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Abstract: Red mud is an iron-containing waste of alumina production with high alkalinity. A promising
approach for its recycling is solid-phase carbothermic roasting in the presence of special additives
followed by magnetic separation. The crucial factor of the separation of the obtained iron metallic
particles from gangue is sufficiently large iron grains. This study focuses on the influence of Na2SO4

addition on iron grain growth during carbothermic roasting of two red mud samples with different
(CaO + MgO)/(SiO2 + Al2O3) ratio of 0.46 and 1.21, respectively. Iron phase distribution in the red
mud and roasted samples were investigated in detail by Mössbauer spectroscopy method. Based on
thermodynamic calculations and results of multifactorial experiments, the optimal conditions for
the roasting of the red mud samples with (CaO + MgO)/(SiO2 + Al2O3) ratio of 0.46 and 1.21 were
duration of 180 min with the addition of 13.65% Na2SO4 at 1150 ◦C and 1350 ◦C followed by magnetic
separation that led to 97% and 83.91% of iron recovery, as well as 51.6% and 83.7% of iron grade,
respectively. The mechanism of sodium sulfate effect on iron grain growth was proposed. The results
pointed out that Na2SO4 addition is unfavorable for the red mud carbothermic roasting compared
with other alkaline sulfur-free additives.

Keywords: red mud; bauxite residue; reduction roasting; sodium sulfate; iron grain growth; magnetic
separation; recycling; utilization

1. Introduction

According to some estimates [1], the world industry produced over 132 million tons of alumina
in 2019. It is well-known that alumina production is accompanied by considerable generation of
waste: 1 ton of alumina produces about 1–1.5 tons of waste called the bauxite residue or red mud [2].
Currently, total globally accumulated amount of red mud is about 4.6 billion ton [3]. High alkalinity
and significant content of toxic components make red mud potentially dangerous to the environment
and human health [4–6], so it is necessary to utilize it.

There were a lot of efforts to recycle red mud by numerous methods. Many studies investigated
extraction of valuable components [7–9] with a particular focus on iron [10,11] as a major red mud
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component [12] and rare-earth metals [13–16] as a critical material for many important technologies [17].
A common approach involves utilization of red mud in construction industry [18], namely in production
of cement [19], concrete [20], bricks [21,22], geopolymers [23], etc. Some studies considered its use as
an adsorbent [24], catalyst [25] and coagulant [26]. However, nowadays, the world industry utilizes
only up to 3% of annually generated red mud [27].

A promising and recently studied approach for red mud recycling is solid-phase reduction of
iron at 1050–1400 ◦C [28], that is evidently more cost effective than reduction smelting at temperatures
above 1500 ◦C [29] because of a lower energy consumption. This approach had been used for other
different iron-containing wastes [30–32], as well as complex low-grade iron [33–35] and nickel [36–38]
ores. High-grade metallized concentrates and tailings with high content of other valuable components
can be obtained by carbothermic reduction followed by magnetic separation. In the case of processing
of red mud besides metallized iron concentrate or even metallic iron powder [39], increased contents
of aluminum, titanium and rare-earth metals can be obtained in the tailings, making it more viable for
subsequent recycling.

It is noteworthy that the carbothermic reduction approach has an important feature associated
with fine impregnation of iron with gangue or general particle fineness of raw materials. Reduction of
such materials frequently forms finely grained metallic iron, which is impossible to be magnetically
separated from gangue [40]. Hence, to promote iron grain segregation, special additives are used,
mainly alkali and alkaline earth metal salts. If Na2CO3 [41–43], Na2SO4 [39,44–46], Na2B4O7 [47],
K2CO3 [48], KCl [49], CaF2 [50] were used for solid-phase carbothermic reduction of red mud, high iron
recovery and high grade of the concentrates could have been achieved. As reported in our previous
work [48], the roasting of red mud with addition of 17.1% Na2CO3 or 22.05% K2CO3 at 1300 ◦C for
180 min followed by magnetic separation resulted in iron recovery of 77.27% and 85.54%, respectively,
and iron concentrate with grade of about 72% in both cases.

It is acknowledged that sodium sulfate is one of the most used additives for carbothermic reduction
of other materials containing iron [51–53] and nickel [54–56]. Previous studies have shown that Na2SO4

facilitates iron grain growth superior to other additives [57], so, to improve the results previously
obtained with alkali carbonates [48], sodium sulfate is used in this work as an additive for carbothermic
roasting of red mud.

It is well-known that addition of CaO during sodium sintering of red mud (sinter leach
process) leads to the formation of Ca2SiO4 phase, which improves subsequent aluminum recovery
by leaching [58–60]. On the other hand, CaO addition can decrease iron content in the magnetic
concentrates obtained after solid phase reduction at low temperatures [61,62].

In this paper, we studied the effect of Na2SO4 addition on carbothermic reduction and magnetic
separation of two different samples of red mud with various contents of CaO and Fe by thermodynamic
analysis and laboratory experiments. The effect of temperature, amount of the additive and roasting
time on iron grain growth and its separation from gangue was studied. The optimal conditions for the
carbothermic reduction of red mud in the presence of sodium sulfate were determined. The mechanism
of the effect of Na2SO4 on grain growth of reduced iron was proposed.

2. Materials and Methods

2.1. Raw Materials

Two samples of the industrial red mud were used to study the effect of sodium sulfate addition.
One of the samples codenamed as B was brought from Bogoslovsky Aluminium Plant (Russian
Federation, Sverdlovsk region, Krasnoturyinsk, 59.84◦ N, 60.19◦ E). The other sample codenamed
as U was obtained from red mud of Ural Aluminum Plant (Russian Federation, Sverdlovsk region,
Kamensk-Uralsky, 56.30◦ N 61.98◦ E) by 3 h lime water treatment at 90 ◦C [63].
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2.2. Thermodynamic Simulation

HSC Chemistry 9.9 software (Outotec, Pori, Finland) [64] was used for equilibrium simulation.
The calculation was performed at 1100 ◦C in 100% N2 at pressure of 0.1 MPa for 100 kg of red mud and
addition of 40% C (graphite).

2.3. Experimental Procedure

Reducing agent was long-flaming coal with ash and moisture contents of 15% and 18%, respectively.
The additive was a reagent-grade Na2SO4. Red mud, coal, and the additive were ground in a mortar
with a pestle to sift through a screen with an aperture of 0.200 mm.

The red mud samples and sodium sulfate were dehydrated at 105 ◦C for 120 min and were mixed
in a V-shell blender for 720 min. The Na2SO4 amounts after following conversion corresponded to
2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 wt.% Na2S were added to 100% of red mud. The tablets from 1 g of
the powder mixtures were prepared by a hand hydraulic press and a mold with a diameter of 17 mm
using a pressure of 215 MPa.

Two corundum crucibles were used in the carbothermic roasting experiments with height/diameter
ratio of 62/45 and 68/58 mm, respectively. Figure 1 shows the layout diagram of the tablets and coal in
the experiments.
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Figure 1. Schematic diagram of mutual arrangement of the raw materials in the roasting experiments,
where 1—corundum crucibles; 2—the tablets containing red mud and sodium sulfate; 3—coal.

The samples prepared were roasted in the range of 1000–1450 ◦C in a muffle-type furnace with
S-type Pt/Pt-Rh control thermocouple. The crucibles with the tablets were placed into the preheated
furnace, roasted for a certain time, taken out and quenched into liquid nitrogen.

The chemical composition of the red mud samples was analyzed by an inductively coupled
plasma atomic emission spectrometer (ICP AES) Vista Pro (Varian Optical Spectroscopy Instr., Mulgrave,
Australia). The X-ray diffraction (XRD) data were collected by an ARL X’tra diffractometer (Thermo Fisher
Scientific, Ekublens, Switzerland) with a Cu anode. The obtained XRD patterns were interpreted using
Match! Software (Crystal Impact, Bonn, Germany) [65]. To analyze the roasted samples, concentrates,
and tailings, they were ground to sift through a screen with an aperture of 0.054 mm. The chemical
analysis of the total Fe content was carried out after proper sample digestion by an atomic absorption
spectrometry (AAS) method using AA240FS (Varian Inc., Palo Alto, Santa Clara, CA, USA) device
or by complexometric titration method in the case of iron contents more than 30%. Complexometric
titration was carried out by 0.025 M solution of Trilon B using 20–25% sulfosalicylic acid as an indicator
at pH = 2–3 until the color change from blue-violet to lemon-yellow.

A Mössbauer spectrometer MS-1104EM (CJSC Cordon, Rostov-on-Don, Russia) was used to collect
spectra of the red mud and roasted samples at 77.5 ± 0.3 K and/or at room temperature (296 ± 3 K).
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The 57Co nuclei in a matrix of metallic Rh with 47 mCi activity were used as the source of gamma-radiation.
The spectra were recorded in high-resolution mode (1024 points) with the noise/signal ratio of less than
1.0 and 1.5% for initial and roasted samples, respectively. SpectrRelax 2.4 software (Lomonosov MSU,
Moscow, Russia) was applied for processing of the Mössbauer spectra. The chemical shift values were
given relative to α-Fe.

2.4. Calculation of Iron Grain Size

A reflected-light METAM LV-34 (LOMO-Mikrosistemy, Saint Petersburg, Russia) optical
microscope and a RisingCam RT5109 (RisingTech, Chengdu, Sichuan, China) camera were used
to obtain photomicrographs in 50–250×magnification of the metallographic specimens prepared from
the roasted samples. Image Pro Plus software (Media Cybernetics, Rockville, MD, USA) was used for
image analysis of the 16 stitched photomicrographs and for iron grain size calculation. To characterize
the iron grain size, area and average Feret diameter in all directions were calculated for all the grains,
besides the very small ones up to 0.0002 mm, which were excluded from the calculation results.
The Feret diameter is the distance between two parallel lines that bound an object perpendicular to
a certain direction. Based on the calculation data, the dependences of relative area of iron grains of
different fractions on the roasting conditions was obtained.

2.5. Magnetic Separation

The roasted red mud samples were ground and sifted through a screen with an aperture of
0.054 mm, then a dry drum magnetic separator BSMK-200 (LLC Industrial magnets, Kaluga, Russia)
with magnetic strength of 0.35 T was applied to obtain iron magnetic concentrate and non-magnetic
tailings. The concentrate yield was calculated as follows:

γ = mc/m0 × 100% (1)

where γ is the concentrate yield, %; m0 is the mass of the roasted sample, g; mc is the mass of the
concentrate obtained by magnetic separation, g.

The recovery of iron was determined as follows:

ε = (mc ×%Fec)/(m0 ×%Feo) × 100% (2)

where ε is the recovery of iron, %; %Fec and %Feo are the total iron content in the concentrate and
roasted sample, respectively, %.

3. Results

3.1. Red Mud Samples Characterization

Table 1 shows the chemical composition of two red mud samples. It can be seen that the Fe2O3

content in the sample B is almost 50%, which is promising for iron extraction, but high percentage
of Na2O is one of the adverse factors for this purpose by conventional industrial methods, e.g., blast
furnace smelting. The sample U, which was leached by lime milk, has insignificant sodium content,
but due to the calcium enrichment by the treatment, a percentage of valuable components such as iron,
aluminum and scandium is less. Accordingly, the basicity (CaO + MgO)/(SiO2 + Al2O3) of the samples
B and U differs considerably and is 0.46 and 1.21, respectively.

Figure 2 compares the diffractograms of the samples B and U with phase signs. The main minerals
of both samples are hematite (Fe2O3) and katoite (Ca3Al2Si3(OH)12), but the minor phases are different.
The sample B contains few hydrated aluminum phases, namely kaolinite (Al2Si2O5(OH)4), hydrogarnet
(Al2Ca3(OH)12), diaspore (AlOOH), while they are undetected in the sample U. Probably, the sample B
can contain some of these phases in lower contents, but due to high peaks of CaCO3 and Ca(OH)2

transferred from leaching solution, they are imperceptible.
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Table 1. Chemical composition of the red mud samples (wt.%).

Aluminum
Plant Codename Fe2O3 SiO2 Al2O3 TiO2 CaO MgO MnO Na2O P2O5 S Sc

Bogoslovsky B 49.81 8.71 12.77 4.67 9.26 0.65 0.26 3.30 0.85 0.48 0.014

Ural U 36.9 8.71 11.80 3.54 23.8 1.01 0.95 0.27 0.42 0.14 0.008
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Figure 2. The XRD patterns of the red mud samples B (a) and U (b), where H—α-Fe2O3; K—
Ca3Al2Si3(OH)12; C—Na6Ca(AlSiO4)6CO3·2H2O; E—Al4[Si4O10](OH)8; G—Al2Ca3(OH)12; A—CaCO3

(calcite); B—(Na0.3Ca0.1K0.1)(Mn4+,Mn3+)2O4·1.5H2O; D—γ-AlOOH; P—CaTiO3; M—α-FeOOH; L—
Ca(OH)2; Q—SiO2.

Figure 3 and Table 2 compare the Mössbauer spectra of the red mud samples obtained at room
temperature and at low temperature.

It can be seen that the spectra of both samples are similar to each other and consist of a sextet
distorted into the internal part of the spectra, two additional lines (asymmetric in intensity) in the
internal part of the spectra and a broad resonance line in the middle of the spectra. The sample U
spectrum differs from the sample B spectrum by the presence of additional absorption between the
resonance lines 1–2–3 and 4–5–6 of the sextet in the room-temperature spectrum, by the presence
of shoulders in the lines 1 and 6 of the sextet in the low-temperature spectrum, by high intensity,
small width and low asymmetry of two additional lines in the internal part of the spectra, and by low
intensity of the middle line of the spectra. A decrease of temperature results in an insignificant decrease
of the intensity of the broad middle line of the U spectrum, while the intensity of paramagnetic part
(asymmetric doublet and broad middle line) of the B spectrum is practically independent of temperature.
It can be concluded that asymmetry of the resonance lines of the sextets at room temperature cannot be
caused only by superparamagnetism (characteristic for nano- or highly dispersed iron particles) [66],
but can be resulted from locally inhomogeneous environment of Fe atoms, at least in one phase present
in the samples. On the other hand, the shoulders in the low-temperature spectrum of the U sample and
the resonance lines out of the base line indicate superposition of the spectra of at least two magnetically
ordered phases, one of which is responsible for distortion of the background line in the middle part of
the spectrum at room temperature.

The spectra obtained at room temperature can satisfactory be described as superposition of four
(for the sample B) or six (for the sample U) sextets and two doublets (Table 2). Six sextets for the
sample U include of four subspectra that are analogous to those for the sample B and two additional
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subspectra. The low-temperature spectra of both samples are satisfactory described as superposition
of three sextets and two doublets.
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Table 2. Mössbauer spectra parameters and iron phase distribution in the red mud samples B and U,
where δ—chemical shift; ∆ = 2ε—quadrupole splitting; Γexp—line width; Heff—hyperfine magnetic
field; S—site # area.

Sample B U

Temperature
K

# Phase
δ ∆ = 2ε Γexp Heff S# δ ∆ = 2ε Γexp Heff S#

mm/s kOe % mm/s kOe %

296

1 α-Fe2O3 0.38 −0.22 0.30 510.9 36 0.37 −0.21 0.26 513.2 25

2

α-(Fe1−xAlx)2O3

0.38 −0.22 0.32 499.7 19 0.37 −0.22 0.27 505.4 16

3 0.38 −0.20 0.48 483.1 16 0.37 −0.20 0.39 491.3 11

4 0.43 −0.15 1.06 449 10 0.37 −0.18 0.72 467 10

5
α-Fe1−xAlxOOH

- - - - - 0.35 −0.20 1.55 362 14

6 - - - - - 0.35 −0.20 1.55 183 4

7 Fe2+
Oh 1.12 2.67 0.34 - 6 1.13 2.64 0.32 - 10

8 Fe3+
Oh 0.34 0.66 0.52 - 12 0.35 0.68 0.67 - 10

77.5

9 α-Fe2O3 0.45 −0.21 0.29 527.9 41 0.48 −0.21 0.26 530.8 32

10
α-(Fe1−xAlx)2O3

0.46 −0.21 0.36 518.2 24 0.48 −0.21 0.37 524.5 30

11 0.45 −0.18 0.76 502 17 - - - - -

12 α-Fe1−xAlxOOH - - - - - 0.47 −0.23 0.67 496.7 20

13 Fe2+
Oh 1.21 2.82 0.31 - 6 1.25 2.83 0.30 - 11

14 Fe3+
Oh 0.41 0.70 0.53 - 12 0.46 0.69 0.58 - 8
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The detailed description of the spectra for the sample U is presented in [67]. The subspectra
parameters of the sample B is similar to those of the sample U. The main difference of the B sample
spectra is the absence of subspectra 5, 6, and 12. This group of sextets, which is present only in
the sample U spectra, lowers the background in the middle part of the room-temperature spectrum,
and brings about the shoulder in the resonance lines 1 and 6 of the sextets in the low-temperature
spectrum. This group of sextets corresponds to alumogoethite, i.e., goethite [68–70], in which part of
Fe atoms is isomorphically substituted by Al [71].

The first four sextets in the room-temperature spectra (1–4, Table 2) are common for both samples.
The parameters of the sextet 1 are quite similar to the parameters characteristic for hematite [68,72].
The internal sextets 2–4 that are broader, have lower intensity and lower magnetic splitting than the
sextet 1 correspond to defect hematite structures different by a degree of isomorphic substitution of Fe
atoms by Al atoms [73].

In the low-temperature spectra, these “phases” are represented by two or three sextets (9–11,
Table 2) that differ by the width of resonance lines. The presence of Al atoms in iron sublattice leads to
a lower value of the magnetic splitting for the external sextet than that characteristic for hematite [68]
and to the absence of the Morin transition [74] in the investigated temperature interval. It should be
noted that a decrease of the Morin transition temperature can be caused by an increase of the hydroxyl
content in the oxygen sites of alumohematite [75]. Lower magnetic splitting and broadening of the
resonance lines in the subspectra of the B sample compared to those of the U sample indicate lower
magnetic ordering of the B sample.

The paramagnetic part of the spectra of both samples includes two doublets that correspond to
atoms Fe2+ (7 and 13, Table 2) and Fe3+ (8 and 14, Table 2) in high-spin state in octahedral oxygen
surrounding [76]. The width of the resonance lines for the Fe2+ doublet is significantly lower than the
width of the second doublet and does not change with temperature. On the contrary, the quadrupole
splitting of this doublet significantly increases with temperature decreasing. This indicates that this
subspectrum corresponds to a unified well-crystallised phase, containing Fe2+ ions. Judging by the
value of the quadrupole splitting and its temperature dependence, it can assume that this subspectum
corresponds to one of alumosilicate minerals [77].

The relative intensity of the Fe3+ doublet (nos. 8 and 14) of the sample B, different from the
U sample, is twice higher than that of the Fe2+ doublet. Moreover, this doublet has much broader
lines, which indicates that this subspectrum is a superposition of several sub-subspectra with closer
parameters, corresponding to several phases, and also that these phases have lower degree of crystallinity.
The intensity of this doublet for the sample U changes insignificantly, since it contains a paramagnetic
part of alumogeothite in the room-temperature spectrum. The sample B, which does not contain this
phase, has almost no temperature dependence of the intensity and quadrupole splitting, which excludes
the description of this doublet as from superparamagnetic particles, similar to [78].

Thus, the main iron-containing phase of the sample B is hematite, while in the sample U besides
hematite/alumohematite there is a considerable content of alumogoethite.

3.2. Thermodynamic Calculations

The thermodynamic calculations by HSC Chemistry 9.9 software were carried out to compare
a behavior of different components in the samples B and U during carbothermic roasting in the
presence of Na2SO4. Based on the results of elemental and phase analyses and Mössbauer spectroscopy,
the model compositions of the red mud samples were constructed as follows:

Red mud B, wt.%: 49.81—Fe2O3; 11.27—Ca3Al2Si3O12; 6.72—Al2O3·2SiO2·2H2O; 2.10—
3CaO·Al2O3·2H2O; 7.95—CaTiO3; 4.17—CaCO3; 8.24—AlOOH; 2.04—CaSO4; 0.65—MgO; 3.30—Na2O;
1.07—SiO2; 0.85—P2O5.

Red mud U, wt.%: 29.89—Fe2O3; 7.80—FeOOH; 14.97—Ca3Al2Si3O12; 3.54—Al2O3·2SiO2·2H2O;
8.90—Ca(OH)2; 6.02—CaTiO3; 15.61—CaCO3; 8.26—AlOOH; 0.59—CaSO4; 1.01—MgO; 0.27—Na2O;
1.07—SiO2; 0.97—P2O5.
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All the species were set as pure with the activity coefficient of 1. Due to difficulty of iron
carburizing process, iron carbides were excluded from the calculation.

Figures 4 and 5 show the results of the calculation for the red mud samples B and U, respectively.
It can be seen that full iron metallization is possible both in the absence and in the presence of

Na2SO4. Goethite contained in the sample U thermally decomposes into hematite at 210–350 ◦C [79].
It is well-known that the carbothermic reduction of hematite, which is the main phase of the red mud
samples, occurs gradually as follows: Fe2O3 → Fe3O4 → FeO → Fe [80]. In addition, it is notable
that sulfur, which is harmful impurity for steelmaking, generates iron-free compounds, so it can be
favorable to obtain a good-quality concentrate for ferrous metallurgy by carbothermic roasting of red
mud with sodium sulfate followed by magnetic separation.
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Apparently, the following general reactions take place in the presence of sodium sulfate:

Na2SO4 + 4C = Na2S + 4CO(g); (3)

Na2S + CaO + Al2O3 = CaS + Na2O·Al2O3; (4)
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Na2S + CaO + Al2O3 + 2SiO2 = CaS + 2NaAlSiO4. (5)

The Reaction (3) always occurs in the presence of sodium sulfate and carbon at reducing
conditions [81]. A behavior of the Reactions (4) and (5) depends on chemical composition of the
raw materials. In the system with red mud sample B (Figure 4) the Reactions (4) and (5) generate
Na2O·Al2O3 and NaAlSiO4, respectively, that lead to decreasing of gehlenite (2CaO·Al2O3·SiO2)
amount with increasing of sodium sulfate addition. It should be noted that both 2CaO·Al2O3·SiO2

and NaAlSiO4 are hardly soluble phases [59,60] that can complicate following extraction of aluminum
from the tailings. In the system with red mud sample U (Figure 5) high content of calcium inhibits the
Reaction (5) by calcium silicate 3CaO·2SiO2 generation. As a result, Na2O·Al2O3 represents a single
aluminum-containing phase, which is water-soluble [82], in the system with red mud sample B with
addition over 23.4% Na2SO4, so it seems to be more encouraging to use the raw materials with high
basicity not only for iron recovery, but for the facilitation of a following aluminum extraction from
the tailings.

Thus, thermodynamic calculations have shown that carbothermic roasting of both red mud
samples with sodium sulfate leads to full iron metallization, but sample U appears to be more favorable
for aluminum extraction than sample B.

3.3. Investigation of Iron Reduction in the Roasted Samples

Figure 6 shows the Mössbauer spectra of the samples B and U roasted at 1150 ◦C with the addition
of Na2SO4. Table 3 shows the parameters of the spectra.Metals 2020, 10, x FOR PEER REVIEW 10 of 24 
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Table 3. Mössbauer spectra parameters and iron phase distribution in the roasted red mud samples B and U at 1150 ◦C with addition of 13.65% Na2SO4, where
δ—chemical shift; ∆ = 2ε—quadrupole splitting; Γexp—line width; Heff—hyperfine magnetic field; S—site # area.

Sample Roasted B Roasted U

# Phase
δ dδ ∆ = 2ε Γexp Heff dH S# Σ S# δ dδ ∆ = 2ε Γexp Heff dH S# Σ S#

mm/s kOe % mm/s kOe %

1 α-Fe 0.00 - 0.01 0.30 331.6 - 56 56 0.01 - 0.00 0.31 331.6 - 48 48

2

α-Fe1−xAx-first
coordination sphere

0.00

0.14 −0.10

0.31

331.6

28.4

6

19.8

0.01

0.05 −0.04

0.50

331.6

28.7

12

33

3 0.14 303.2 6.0 0.06 302.9 10.4

4 0.28 274.9 2.8 0.12 274.2 3.8

5 0.41 247 0.7 0.17 245.5 0.8

6 0.55 218 0.1 0.22 216.8 0.1

7

α-Fe1−xAx-second
coordination sphere

0.00

0.00 0.02

331.6

14.2

2.1 0.01

0.00 0.03

331.6

14.3

3

8 0.00 303.2 1.7 0.01 317.3 2.0

9 0.00 289 0.6 0.01 303.0 0.5

10 0.00 275 0.1 0.01 288.7 0.1

11 θ-Fe3C 0.18 - 0.02 0.42 203.2 - 18.8 18.8 0.15 - −0.02 0.57 195.4 - 13.5 13.5

12 Laves phase 0.13 - −0.24 0.20 52.4 - 4.7 4.7 0.10 - −0.07 0.21 52.4 - 3.7 3.7

13 γ-Fe −0.06 - - 0.30 - - 1.8 1.8 −0.11 - - 0.21 - - 1.7 1.7
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The spectra consist of a broadened sextet with resonance lines slightly deformed towards the inner
side and three low-intensity lines located in-between the 2–5 resonance lines of the sextet. The spectrum
of the roasted sample B differs by the presence of an additional shoulder at the resonance line 5.

It can be seen that the sextet itself corresponds to metallic iron (α-Fe) [83], and its distortion is
caused by satellite subspectra of those Fe atoms in the α-Fe1−xAx alloy, which neighboring 1, 2 or more
Fe atoms are substituted by atoms of other metals-A [84,85]. The parameters of these subspectra are
analogous to those of the subspectrum 1 (Table 3), with the only different chemical shift and effective
magnetic field by n·dδ and −n·dH, respectively, where n is the number of a subspectrum, dδ and dH
are the changes of the corresponding parameters. In this paper, a description is presented taking
into account the effect on the shape of the spectra of changes in the content of iron atoms in the first
(contains 8 atoms) and second (contains 6 atoms) of the nearest coordination spheres [86]. In this
case, the found content of admixture atoms makes it possible to describe alloys as α-Fe0.883A0.117 and
α-Fe0.904A0.096 for the roasted samples B and U, respectively. The spectra of satellites with intensities
less than 0.1% are not presented in the Table 3 and Figure 6. Subspectra that describe the roasted
sample U have much larger width of the resonance lines than those for the roasted sample B, which
indicates greater disordering of the structure.

The central resonance line in the spectra is described by a singlet (13, Table 3) of metastable FCC
γ-Fe [87]. It can be seen that this polymorphic modification of iron was formed during synthesis and
was stabilized by dissolved carbon with formation of the austenite-type structure [88].

Enrichment of the samples by carbon leads to formation of iron carbide like θ-Fe3C, χ-Fe5C2 [89]
and/or Fe7C3 [90], which is indicated by a couple of low-intensity lines between the resonance lines
2–5 and by a shoulder on the line 5 of the roasted sample U in the form of internal sextet no. 11 that
obviously includes combinations of several subspectra with very close super-thin parameters for the
abovementioned carbides.

At last, the central part of the spectra of both samples contains a low-intensity sextet no. 12 with
a small isomeric shift and very small magnetic splitting, which can relate to the Laves phases, e.g.,
Tix(Fe,Al)100−x [91].

Thus, according to the Mössbauer spectra both the roasted red mud samples with the addition of
13.65% Na2SO4 at 1150 ◦C contain no oxide or sulfide phases, but only metallic iron and its various
solid solutions, so the both roasted samples can be accepted as fully reduced.

3.4. Experimental Results of the Carbothermic Roasting Followed by Magnetic Separation

Table 4 summarizes the possibility and particularities of the roasting and magnetic separation of
the red mud samples at various temperatures and sodium sulfate addition.

Table 4. General results with signs * of the roasting and magnetic separation of the samples B and U
roasted at various temperatures and Na2SO4 addition during 180 min.

Na2SO4
Addition, %

Roasting Temperature (◦C) and Codename of a Sample

1100 1150 1200 1250 1300 1350 1400 1450

B U B U B U B U B U B U B U B U

0 n/s n/s n/s n/s n/s n/s +,m n/s +,m n/s fm n/s fm + fm fm

4.55 n/s n/s n/s n/s n/s n/s +,m n/s +,m n/s fm - fm - fm fm

9.1 n/s n/s n/s n/s n/s n/s +,m n/s +,m n/s fm - fm - fm fm

13.65 n/s n/s + n/s + n/s +,m n/s +,m n/s fm + fm + fm fm

18.2 n/s n/s + n/s + n/s +,m n/s +,m n/s fm - fm - fm fm

22.75 n/s n/s + n/s + n/s +,m n/s +,m n/s fm - fm - fm fm

27.3 n/s n/s + n/s + n/s +,m n/s +,m n/s fm + fm + fm fm

* “+”—successful separation; “n/s”—no separation or insignificant separation with yield of tailings <5%; “m”—clear
melting effects after the roasting such as obvious change of initial form and aggregation of the tablets; fm—melting
accompanied by coalescence of the tablets and flow of the sample through graphite layer from the crucible.
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It can be seen that the results are quite different for the samples B and U. Melting without or with
any addition of sodium sulfate in the samples B and U occurred above 1300 ◦C and 1400 ◦C, respectively,
that led to obtaining of an almost molten and uniform sample, so these conditions are undesirable
and unrelated to solid-phase carbothermic reduction process. The separation of the samples without
addition is possible at 1250–1300 ◦C and 1400 ◦C, while the addition of 13.65% Na2SO4 and over
expands the separation range to 1150–1300 ◦C and 1350–1400 ◦C for the samples B and U, respectively.
Below these temperatures it is impossible to extract a significant amount of non-magnetic tailings.

To elucidate the obtained results, the iron grain growth process was studied. Figure 7 compares
the influence of addition of 13.65% Na2SO4 on iron grain growth at constant holding time in the range
of 1000–1300 ◦C to red mud B and U.

The histograms show that at the range of 1000–1100 ◦C iron particles are mainly distributed
between fractions of 1–20 µm in size (Figure 7a,b). There is a small amount of iron grains larger
than 40 µm in the samples of roasted red mud U in contrast with red mud B obtained in the similar
conditions. An increase of the roasting temperature to 1150–1200 ◦C (Figure 7c,d) led to an increase of
the grain size in the sample B with addition of 13.65% Na2SO4, where the relative area of iron grains
with a size larger 40 µm was more than 50%. It should be noted that in the sample U grains of the
fraction larger 40 µm have the relative area about 10–20% under the same conditions. Further rise of
the roasting temperature to 1250–1300 ◦C (Figure 7e,f) caused a significant growth of iron grains for
the sample B both with and without sodium sulfate addition, where the relative area of iron grains
with a size larger 40 µm is more than 85%. For the sample U roasted at these temperatures the addition
of 13.65% Na2SO4 considerably increased the relative area of iron grains with a size larger 40 µm, but it
is still half as much as in the sample B.

To find out optimal conditions for the roasting of red mud U, we raised the roasting temperature
additionally. Figure 8 demonstrates the distribution of the iron grain fractions at 1350–1400 ◦C with
and without Na2SO4.

It can be seen that, at 1350 ◦C, the relative area of iron grains larger than 40 µm is more than 60%
and 25% in the samples with and without addition of sodium sulfate, respectively, while at 1400 ◦C it
is in the range of 73–84%.

Thus, iron grain size calculations (Figures 7 and 8) correlate with the general magnetic separation
results (Table 4). Based on the data comparison, it can be inferred that the main part of iron grains
larger than 40 µm predetermines successful magnetic separation of the roasted samples.

Figure 9 demonstrates the magnetic separation indexes of the roasted sample B with addition of
13.65–27.3% Na2SO4 at 1150–1300 ◦C; Figure 10 illustrates the microstructure of the roasted sample B
obtained at 1150–1200 ◦C with varied amount of the additive.
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without addition (f), and with addition of 9.1% (g), 13.65% (h), 18.2% (i), 27.3% (j) Na2SO4 at 1200 ◦C.

Figure 9a,b demonstrate that both iron recovery and iron grade dependences are rather sigmoid.
The micrographs (Figure 10) clarify the process of iron grain growth at 1150–1200 ◦C, where the Na2SO4

addition contributed to increase the grain size. The iron particles up to 13.65% Na2SO4 addition have
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a small size and strongly attached to the gangue phase, so no separation occurred in the samples
obtained at 1150–1200 ◦C, while the separation of the samples over 13.65% Na2SO4 addition at these
temperature range leads to high iron recovery rates, but low grades of the magnetic concentrates.
Besides the majority of iron grains, which are larger than 40 µm, the samples roasted at 1150–1200 ◦C
contain a significant percentage of the grains 5–40 µm in size (Figure 7c,d). Probably, the aggregates of
iron grains of such size with gangue are unable to split apart during grinding process that decrease
the iron concentrate grade. Apparently, decreasing of iron recovery and increasing of iron grade at
the range of 1150–1250 ◦C are due to a growing proportion of the molten phase during the roasting.
On the one hand, the liquid phase promotes diffusion and aggregation of iron metallic particles [92]
that enhances gangue–grain release during grinding and accordingly increases iron grade of the
concentrate after magnetic separation. On the other hand, it is complicated to separate magnetically
besides large iron particles also the grains of small and middle size attached to gangue from difficult
to grind semi-molten material after solidification that results to decreasing of iron recovery. It can
be seen from Figure 9a that the temperature dependence of iron recovery has a minimum at 1250 ◦C
with the addition of 18.2–27.3% Na2SO4 that can be explained by attaching of iron grains with size
less than 40 µm (see Figure 7e) to the gangue phase in the presence of a substantial amount of liquid
phase (see Table 4). An increase in iron recovery at 1300 ◦C is likely due to an increase of the iron grain
growth rate and decrease in the proportion of the small grains.

Figure 11 shows the influence of sodium sulfate addition on the magnetic separation indexes of
the sample B roasted at 1250 ◦C and 1300 ◦C.

The obtained curves indicate that closely to the melting point at 1250 ◦C and 1300 ◦C the mechanism
of the iron grain growth and extraction is different probably due to a different liquid phase content.
In general, the cumulative evidence suggests that at these conditions sodium sulfate addition leads to
approximately equal or lower iron recovery and iron grade.

To study in more detail a behavior of different phases during the roasting and magnetic separation,
XRD analysis was carried out. Figure 12 shows the XRD patterns of non-magnetic fraction of the
samples with maximum temperature before full melting and maximum Na2SO4 addition.
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Figure 11. Effect of the Na2SO4 addition to the red mud sample B roasted at 1250–1300 ◦C during
180 min on iron recovery and grade of magnetic concentrate.

The XRD patterns points out that the main phases of both samples are melilite CaNaAlSi2O7,
oldhamite CaS, unextracted metallic iron and sodium sulfide Na2S. Therefore, there are no the
Reactions (4) and (5) at these conditions. Amorphous halo is also present in the both samples due to
high content of a liquid phase uncrystallized during the quenching in liquid nitrogen. Furthermore,
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it is interesting to note that the tailings obtained from the sample B contain insignificant amount of FeS,
while it was not detected in the tailings obtained from the sample U. This fact indicates that the roasting
of the sample B with a lack of calcium to generate calcium sulfide forms not only Na2S according to
thermodynamic calculations (Figure 4), but also FeS.
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Figure 12. XRD patterns of the tailings obtained by roasting of red mud B at 1300 ◦C (a) and red mud
U at 1400 ◦C (b) with 27.3% Na2SO4 and 180 min duration time and following magnetic separation,
where S—CaS; T—CaNaAlSi2O7; X—Ca2Al2SiO7; J—Na2S; P—CaTiO3; E—α-Fe; I—FeS (troilite).

Figure 13 shows the influence of holding time on the magnetic separation indexes (a) and
distribution of the iron grain fractions in it (b) at fixed temperature and Na2SO4 addition after roasting
of the sample B.
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As reflected by Figure 13a, the magnetic separation indexes rise, reach a peak, then drop. Analogous
time dependences were obtained in other studies on carbothermic roasting of red mud [41,47,49,93,94].
It is clear from the obtained data that iron recovery and iron grade correlate well with the size
distribution of iron grains, so the crucial factor of Fe extraction is the iron grain size. The optimal
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roasting time for 1300 ◦C with the addition of 13.65% Na2SO4 is 60 min, where iron recovery and iron
grade were 97.5% and 92.6%, respectively.

Table 5 shows the results of magnetic separation of the roasted sample U.

Table 5. The magnetic separation indexes of the reduced samples U with Na2SO4 addition.

Temperature, ◦C Addition Iron Recovery (ε), % Iron Grade (%Fec), %

1350 ◦C
13.65% Na2SO4 83.91 83.7
27.3% Na2SO4 87.21 51.6

1400 ◦C
Without addition 82.83 83.6
13.65% Na2SO4 86.09 78.3
27.3% Na2SO4 89.08 82.7

The data demonstrate that the grade of iron concentrate obtained by roasting of the red mud U at
1350 ◦C is inferior to even the grade of the roasted red mud B at 1150 ◦C (Figure 9b). An increase of the
roasting temperature up to 1400 ◦C improves the grade of iron concentrate, but iron content is still low
compared, for example, with the concentrate obtained from the roasted red mud B at 1250 ◦C.

In general, the temperature range of successful separation of the roasted samples U is narrower
than that of the roasted samples B. Thus, obtaining of separated samples only at 1350–1400 ◦C near
melting point indicates that high basicity is undesirable for iron extraction in spite of favorable
thermodynamic conditions (Figure 5).

Table 6 compares the contents of iron, carbon, sulfur and phosphorus in the iron concentrates,
obtained by the treatment of the sample B with and without sodium sulfate addition.

Table 6. Chemical composition (wt.%) of the concentrates obtained by roasting of the red mud B at
1250 ◦C and 180 min duration time without additions and with addition of 9.1% Na2SO4 and following
magnetic separation.

Addition Fe C S P

– 90.06 1.27 0.23 0.80

9.1% Na2SO4 90.80 1.60 1.16 0.88

It is well known that the conventional content of carbon in direct-reduced iron for steelmaking
is 1–2.5% [95], and the obtained concentrates comply with this range. Phosphorus content in both
concentrates is almost similar, but sulfur content differs. A significant sulfur content is in the concentrate
obtained with 9.1% Na2SO4 addition compared with another one. This fact shows that Na2SO4 addition
in the amount of 9.1% leads to a considerable increase of sulfur content in the concentrate although
the thermodynamic calculation at such amount of sodium sulfate has indicated the presence only
non-magnetic CaS (Figure 4). Moreover, the investigation of iron phase distribution in the roasted
samples with addition of 13.65% Na2SO4 by Mössbauer spectroscopy (Figure 6 and Table 3) detected no
iron-sulfur-containing phases. Hence, a small part of gangue including sulfur-containing compounds
attaches with iron grains, thereby deteriorating purity and grade of the concentrate.

4. Discussion

The experimental results have shown that the basicity of red mud has a significant influence on
the iron grain growth during carbothermic reduction of red mud. A large amount of CaO in red mud
composition leads to the formation of minerals with high melting temperature such as Ca2Al2SiO7

(Figure 12b) that inhibits the process of iron grain growth. The addition of alkali metal salts decreases
a melting point of the sample that promotes growth of metallic particles [46,92].

Based on the present study, one might assume that sodium sulfate has an ambivalent effect on
iron grain growth process in the case of carbothermic reduction of the red mud samples with high
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content of CaO + Al2O3 compared with SiO2. On the one hand, Na2SO4 reacts with CaO and Al2O3

with the formation of CaNaAlSi2O7 with low melting point, thereby facilitating the growth of iron
particles. On the other hand, CaS with high melting point also forms (Figure 12), which in some degree
decreases the liquid phase amount.

In contrast with Na2CO3 addition for carbothermic roasting of the red mud sample U at 1300 ◦C
for 180 min [48], the roasting of the same red mud sample with Na2SO4 under similar conditions
resulted in negligible separation of iron from gangue. Increasing temperature up to 1350 ◦C led to
iron separation into concentrate with a worse grade compared with the grade of the concentrate
obtained after roasting with Na2CO3 addition at 1300 ◦C. Therefore, it can be inferred that the Na2CO3

addition is more preferable compared with the Na2SO4 addition for iron extraction from red mud with
higher basicity.

Iron separates from the red mud B after roasting at lower temperature and amount of the additive
compared with the red mud U. Iron recovery of 97% and iron concentrate grade of 64.9% were obtained
after roasting at 1150 ◦C and with addition of 13.65% Na2SO4 that agrees well with previously reported
red mud roasting with similar basicity in the presence of sodium sulfate [39,46]. It should be noted that
iron content in the concentrate may be higher in the case of the application of wet magnetic separation,
which is more suitable for finely ground materials [96].

As a generalization, the following mechanism of sodium sulfate influence on iron grain growth
during carbothermic roasting of red mud with different basicity is suggested. As mentioned above,
an increase of the Na2SO4 amount increases the liquid phase proportion, which promotes diffusion
and aggregation of reduced iron particles. At excess of sulfur with respect to calcium to form CaS,
an additional factor has a significant effect due to FeS formation by the following reactions [81]:

Na2SO4 + 3CO(g) = Na2O + 3CO2(g) + S(g) (6)

Fe + S(g) = FeS (7)

The formation of FeS at the grain edges decreases surface tension and significantly promotes iron
grain growth [97] that facilitates iron separation and grade of the concentrate. Probably, this factor
predetermined the better effect on iron grain growth of sodium sulfate compared with other additives [57].
However, FeS is antiferromagnetic compound [98], so further increase of Na2SO4 leads to a decrease of
iron recovery [99].

Thus, the effect of the sodium sulfate addition can be beneficial for nickel extraction, which is
more valuable than iron, during the processing of complex ores [97], but it is inefficient for only iron
recovery, especially from materials with a high content of calcium like the red mud samples B and U.
Formation of calcium sulfide with a high melting point and deterioration of the concentrate quality
by sulfur impurity (see Table 6) indicates that the Na2SO4 addition is unsuitable for the red mud
carbothermic roasting, and it is more favorable to use other additives, e.g., Na2CO3.

However, whatever additive was used in the carbothermic roasting, low iron content in the tailings is
favorable for their following leaching because high iron content hinders the extraction of scandium from
leached solutions [100]. In addition, it was shown that Na2CO3 and Na2SO4 additions for carbothermic
roasting of red mud promote recovery of valuable components from the tailings into solution using
sulfuric acid leaching [42]. Therefore, the alkaline additions not only improve iron recovery after the
roasting of red mud, but enable subsequent treatment of tailings by hydrometallurgical methods.

5. Conclusions

Experimental investigation of iron grain growth during carbothermic reduction of red mud with
different basicity in the presence of Na2SO4 has enabled to determine optimal roasting conditions.
The roasting during 180 min with addition of 13.65% Na2SO4 at 1350 ◦C and 1150 ◦C followed by
magnetic separation resulted in obtaining of iron concentrates with 83.91% and 97% of iron recovery,
83.7% and 64.9% of iron grade for the red mud samples U and B, respectively. In the absence of Na2SO4
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there was no successful separation for the red mud U, while the best results for the red mud B were
iron recovery of 95.42% and iron grade of 90.06% obtained by roasting during 180 min at 1250 ◦C.
Although the concentrate obtained after roasting of the red mud B with addition of 13.65% Na2SO4 at
1150 ◦C has a lower content of iron compared to the concentrates obtained at 1250–1300 ◦C with and
without Na2SO4 addition, a significant decrease of the roasting temperature and better grindability
due to the absence of melting effects can be more beneficial for practical application. However, it has to
be taken into account that the Na2SO4 addition leads to an increase of sulfur content in the concentrate
and slightly inhibits the iron grain growth process due to calcium sulfide formation, so other alkaline
sulfur-free additives are more suitable to improve carbothermic roasting of red mud.
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