СЕКЦИЯ 3. ТЕОРИЯ И ПРАКТИКА УПРАВЛЕНИЯ БАЛАНСОМ УГЛЕРОДА ЛЕСОВ

МОДЕЛЬНЫЙ АНАЛИЗ ВЛИЯНИЯ ИЗМЕНЕНИЙ ВОЗРАСТОВ РУБКИ НА ВОЗРАСТНУЮ СТРУКТУРУ И УГЛЕРОДНЫЙ БЮДЖЕТ ЛЕСОВ РОССИИ

Грабовский В.И.¹, Замолодчиков Д.Г.^{1,2}
¹ ЦЭПЛ РАН; ² МГУ имени М.В. Ломоносова, г. Москва

Снижение возраста рубки, при наличии соответствующих технологий обработки сырья, экономически выгодно, поскольку увеличивает скорость оборота древесины. Оптимальным возрастом рубки с этих позиций будет момент, когда текущий прирост древостоя начинает сокращаться. Обычно это сокращение наступает значительно раньше, чем достигаются возрасты рубки, принятые в российском лесном хозяйстве. Задачей данного исследования была оценка эффекта снижения возрастов рубки на углеродный бюджет и возрастную структуру лесов России в дифференциации по субъектам РФ при прогнозном периоде 40 лет. Были рассмотрены 3 сценария возрастов рубок, сохраняющие объем рубок 2014 г. (203 млн. м³) для каждого года прогнозного периода: 1) рубки древостоев старше 100 лет (условно действующий режим); 2) рубки древостоев только в возрасте 60-99 лет; 3) только в возрасте 80-99 лет. Исходные данные по породно-возрастному составу лесов в субъектах РФ были взяты из базы Государственного лесного реестра по состоянию на 2013 год.

На основе прогнозного расчета указанных сценариев рубок в программной среде CBM-CFS3 (Kurz et al., 2009) показано, что снижение возраста рубки:

- 1) не приведет к существенным изменениям углеродного бюджета в ближайшие 40 лет. При всех сценариях рубок сток углерода в леса РФ будет постепенно сокращаться от 180 млн. т в год до 50 млн. т в год к концу 50-х годов текущего столетия;
- 2) создаст более равномерное возрастное распределение древостоев. При действующем режиме лесопользования (сценарий 1) к концу прогнозного периода произойдет значительное сокращение площадей лесов 120-199 летнего возраста, в то время как при рубках по сценариям 2 и 3 значимого уменьшения доли какой-либо из возрастных групп не предвидится;
- 3) увеличит долю старовозрастных лесов, предоставляющих наиболее ценные экосистемные услуги.

Литература

1. Kurz W.A., Dymond C.C., White T.M., Stinson G., Shaw C.H., Rampley G.J., Smyth C.E., Simpson B.N., Neilson E.T., Trofymow J.A., Metsaranta J.M., Apps M.J. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards // Ecological Modelling. 2009. V. 220 (4). P. 480-504.

СО₂-ЭМИССИОННАЯ АКТИВНОСТЬ ДРЕВЕСНОГО ДЕБРИСА НА РАЗНЫХ СТАДИЯХ ЕГО БИОЛОГИЧЕСКОГО РАЗЛОЖЕНИЯ

Диярова Д.К. 1 , Гитарский М.Л. 2 , Мухин В.А. 1 , Замолодчиков Д.Г. 3,4 , Грабар В.А. 2 , Иващенко А.И. 4 ИЭРиЖ УрО РАН, г. Екатеринбург; 2 ИГКЭ Росгидромета и РАН, г. Москва; 3 ЦЭПЛ РАН, г. Москва; 4 МГУ имени М.В. Ломоносова, г. Москва

Леса – это экосистемы, в которых более 90% биомассы продуцентов, представленной преимущественно древесиной, утилизируется сапротрофными организмами (Одум, 1975). В основе биологического разложения древесного дебриса лежит процесс окислительной конверсии органического углерода в диоксид, поступающий в атмосферный обменный пул CO_2 . Данный процесс является одним из биотических регуляторов газового состава атмосферы, климата и в настоящее время ему уделяется большое внимание.

Разложение древесных остатков — длительный процесс (Мухин, 1993; Мухин, Воронин, 2007) глубокого анатомо-морфологическиго и физико-химического преобразования. Существуют различные схемы и шкалы стадий разложения древесного дебриса. Они основываются на особенностях видового состава деструкторов, прочности древесины, последовательности использования деструкторами химических компонентов древесины. В последнее время широкой известностью пользуется шкала, позволяющая визуально разделять древесные остатки на 5 категорий, стадий по степени их сохранности (Тарасов, 2000). Однако данных, характеризующих связь между выделяемыми по данному принципу стадиями разложения древесного дебриса и его СО₂-эмиссионной активностью, практически нет.

В июле – августе 2016 года в южнотаежных лесах Валдайской возвышенности (Национальный парк «Валдайский», 110-летний ельник мелкотравно-зеленомошный, 9E1C, средний диаметр 37 см, полнота 0.4) был проведен цикл работ по оценке эмиссии диоксида углерода крупномерным еловым (*Picea obovata*) дебрисом на II-V стадиях биологического разложения. CO_2 -эмиссионную активность оценивали в мг CO_2 /дм 2 -ч с помощью портативного инфракрасного газоанализатора AZ 7752 (AZInstrument, Тайвань), с разрешением 1 ppm.

Как показывают полученные данные, древесина III стадии разложения значимо отличается более высокой эмиссией CO_2 , чем древесина II стадии разложения: 0.36 ± 0.05 против 0.08 ± 0.02 мг CO_2 /дм²·ч. Значимые (p<0.05) различия по CO_2 -эмиссионной активности регистрируются и между древесиной II и IV (0.66 ± 0.19 мг CO_2 /дм²·ч), а также V (1.21 ± 0.31 мг CO_2 /дм²·ч) стадиями разложения. CO_2 -эмиссионная активность древесного дебриса тесно и положительно коррелирует со стадиями его разложения (коэффициент корреляции Пирсона 0.97) и с высокой степенью аппроксимации ($R^2 = 0.94$) описывается уравнением линейной регрессии: y = 0.315x - 0.455.

Если I стадия разложения связана с колонизацией древесных остатков грибами, то II и III – с деструкцией лигноцеллюлозного комплекса. На II, и III стадиях разложения наиболее активным выделением диоксида углерода отличаются периферийные участки валежных стволов в слое 5-6 см. Так, на II стадии разложения CO_2 -эмиссионная активность в периферийных участках древесины (1.35 \pm 0.10 мг CO_2 /дм 2 ·ч) может в 34 раза превышать таковую в более глубоких слоях (0.04 \pm 0.01мг CO_2 /дм 2 ·ч). На III стадии эти различия либо существенно сокращаются (наблюдались четырехкратные), либо отсутствуют.

На IV и V стадиях разложения древесные остатки представлены продуктами глубокой биохимической конверсии, вовлеченными в процессы гумификации (Мухин, 1993). Их высокая СО₂-эмиссионная активность (в 8-15 раз превышает таковую на II стадии), скорее всего, объясняется тем, что они становятся частью органического вещества почв с высоким уровнем дыхательной активности.

Таким образом, в южно-таежных ельниках европейской части России между визуально выделяемыми стадиями разложения елового дебриса и его ${\rm CO_2}$ -эмиссионной активностью существует выраженная положительная связь. Эмиссионная активность возрастает в процессе разложения, что объясняется, скорее всего, увеличением микробиологической активности по мере разложения древесины.

Работа выполнена при поддержке РФФИ (проект № 15-04-06881), УрО РАН (проект № 15-12-4-27) и РНФ (проект № 16-17-00123).

Литература

- 1. *Мухин В.А*. Биота ксилотрофных базидиомицетов Западно-Сибирской равнины. Екатеринбург: УИФ «Наука», 1993. 230 с.
- 2. *Мухин В.А., Воронин П.Ю.* Микогенное разложение древесины и эмиссия углерода в лесных экосистемах // Экология. 2007. № 1. С. 24-29.
- 3. *Одум Е.* Основы экологии. М.: Мир, 1975. 740 с.
- 4. *Тарасов М.Е.* Роль крупного древесного детрита в балансе углерода лесных экосистем Ленинградской области. Автореф. дисс. ... канд. биол. наук. СПб.: СПбНИИЛХ, 2000. 21 с.

ИЗМЕНЕНИЯ УГЛЕРОДНОГО БЮДЖЕТА ЛЕСНЫХ ЭКОСИСТЕМ ПОД ДЕЙСТВИЕМ НАРУШЕНИЙ, ВЫЗВАННЫХ ЭКСТРЕМАЛЬНЫМИ ПОГОДНЫМИ ЯВЛЕНИЯМИ

Замолодчиков Д.Г.^{1, 2}, Честных О.В.¹, Петухов И.Н.³, Каганов В.В.² МГУ имени М.В. Ломоносова, г. Москва; ² ЦЭПЛ РАН, г. Москва; ³ КГУ им. Н.А. Некрасова, г. Кострома

В условиях нарастания глобальных изменений климата увеличивается частота возникновения экстремальных погодных ситуаций, в частности, засух, наводнений, ураганных ветров. Эти ситуации негативно сказываются на состоянии лесов, вызывая их гибель либо ослабление, стимулируя вспышки вредителей и болезней. Целью работы была оценка последствий воздействия экстремальной погоды на углеродный бюджет лесов средней полосы Европейской России.

Выполнены полевые оценки запасов углерода на климатогенно нарушенных (усыхания, ветровалы) и контрольных лесных участках в Новгородской, Московской, Тульской, Костромской, Архангельской и Брянской областях. Нарушение переводит углерод из живой фитомассы в мертвую древесину, что приводит к преобладанию эмиссии углерода от разложения над его поглощением при фотосинтезе. За год после нарушения лес теряет около 16% запаса углерода (примерно по 30 т углерода с 1 га). Если же усохший либо ветровальный участок попадает под расчистку (санитарная рубка), то потери углерода составляют 89% (около 165 т углерода с га).