S.*, *Chang L.L.Y.* // J. Am. Ceram. Soc. 1980. V. 63. P. 261.
- Schofield P.F., Knight K.S., Cressey G. // J. Mater. Sci. 1996. V. 31. P. 2873.
- 13. *Wyckoff R.W.G.* Crystal structures. 2nd Edition. New York; London; Sydney: Wiley-Interscience Publishers, 1965. V. 3. 981 p.
- Liu Y., Wang H., Chen G. et al. // J. Appl. Phys. 1988.
 V. 64. P. 4651.
- 15. Ruiz-Fuertes J., Errandonea D., López-Moreno S. et al. // Phys. Rev. B. 2011. V. 83. P. 214112.
- 16. *Fomichev V.V., Kondratov O.I.* // Spectrochim. Acta. A. 1994. V. 50. P. 1113.
- 17. Wang Y., Wang J., Geng L. et al. // J. Solid State Chem. 2018. V. 266. P. 74.
- Lammers M.J.J., Blasse G., Robertson D.S. // Phys. Status Solidi. A. 1981. V. 63. P. 569.