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Abstract 

A semi-analytic solution for plane strain bending under tension of a sheet is proposed for elastic-plastic, isotropic, incompressible, strain 
hardening material with damage evolution at large strains using a Lagrangian coordinate system. Numerical treatment is only necessary to 
evaluate ordinary integrals and solve transcendental equations. No restriction is imposed on the hardening law. Quite a general uncoupled 
continuum damage evolution model independent of the third invariant of the stress tensor is used. It is shown that the solution for the model 
adopted is facilitated by choosing the equivalent plastic strain as one of the independent variables. An illustrative example is provided for Swift’s 
hardening law and two widely used damage evolution equations. 
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1. Introduction 

Ductile fracture is one of the most important limiting factors 
in metal forming. Several ductile fracture theories are available 
in the literature. The present paper deals with uncoupled 
continuum damage mechanics models that are independent of 
the third invariant of the stress tensor. Overviews of such 
models have been provided in [1, 2].  

All sheet metal forming processes incorporate some bending 
[3]. Several solutions for plane strain pure bending are 
available in the literature. A comprehensive overview of such 
solutions has been given in [4]. A semi-analytic solution for 
plane strain bending under tension for elastic/plastic, strain 
hardening material has been found in [5] assuming that the 
material is incompressible. A numerical method has been 

developed in [6] to determine the through-thickness 
distribution of damage in the process of plane strain pure 
bending of rigid/plastic, strain hardening material. The damage 
evolution model proposed in [7] has been adopted. The present 
paper provides a semi-analytic solution for the process of plane 
strain bending under tension. Quite a general uncoupled 
damage evolution model is adopted. It is shown that the 
solution is facilitated if the equivalent plastic strain is used as 
one of the independent variables.  

2. Material model 

The Cauchy stress and Hencky strain are adopted in the 
present paper. The classical Eulerian theory of finite 
elastoplasticity is used. A description of the theory can be 

Available online at www.sciencedirect.com

ScienceDirect 
Procedia Manufacturing 00 (2019) 000–000 

    www.elsevier.com/locate/procedia 

2351-9789 © 2020 The Authors. Published by Elsevier B.V.  
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)                                                                                           
Peer-review under responsibility of the scientific committee of the 18th International Conference Metal Forming 2020 Project. 

18th International Conference Metal Forming 2020 Project 

Damage evolution in the process of plane strain bending under tension at 
large strains 

 Sergei Alexandrova,b,c, Elena Lyaminad,e,*,  
aSchool of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 

bIshlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow 119526, Russia 
cFederal State Autonomous Educational Institution of Higher Education “South Ural State University (national research university), Chelyabinsk 454080, 

Russia
dDivision of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, 19 Nguyen Huu Tho St, Tan Phong 

Ward, Dist 7, Ho Chi Minh City, 700000, Vietnam 
eFaculty of Civil Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho St, Tan Phong Ward, Dist 7, Ho Chi Minh City, 700000, Vietnam 

* Corresponding author. E-mail address: lyaminaea@tdtu.edu.vn 

Abstract 

A semi-analytic solution for plane strain bending under tension of a sheet is proposed for elastic-plastic, isotropic, incompressible, strain 
hardening material with damage evolution at large strains using a Lagrangian coordinate system. Numerical treatment is only necessary to 
evaluate ordinary integrals and solve transcendental equations. No restriction is imposed on the hardening law. Quite a general uncoupled 
continuum damage evolution model independent of the third invariant of the stress tensor is used. It is shown that the solution for the model 
adopted is facilitated by choosing the equivalent plastic strain as one of the independent variables. An illustrative example is provided for Swift’s 
hardening law and two widely used damage evolution equations. 

© 2020 The Authors. Published by Elsevier B.V.  
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 18th International Conference Metal Forming 2020 Project. 

Keywords: Bending; damage; large strain; semi-analytic solution 

1. Introduction 

Ductile fracture is one of the most important limiting factors 
in metal forming. Several ductile fracture theories are available 
in the literature. The present paper deals with uncoupled 
continuum damage mechanics models that are independent of 
the third invariant of the stress tensor. Overviews of such 
models have been provided in [1, 2].  

All sheet metal forming processes incorporate some bending 
[3]. Several solutions for plane strain pure bending are 
available in the literature. A comprehensive overview of such 
solutions has been given in [4]. A semi-analytic solution for 
plane strain bending under tension for elastic/plastic, strain 
hardening material has been found in [5] assuming that the 
material is incompressible. A numerical method has been 

developed in [6] to determine the through-thickness 
distribution of damage in the process of plane strain pure 
bending of rigid/plastic, strain hardening material. The damage 
evolution model proposed in [7] has been adopted. The present 
paper provides a semi-analytic solution for the process of plane 
strain bending under tension. Quite a general uncoupled 
damage evolution model is adopted. It is shown that the 
solution is facilitated if the equivalent plastic strain is used as 
one of the independent variables.  

2. Material model 

The Cauchy stress and Hencky strain are adopted in the 
present paper. The classical Eulerian theory of finite 
elastoplasticity is used. A description of the theory can be 

Available online at www.sciencedirect.com

ScienceDirect 
Procedia Manufacturing 00 (2019) 000–000 

    www.elsevier.com/locate/procedia 

2351-9789 © 2020 The Authors. Published by Elsevier B.V.  
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)                                                                                           
Peer-review under responsibility of the scientific committee of the 18th International Conference Metal Forming 2020 Project. 

18th International Conference Metal Forming 2020 Project 

Damage evolution in the process of plane strain bending under tension at 
large strains 

 Sergei Alexandrova,b,c, Elena Lyaminad,e,*,  
aSchool of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 

bIshlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow 119526, Russia 
cFederal State Autonomous Educational Institution of Higher Education “South Ural State University (national research university), Chelyabinsk 454080, 

Russia
dDivision of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, 19 Nguyen Huu Tho St, Tan Phong 

Ward, Dist 7, Ho Chi Minh City, 700000, Vietnam 
eFaculty of Civil Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho St, Tan Phong Ward, Dist 7, Ho Chi Minh City, 700000, Vietnam 

* Corresponding author. E-mail address: lyaminaea@tdtu.edu.vn 

Abstract 

A semi-analytic solution for plane strain bending under tension of a sheet is proposed for elastic-plastic, isotropic, incompressible, strain 
hardening material with damage evolution at large strains using a Lagrangian coordinate system. Numerical treatment is only necessary to 
evaluate ordinary integrals and solve transcendental equations. No restriction is imposed on the hardening law. Quite a general uncoupled 
continuum damage evolution model independent of the third invariant of the stress tensor is used. It is shown that the solution for the model 
adopted is facilitated by choosing the equivalent plastic strain as one of the independent variables. An illustrative example is provided for Swift’s 
hardening law and two widely used damage evolution equations. 

© 2020 The Authors. Published by Elsevier B.V.  
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 18th International Conference Metal Forming 2020 Project. 

Keywords: Bending; damage; large strain; semi-analytic solution 

1. Introduction 

Ductile fracture is one of the most important limiting factors 
in metal forming. Several ductile fracture theories are available 
in the literature. The present paper deals with uncoupled 
continuum damage mechanics models that are independent of 
the third invariant of the stress tensor. Overviews of such 
models have been provided in [1, 2].  

All sheet metal forming processes incorporate some bending 
[3]. Several solutions for plane strain pure bending are 
available in the literature. A comprehensive overview of such 
solutions has been given in [4]. A semi-analytic solution for 
plane strain bending under tension for elastic/plastic, strain 
hardening material has been found in [5] assuming that the 
material is incompressible. A numerical method has been 

developed in [6] to determine the through-thickness 
distribution of damage in the process of plane strain pure 
bending of rigid/plastic, strain hardening material. The damage 
evolution model proposed in [7] has been adopted. The present 
paper provides a semi-analytic solution for the process of plane 
strain bending under tension. Quite a general uncoupled 
damage evolution model is adopted. It is shown that the 
solution is facilitated if the equivalent plastic strain is used as 
one of the independent variables.  

2. Material model 

The Cauchy stress and Hencky strain are adopted in the 
present paper. The classical Eulerian theory of finite 
elastoplasticity is used. A description of the theory can be 

18th International Conference Metal Forming 2020

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.08.107&domain=pdf


598	 Sergei Alexandrov  et al. / Procedia Manufacturing 50 (2020) 597–601
2 S. Alexandrov et al. / Procedia Manufacturing 00 (2019) 000–000

found in [8]. It is assumed that the material is incompressible 
(i.e., Poisson’s ratio is equal to 1/2). The plane strain yield 
criterion is taken in the form 

 1 2 0
2
3

p
eq      (1) 

where 1  and 2  are the principal stresses, 0  is the initial 

yield stress in tension, p
eq  is the equivalent plastic strain, 

 p
eq  is an arbitrary function of its argument satisfying the 

conditions  0 1   and   0p p
eq eqd d    for all p

eq . The 
equivalent plastic strain is defined by the equation 

0

2
3

t
p p p

eq ij ij d     (2) 

where p
ij  are the plastic components of the strain rate tensor 

and t is the time. Integration in (2) should be performed over 
the strain path. The elastic portions of the principal strain rates, 

1
e  and 2

e , are connected to the stress components by the 
following rate constitutive equations: 

 1 12 eG     and  2 22 .eG      (3) 

Here G is the shear modulus of elasticity,   is the hydrostatic 
stress and the superimposed dot denotes the material derivative. 
In general, the left-hand sides of the equations in (3) should 
involve an objective derivative. However, it will be seen later 
that in the case under consideration all objective derivatives 
reduce to the material derivative. The hydrostatic stress is given 
by 

1 2 .
2

 



   (4) 

The total principal strain rates are 

1 1 1
e p         and         2 2 2 .e p    (5) 

The plastic flow rule associated with the yield criterion (1) 
results in conditions that plastic deformation is incompressible 
and that the principal axes of the stress and strain rate tensors 
coincide.  

Uncoupled damage evolution equations are adopted in the 
present paper. It is assumed that the damage parameter takes 
the form [1] 

0

.
t

p
eq

eqt

D g d  

 

   
 


 (6) 

Here  eqg    some function of the ratio of the hydrostatic 

stress to the equivalent stress and 0t is the instant of time at 

which the damage starts to develop. The equivalent stress is 
defined as 

 1 2 0
3 .

2
p

eq eq         (7) 

3. Elastic/plastic solution 

A general elastic/plastic solution for the process of bending 
under tension of a wide sheet has been proposed in [5]. The 
solution satisfies the material model described in Section 2 and 
the equilibrium equations. It is outlined below for subsequent 
use in Section 4.  

The solution is based on the following mapping between 
Eulerian Cartesian coordinates  ,x y  and Lagrangian 
coordinates  ,  :

   2 2cos 2 , sin 2 .x s s y sa a
H a a H aa a

        (8) 

The Lagrangian coordinates are non-dimensional. The 
mapping (8) transforms an initial rectangular into a sector of a 
hollow cylinder (Fig. 1). In Eq. (8), H is the initial thickness of 
the sheet, a is a dimensionless time-like variable, 0a   at the 
initial instant, and s is a function of a. This function should be 
found from the solution and should satisfy the condition 
 0 1 4s  . This condition ensures that x H  and y H

at the initial instant. Then, it is seen from Fig.1 that 0   on 
the surface AB and 1    on the surface CD throughout the 
process of deformation. The trajectories of the principal 
stresses and principal strain rates coincide with the coordinate 
curves of the Lagrangian coordinate system.  

Fig. 1. Initial and intermediate/final configurations.

In general, there are three stages of the process. The entire 
sheet is elastic at the beginning of the process. The second stage 
starts when plastic yielding appears at the surface AB (Fig. 1). 
During this stage, there is one elastic region, 11     , and 
one plastic region 1 0   . Here  1 a   is the 
elastic/plastic boundary. The third stage starts when plastic 
yielding appears at the surface CD (Fig. 1). During this stage, 
there is one elastic region, 2 1    , and two plastic regions 

21      and 1 0   . Here  1 a   and  2 a 
are the elastic/plastic boundaries. This stage ends when 
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 2 0d a da  . This condition implies that the thickness of 
one of the plastic regions has attained its maximum. The 
solution given in [5] is not valid beyond this point.  

The solution in the elastic region is not of interest for the 
present study since the damage parameter does not change 
without plastic deformation. The distribution of the equivalent 
strain in the plastic region during the second stage is given by 

   1 ln 4
3

p pl
eq eqa s k        (9) 

where  0 3k G . The dependence of the hydrostatic stress 
involved in (6) on the equivalent plastic strain is 

       
 2 2

1 1
0

.
2 3

p
eqp p

eq eq
k     




         (10)

Here  p
eq  is an anti-derivative of  p

eq  and 1  is the 

value of p
eq at 0  . The solution to the following system of 

equations determines the dependence of s, 1 and 1  on a:

     

       

1 1 1

2 2
1 1

ln 4 3 , 3 ln 4 3 ,

1 ln 4 0 .
6 2

a s k s k

fa ks a
ks a

  

 

      

        

  (11) 

Here f is the tensile force that is supposed to be constant. Once 
the system (11) has been solved, (9) and (10) provide the 
dependence of   and p

eq  on a and   (or the dependence of 

  and   on a and p
eq ). 

Equations (9) and (10) are valid in the plastic region 
1 0    during the third stage of the process. However, 

equation (11) is replaced with 

     
 

   

       

1 1 1

2

2 2

2 2
2 1 2 1

ln 4 3 , 3 ln 4 3 ,

ln 4 3 ,

3 ln 4 3 ,

22 0.

a s k s k

a s k

s a k

fak
s a

  



 

   

      

    

      

            

 (12) 

The solution of this system supplies the dependence of s, 1 ,

2 , 1 , and 2  on a. Here 2  is the value of p
eq at 1   .

The distribution of the equivalent strain in the plastic region 
21      during the third stage is given by 

   1 ln 4 .
3

p pl
eq eqa s k         (13)

The dependence of the hydrostatic stress involved in (6) on the 
equivalent plastic strain is 

   

   
 

2
0

2 2
2 .

2 3

p
eq

p
eqp

eq
k fa

s a

  



 

   


      

(14)  

Once the system (12) has been solved, equations (9), (10), 
(13), and (14) provide the dependence of   and p

eq  on a and 
  (or the dependence of   and   on a and p

eq ) in both 
plastic regions. 

4. Damage distribution 

Equation (6) can be rewritten as 

.p
eq

eq

D g  

 

   
 

 (15) 

Since the  ,   coordinate system is Lagrangian, equation 
(15) in this coordinate system becomes 

.p
eq

eq

D g
t

 

 

     
(16) 

Using (9) and (13) the equivalent plastic strain rate is 
determined as 

 
   3 1

p
eq p

eq

ds da da
dta s k




 


 

    
 (17) 

where    p p p
eq eq eqd d     , the upper sign corresponds to 

the plastic region 10     and the lower sign to the plastic 
region 2 1    .Then, substituting (17) into (16) gives 

 
   

.
3 1 p

eqeq

ds daD g
a a s k

 
 

 
           

(18) 

It is seen from (7), (10) and (14) that the argument of the 
function g is rather a simple function of p

eq  and a. One can also 
eliminate   in (18) by means of (9) or (13). As a result, the 

right hand side of (18) is a function of p
eq  and a. Therefore, it 

is convenient to use p
eq  as one of the independent variables 

instead of  . In this case, equation (18) becomes 

 
   
 

   

3 1

.
3 1

pp
eqeq

p
eqeq

ds daD D
a a s k

ds da
g

a s k


 

 
 

 
 

     
 

         

(19) 

The equation of characteristics is 
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 
   3 1

p
eq

p
eq

d ds da
da a s k

 

 


 

    
(20) 

and the relation along characteristics is 

.p
eqeq

dD g
d



 

   
 

(21) 

Equations (20) and (21) should be solved numerically using the 
conditions 0p

eq   and 0D   at 1   and 2  .

5. Illustrative example 

Assume that the material obeys Swift’s law. Then, 

     

 

1

0

0 0

1

0 0

1 , 1 ,
1

' 1 .

n npl pl
eq eqpl pl

eq eq

npl
eqpl

eq

n

n

 
 

 




 





   
              

 
    

 

  (22) 

The numerical solution has been obtained for half-hard 
aluminum with 0.25n   and 0 0.222   [9]. In all 
calculations 0.003k  . Several widely used representations of 
the function  eqg    have been provided in [1,2]. Consider 
two functions, 

1
eq eq eq

g g  
  
   

       
   

and

2
3exp
2eq eq eq

g g  
  
     

           
     

 (23)

A qualitative difference between these functions is that the 
ductile fracture criterion based on the function  1 eqg  

predicts no change in the damage parameter if 0  , and the 
function  2 eqg    predicts the increasing change in the 
damage parameter independently of the value of  . The 
through-thickness variation of D for several values of f is 
depicted in Fig.2 for    1eq eqg g     and Fig. 3 for 

   2eq eqg g    . In these figures, CDX r r   (Fig. 1). 
The solutions illustrated in Figs. 2 and 3 correspond to the 
instant when  2 0d a da  . The region where 0D   in Fig 
2 combine the elastic region and the plastic region adjusted the 
surface CD (Fig.1). The region where 0D   in Fig. 3 is the 
elastic region. 

Fig. 2. Through-thickness distribution of the damage parameter for 
   1eq eqg g     (see (23)). 

Fig. 3. Through-thickness distribution of the damage parameter for 
   2eq eqg g     (see (23)). 

6. Conclusions 

Presented is a new semi-analytic elastic/plastic solution for 
the process of bending under tension at large strains. The 
solution accounts for an arbitrary strain-hardening law and an 
arbitrary uncoupled damage evolution equation that is 
independent of the third invariant of the stress tensor. 
Numerical treatment reduces to solving one partial differential 
equation in two variables (equation (19)). The general solution 
is illustrated for Swift’s hardening law and two damage 
evolution equations. The final results shown in Figs. 2 and 3 
are in qualitative agreement with physical expectations. In 
particular, the value of D is the highest at the surface 0  .
Moreover, the value of D increases at the surface 0   (Figs. 
2 and 3) and decreases at the surface 1    (Fig. 3) as f
increases.
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