
ISSN 0005-1179, Automation and Remote Control, 2020, Vol. 81, No. 5, pp. 853–868. c© Pleiades Publishing, Ltd., 2020.
Russian Text c© The Author(s), 2020, published in Avtomatika i Telemekhanika, 2020, No. 5, pp. 119–138.

TOPICAL ISSUE

Minimizing Total Weighted Tardiness

for Scheduling Equal-Length Jobs

on a Single Machine

E. R. Gafarov∗,a, A. A. Lazarev∗,b, and F. Werner∗∗,c

∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
∗∗Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
e-mail: aaxel73@mail.ru, bjobmath@mail.ru, cfrank.werner@mathematik.uni-magdeburg.de

Received July 7, 2019

Revised November 3, 2019

Accepted November 28, 2019

Abstract—In this paper, we consider the problem of minimizing total weighted tardiness for
equal-length jobs with arbitrary release dates on a single machine. This problem is mentioned as
a minimal open problem, see http://www2.informatik.uni-osnabrueck.de/knust/class/dateien/
classes/ein ma/ein ma, i.e., its complexity status is still open. The latest results on this problem
were presented in the years 2000 and 2005, namely solution algorithms for special cases. We
present some properties of this problem and discuss possible ways for future research.

Keywords : scheduling, single machine problems, maximization problems, total weighted tardi-
ness, number of tardy jobs

DOI: 10.1134/S0005117920050069

1. INTRODUCTION

The scheduling problems under consideration can be formulated as follows. We are given a set
N = {1, 2, . . . , n} of n independent jobs that must be processed on a single machine. Preemptions
of a job are not allowed. The processing of the jobs starts at time 0. For each job j ∈ N , a constant
processing time pj = p ∈ Z+, a due date dj ∈ Z+, a release date rj ∈ Z+ (i.e., the earliest possible
starting time) and a weight wj ∈ Z+ are given.

A schedule π is uniquely determined by a permutation of the jobs of the set N . Let Cj(π) be
the completion time of job j in the schedule π. If Cj(π) > dj , then job j is tardy and we have
Uj = 1, otherwise Uj = 0. If Cj(π) ≤ dj , then job j is on-time. Moreover, let

Tj(π) = max
{
0, Cj(π)− dj

}

be the tardiness of job j in the schedule π. Denote by Sj = Cj − p the starting time of job j in the
schedule π.

In an active schedule, a job cannot be started earlier without violating the feasibility (i.e.,
without delaying the beginning of another operation). Without loss of generality, we consider only
active schedules.

For the single machine problem of minimizing total weighted tardiness subject to given release
dates and equal-length processing times, the objective is to find an optimal sequence π∗ that

853

854 GAFAROV et al.

minimizes total weighted tardiness, i.e.,
n∑

j=1

fj(Cj) =
n∑

j=1

wjTj.

We denote this problem by 1|rj , pj = p|∑wjTj according to the traditional three-field nota-
tion α|β|γ for scheduling problems proposed by Graham et al. [6], where α describes the machine
environment, β gives the job characteristics and further constraints and γ describes the objective
function. If wj = 1, j ∈ N , for all weights, we denote this special case by 1|rj , pj = p|∑Tj. For
the single machine problem of minimizing the weighted number of tardy jobs, the objective is to
minimize

n∑
j=1

fj(Cj) =
n∑

j=1

wjUj ,

and the notation is 1|rj , pj = p|∑wjUj.

In [3, 10], Baptiste presented polynomial time dynamic programming algorithms to solve the
problems 1|rj , pj = p|∑Tj and 1|rj , pj = p|∑wjUj . Both algorithms are based on the following
two properties:

• there exists a set

Θ =
{
t : t = rj + kp, j ∈ N, k = 0, 1, 2, . . . , n− 1

}

of possible starting times of all jobs, where |Θ| ≤ n2;
• there exists a dominance rule since a partial order of the jobs in an optimal schedule is known.
Job i dominates job j if di ≤ dj . There exists an optimal schedule, where job j is processed
after all jobs i with ri ≤ Sj and di ≤ dj .

The special case of the problem 1|rj , pj = p|∑wjTj with a common due date can be solved by
Baptiste’s algorithm, where job j is processed after all jobs i with ri ≤ Sj and wi ≥ wj .

The special case of the problem 1|rj , pj = p|∑wjTj, where the release dates are a multiple of p,
can be reduced to an assignment problem and thus, solved in polynomial time.

In [11], Verma and Dessouky considered a single machine problem with earliness and tardi-
ness penalties 1|pj = p|∑(αjEj + βjTj), where Ej(π) = max{0, dj −Cj(π)}. They formulated this
problem as a time-indexed ILP and showed that, when certain criteria are met, there exists an
integral optimal solution to the LP relaxation, which means that there exists a polynomial time
solution procedure. In the ILP formulation, they defined a variable xj,t for all relevant jobs j and
possible completion times t, where xj,t = 1 if job j is completed at time t and xj,t = 0 otherwise.
In the LP relaxation, we have xj,t ∈ [0, 1]. Verma and Dessouky described a guaranteed way to
convert a fractional solution into an integral solution with equal objective function value.

In [1], a similar ILP formulation and the same LP relaxation for the problem 1|rj , pj = p|∑wjTj

were presented. The authors stated that, if the instance does not contain two jobs i and j such
that di < dj and wi < wj , then the LP relaxation can be converted into an optimal solution, and
this case can be solved in polynomial time. Unfortunately, the authors did not provide a conversion
procedure and link to the result of Verma and Dessouky [11], although in contrast to the problem
1|rj , pj = p|∑wjTj , in the problem 1|pj = p|∑(αjEj + βjTj), there is a common release date.
Moreover, the set of completion times of job j considered belongs to another interval.

The rest of this paper is organized as follows. In Section 2, some properties of the problem are
presented. Solution procedures for the problem are considered in Section 3. Two solution algorithms
for special cases are presented in Section 4. The complexity status of the problem is discussed in
Section 5. Some maximization scheduling problems with equal-length jobs are formulated and
considered in Section 6.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 855

2. PROPERTIES OF THE PROBLEM 1|rj , pj = p|∑wjTj

We consider the processing order of two jobs i and j in an optimal schedule.

Property 1. Let t1 be the starting time of the earlier job from the set {i, j} and t2 be the starting
time of the second one, where t2 ≥ t1 + p. Then the following dominance rules hold:

1. If wi ≥ wj and di ≤ dj and t1 ≥ ri, then job i precedes job j.

2. If wi < wj and di ≤ dj and t1 ≥ max{ri, rj}, then:
(a) If t2 + p ≤ dj (job j is on-time if it is processed from time t2) then i precedes j;

(b) If t1 > dj − p (both jobs are tardy), then job j precedes job i;

(c) Let di − p < t1 ≤ dj − p. Moreover, let in the schedule π = (π1, i, π2, j, π3) the starting
times be Si(π) = t1 and Sj(π) = t2 and in the schedule π′ = (π1, j, π2, i, π3), they are
Si(π

′) = t2 and Sj(π
′) = t1. Then job i precedes job j if the following condition holds:

∑
wjTj(π) <

∑
wjTj(π

′) ⇐⇒ wi(t2 − t1)−wj(t2 + p− dj) > 0

⇐⇒ t2 <
wj(dj − p)− wit1

wj − wi
;

(d) Let t1 + p ≤ di ≤ dj < t2 + p. Then job i precedes job j if the following condition holds:

∑
wjTj(π) <

∑
wjTj(π

′) ⇐⇒ wi(t2 + p− di) > wj(t2 + p− dj)

⇐⇒ t2 <
wj(dj − p)− wi(di − p)

wj − wi
.

This dominance rules are illustrated in Fig. 1a, where the origin is (rmax, rmax) with rmax =
max{ri, rj}, point

A =

(
di − p;

wj(dj − p)− wi(di − p)

wj − wi

)

and point B is the intersection of two lines:

t2 = t1 + p and t2 =
wj(dj − p)− wit1

wj − wi
.

There are no points below the line t2 = t1 + p.

We note that, if t1 < rj , then it is difficult to find such relationships since in the schedule π′,
jobs that are processed in the interval [t1 + p, t2) can be moved to the right.

In the dynamic programming algorithm of Baptiste [3], intervals [s, e], s, e ∈ Θ, are considered,
where jobs from the subset N ′ = {1, 2, . . . , k}, k ≤ n, are processed in those intervals, i.e., no more
than k jobs in each interval. The running time of the DP algorithm depends on the number of
intervals considered and is computed in [3] as O(n4), since |Θ| = O(n2). The question is: How
many points e should be considered for each fixed value s, i.e., is there an instance with O(n2)
points e?

Property 2. For fixed values s and k, there exist O(k2) points e ∈ Θ.

Proof. We construct the following instance, where

k

4
=
⌈k
4

⌉
and p � k.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

856 GAFAROV et al.

Examples.

For the first k
4 jobs, we have

r1 = s, r2 = r1 + 2p, r3 = r2 + 2p, . . . ,

i.e.,

ri = s+ 2p(i− 1), i = 1, . . . ,
k

4
.

For the next k
4 jobs, we have

ri = ri− k
4
+1 + 1, i =

k

4
,
k

4
+ 1, . . . ,

k

2
.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 857

For the next k
2 jobs, we assume

ri =
k

2
p+ 1 +

(
i− k

2

)
, i =

k

2
+ 1, . . . , k.

In an active schedule, there are between k
4 to k

2 jobs processed at the beginning before time r k
2
+1

and between k
2 to 3k

4 jobs processed from time ri, i ∈ [k2 + 1, k], without idle time.

Then there exist O(k2) active schedules and O(k2) possible completion times e.

Property 3. Let

T =
{
t : t ∈ Θ

⋂
[t1, t1 + p]

}
,

i.e., the set of points that belong to an interval of the length p. Then |T | = O(n).

3. SOLUTION PROCEDURES

The problem under consideration can be solved by dynamic programming with the functional
equations presented in [8].

Suppose that we are given a schedule and that the first k jobs performed under that schedule
are represented by the set N \ J and the remaining n− k jobs by the set J . Now, let F (J, t) denote
the minimal total weighted tardiness of the jobs J , subject to the constraint that no job is started
before t ∈ Θ. The solution of the problem involves finding the value of F (N, 0) and the schedule
of those jobs which yields this function value. With some reflections, it becomes apparent that

F (J, t) = min
i∈J

{
wi max{0, t+ p− di}+ F (J \ {i}, t + p)

}
,

and F (∅, t) = 0,∀t ∈ Θ.

A computational procedure for the solution of this problem only requires to evaluate these
functional equations. The running time of this dynamic programming algorithm is O(n32n).

There can be given another algorithm with the same running time. We consider 2n subsets
N ′ ⊆ N , where

|rj1 − rj2 | ≥ p, j1, j2 ∈ N ′.

For each subset N ′, let Sj = rj, j ∈ N ′, and for each job i ∈ N \N ′, the possible starting time
belongs to the set Θ′ which is a subset of the n− |N ′| smallest values of the set

{
t : t = rj + kp, j ∈ N ′, k = 1, 2, . . . , n − |N ′|

}
.

Then the problem is reduced to an assignment problem which can be solved in O((n−|N ′|)3) time.

Baptiste’s algorithm [3] for the special case with equal weights can be used as a heuristic to
solve the problem with arbitrary weights.

If we assume in this algorithm that job j is processed after all jobs i with ri ≤ Sj and wi ≥ wj ,
then we can present a counterexample, where in an optimal job schedule π, job j is processed before
job i and

Cj − dj = 1, Ci − di = 1, Cj < Ci.

Thus, Baptiste’s algorithm does not lead to an optimal solution for this instance.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

858 GAFAROV et al.

3.1. Local Search

Local search is a heuristic method to solve optimization problems. Local search algorithms
move from one solution to another solution in the space of candidate solutions (the search space)
by applying local changes, until a solution deemed optimal is found or a time bound is elapsed.

We consider the following local changes of a schedule and also their simultaneous realization.
Let an active schedule be denoted by the job sequence π = (π1, i, π2, j, π3).

• left-shift: Schedule job j immediately after the completion of the partial sequence π1, i.e., we
obtain the neighbor π′ = (π1, j, i, π2, π3);

• right-shift: Schedule job i immediately after the completion of the partial sequence π2, i.e.,
we obtain the neighbor π′ = (π1, π2, i, j, π3);

• pairwise interchange: Interchange the jobs i and j, i.e., we obtain the neighbor π′ =
(π1, j, π2, i, π3).

The question is:

• Can we reach an optimal schedule from an initial one by a descent procedure, i.e., by a sequence
of these local changes such that in each step, we perform only one of the modifications described
above and after each step, the objective function value does not increase.

Property 4. There exists a schedule, where each left-shift increases the optimal function value,
but a simultaneous realization of several ones decreases it.

Proof. Consider the instance with

r1 = 2, r2 = 0, r3 = 9, r4 = 6, p = 3, d1 = 6, d2 = 3, d3 = 12, d4 = 9,

w1 = w3 = 100, w2 = w4 = 1

(see Fig. 1b) and let the initial schedule be π = (1, 2, 3, 4). By a left-shift of job 2 to the position
before job 1, we increase the objective function value. Analogously, a left-shift of job 4 before job 3
in π increases it. However, the simultaneous realization of both left-shifts leads to the job sequence
π′ = (2, 1, 4, 3) which decreases the objective function value. For the sequence π′, the total weighted
tardiness is equal to 0 and for the sequence π, it is equal to 11.

Corollary 1. Let π be a job sequence, where each single left-shift increases the objective function
value. Then the relative error of π can become arbitrarily large.

The same proof can be used for the following property as well.

Property 5. There exists a schedule, where each pairwise interchange increases the objective
function value, but a simultaneous realization of several ones decreases it.

Property 6. Let π be an initial schedule and N ′ = {j1, j2, . . . , jk} be a given subset of jobs to be
shifted to the left. The order of the jobs from the set N ′ is fixed, i.e., job j1 precedes job j2, job j2
precedes job j3, etc. Then an optimal left-shift combination can be computed in O(n8) operations.

Proof. An optimal left-shift combination can be computed by the following dynamic program-
ming algorithm. At each stage l = k, k − 1, . . . , 1, for job jl ∈ N ′, we consider all possible posi-
tions xl in a job sequence, where the order of the jobs N \N ′ remains the same, and all possible
starting times tl ∈ Θ. This means that the state of a system in the dynamic programming algo-
rithm is defined by the vector (xl, tl). For each state, we compute the function value Fl(xl, tl)
which is the total weighted tardiness of the jobs processed in an active schedule from time tl on
by a sub-sequence started with the job jl. This function is used in the next step for the job jl−1.
There are O(n1+2) states at each stage. For each state (xl, tl), the states obtained at the previous
stage are considered and O(n) operations are needed to compute Fl(xl, tl). So, the running time of
the dynamic programming algorithm is equal to O(n8).

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 859

Property 7. Assume that for a job sequence (1, 2, 3), the two adjacent pairwise interchanges
1 ⇐⇒ 2 and 2 ⇐⇒ 3 increase the objective function value. There exists an instance, where the
interchange 1 ⇐⇒ 3 leads to a better job sequence.

Such an instance can be given as follows:

r1 = r2 = r3 = 0, p = 3, d1 = 5, d2 = 7, d3 = 8, w1 = 1, w2 = w3 = 5.

For the job sequence (1, 2, 3), we have
∑

wjTj = 5 and for the job sequence (3, 2, 1), we have∑
wjTj = 4.

Corollary 2. If we consider a local search procedure with pairwise job interchanges, then also
pairs of non-adjacent jobs have to be considered, i.e., O(n2) pairs of jobs.

Property 8. Let for the job sequence (1, 2, . . . , n − 1, n) all pairwise interchanges increase the
objective function value. There exists an instance, where a left-shift leads to a better job sequence
(n, 1, 2, . . . , n− 1).

Proof. For an explanation, see Fig. 1c. Consider the following instance:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n > 3
ri = 0, i = 1, . . . , n
p = 2
wi = pwn − 1, i = 1, . . . , n− 2
wn−1 = pwn + 1, i = 1, . . . , n− 2
dn = 0
di = (i+ 1)p − 1, i = 1, . . . , n− 1.

(1)

For the job sequence π = (1, 2, . . . , n− 1, n), all pairwise interchanges increase the objective func-
tion value. For the sequence π′ = (n, 1, 2, . . . , n− 1), we have

F (π′) = F (π) +
n−1∑
i=1

wn − p(n− 1)wn

= F (π) + p(n− 1)wn − (n− 2) + 1− p(n− 1)wn < F (π).

Property 9. There exists a schedule, where each left-shift increases the objective function value,
but there exists a right-shift which decreases it.

3.2. Relaxation of the Problem

In this section, we consider a relaxation of the problem, i.e., an instance I ′, where the values ri
are rounded such that the distance between them is a multiple of p. For example

r′i =
⌊
ri
p

⌋
p, d′j = dj − (rj − r′j).

The instance I ′ is reduced to the assignment problem and can be solved in polynomial time.
Let π be an optimal job sequence for an initial instance I and π′ be an optimal job sequence for a
modified instance I ′ with rounded parameters.

Now, the questions are:

• What is the relative error

F (π)− F (π′)
F (π)

for the instance I?

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

860 GAFAROV et al.

• What is the difference between F (π) for I and F ′(π′) for I ′, where F ′ denotes the function
value for the rounded data?

Property 10. There exists an instance, where

F (π)

F ′(π′)

can become arbitrarily large.

Let n= 2, p= 3, r1 = 1, r2 = 3, d1 = 4, d2 = 6, w1 = w2 = 1. For π = π′ = (1, 2), we get F (π) = 1.
Moreover, we have F ′(π′) = 0, where r′1 = 0, d′1 = 3, r′2 = r2, d

′
2 = d2.

Property 11. There exists an instance, where

F (π)− F (π′)
F (π)

can become arbitrarily large.

Consider the following instance:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = 4

rn = 0

ri =
p

2
, i = 1, . . . , n− 1

di = ri + 2p− 1, i = 1, . . . , n− 1

dn = p

wn = 1

wi = np, i = 1, . . . , n− 1.

(2)

The job sequence π′ = (1, 2, . . . , n− 1, n) is optimal for the instance I ′, where job n is the
only tardy one. For the instance I, there is only one tardy job n as well. The job sequence
π = (n, 1, 2, . . . , n− 1) is optimal for the instance I with no tardy jobs.

We can consider another relaxation, where r′i is calculated such that
∑n

j=1 |rj − r′j | is minimized.
For this relaxation, Properties 10 and 11 hold as well. To prove this, we only need to consider n
additional jobs with rj = np, j = n+ 1, . . . , 2n.

4. SPECIAL CASES OF THE PROBLEM 1|rj , pj = p|∑wjTj

In this section, algorithms to solve two special cases are considered. As it was mentioned above,
the special case with a common due date can be solved by Baptiste’s algorithm.

First, we consider the special case, where dmax − dmin ≤ p. This special case can be solved by
the following algorithm.

Choose two straddling jobs j1 and j2 that will be processed in an active schedule one by one
from a starting time Sj1 such that no other jobs can be processed in the interval [dmin, dmax], i.e.,

Sj1 ≤ dmin, Cj2 ≥ dmax.

Then the sub-problem with the subset of jobs N \ {j1, j2} can be solved by a modification of
Baptiste’s algorithm in O(n7) time, where job j is processed after all jobs i with ri ≤ Sj and
wi ≥ wj . In the modified algorithm, only intervals [s, e] are considered which have no intersections
with the interval [Sj1 , Cj2].

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 861

There are O(n2) pairs of jobs j1 and j2 and O(n) possible starting times Sj1 ∈ Θ according to
Property 3 and a single point Sj2 for a chosen value Sj1 since only active schedules are considered.
Thus, this special case can be solved in O(n2+1+7) time.

Second, we consider the following special case with n jobs satisfying the following inequalities:
{

w1 ≤ w2 ≤ · · · ≤ wn−1

d1 ≥ d2 ≥ · · · ≥ dn−1,
(3)

To solve this problem, we have to choose a starting time Sn ∈ Θ and to solve the rest of the
problem by a modification of Baptiste’s algorithm. Thus, this special case can be solved in O(n2+7)
time.

5. COMPUTATIONAL RESULTS FOR THE PROBLEM 1|rj , pj = p|∑wjTj

In this section, we present some results of a numerical experiment, where we investigate the
number of possible starting times from the set Θ when k jobs are already scheduled.

We consider the following special case:
{

w1 ≤ w2 ≤ · · · ≤ wn

d1 ≤ d2 ≤ · · · ≤ dn,
(4)

with n = 10.

We generated the instances as follows. For each p ∈ {5, 10, 15, 20, 25, 30}, we generated 10 in-
stances with rj ∈ [0, (n − 2)p], d ∈ [0, (n − 1)p], w ∈ [1, 120]. For each instance, a branch and bound
algorithm is used with the following branching procedure Branching(j, Π), where j is the job to
be scheduled in the procedure and Π is a partial schedule, for which the starting times Si, i =
1, 2, . . . , j − 1, are defined. In the procedure, we calculate the set Θj according to the sequence Π
and the release date rj . Let Sj′ < Sj′′ , j

′, j′′ ≤ j − 1, and there is no other j′′′ ≤ j − 1, for which
Sj′ < Sj′′′ < Sj′′. Then we introduce the sets

τ1 =
{
Sj′ + kp, k = 1, 2, . . . , n− j : Sj′ + kp+ p ≤ Sj′′ , Sj′ + kp ≥ rj

}
,

τ2 =
{
ri + kp, k = 1, 2, . . . , n− j, i ≥ j, rj ≤ ri + kp ≤ Sj′′ − p, ri > Sj′ + p

}
and

τ3 =
{
Sj′′ − kp, k = 1, 2, . . . , n− j : Sj′′ − kp− p ≥ Sj′ , Sj′′ − kp ≥ rj

}
.

Let t be the maximal value from the set τ2, where (Sj′′ − t) is a multiple of p. If such a t exists,
then we delete all the values from the set τ2 which are larger than t and all the values from the
set τ3 which are less than t. Then we add to the set Θj the sets τ1, τ2, τ3 and the value rj if
Sj′ + p < rj < Sj′′ − p.

In the branching procedure, we consider all possible starting times t ∈ Θj. Let TWT (Π) be the
total weighted tardiness of the jobs in the sequence Π. If

TWT (Π) + wj max{t+ p− dj , 0} ≥ UB,

then t is excluded from the further considerations, where an upper bound UB on the optimal
function value is the best objective function value found so far.

First, we report the results exemplary for one of the considered instances with the following
data.

p = 10, rj ∈ {72, 58, 29, 56, 49, 58, 55, 70, 57, 72},
dj ∈ {66, 71, 73, 75, 76, 76, 82, 85, 88, 88},
wj = {22, 30, 42, 56, 68, 75, 75, 94, 103, 111},

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

862 GAFAROV et al.

Table 1. Results for p ∈ {5, 10, 15}
rj dj wj Schedule TWT TNN1 TNN2 %

p = 5

21, 0, 35, 31, 26,
11, 10, 25, 11, 14

8, 26, 35, 35, 38,
40, 42, 43, 44, 44

6, 13, 20, 20, 58,
59, 84, 90, 110,
116

50, 0, 40, 45, 30,
15, 10, 25, 20, 35

782 199 344 107 496 54

17, 36, 8, 34, 20,
25, 16, 39, 6, 23

19, 19, 28, 32, 32,
37, 38, 39, 43, 44

14, 21, 23, 46, 50,
60, 67, 89, 103,
107

51, 46, 11, 36, 21,
26, 16, 41, 6, 31

2227 620 833 298 294 48

16, 26, 10, 5, 25,
29, 11, 19, 31, 14

30, 31, 33, 34, 36,
39, 39, 43, 44, 44

9, 15, 44, 50, 52,
64, 77, 89, 91, 113

50, 45, 10, 5, 25,
30, 15, 20, 40, 35

601 196 973 112 646 57

35, 35, 37, 2, 22,
9, 16, 8, 35, 21

16, 22, 23, 31, 35,
35, 40, 41, 42, 44

22, 27, 31, 54, 65,
77, 84, 105, 105,
108

50, 45, 40, 2, 23,
13, 18, 8, 35, 28

2296 205 273 80 800 39

7, 18, 10, 31, 4, 7,
4, 20, 19, 0

11, 20, 30, 30, 33,
34, 35, 37, 41, 44

9, 9, 45, 48, 50,
62, 64, 85, 87, 117

41, 46, 10, 31, 5,
15, 20, 25, 36, 0

882 264 585 207 667 78

p = 10

7, 65, 56, 9, 17,
39, 77, 16, 64, 79

35, 50, 56, 70, 74,
81, 86, 87, 87, 89

39, 46, 54, 55, 64,
71, 84, 97, 104,
104

7, 97, 57, 17, 27,
47, 77, 37, 67, 87

4132 100 035 54 247 54

53, 63, 4, 23, 26,
27, 18, 10, 49, 28

36, 36, 42, 55, 55,
68, 75, 81, 85, 88

1, 24, 26, 27, 27,
46, 58, 79, 95, 107

94, 84, 4, 24, 34,
44, 54, 14, 64, 74

1460 592 976 416 717 70

32, 56, 10, 4, 49,
78, 57, 42, 40, 23

41, 51, 67, 72, 83,
84, 84, 85, 87, 89

11, 28, 29, 34, 41,
48, 56, 61, 77, 85

34, 56, 14, 4, 96,
86, 66, 44, 76, 24

1972 414 289 316 671 76

24, 76, 5, 36, 21,
57, 70, 36, 59, 52

27, 35, 48, 69, 71,
73, 76, 79, 83, 88

9, 23, 26, 34, 71,
72, 102, 105, 113,
114

107, 97, 5, 36, 21,
57, 87, 46, 67, 77

4608 6 476 173 3 329 563 51

65, 2, 8, 3, 29,
34, 37, 33, 47, 57

16, 46, 47, 62, 64,
79, 79, 83, 83, 87

25, 31, 32, 49, 79,
90, 94, 100, 101,
108

92, 2, 12, 22, 32,
42, 52, 62, 72, 82

2690 849 744 367 675 43

p = 15

97, 105, 22, 98,
42, 32, 114, 47,
79, 86

67, 89, 103, 112,
114, 116, 118,
130, 131, 134

5, 36, 36, 47, 47,
48, 53, 103, 112,
116

158, 143, 22, 98,
52, 37, 128, 67,
82, 113

4386 1 709 603 1 166 960 68

93, 31, 60, 55, 28,
90, 51, 29, 106, 85

50, 68, 68, 76, 86,
89, 105, 119, 122,
129

12, 13, 17, 27, 50,
52, 60, 63, 63, 90

166, 151, 136, 58,
28, 90, 73, 43,
106, 121

5719 4 417 446 1 328 448 30

54, 37, 9, 104, 93,
64, 35, 26, 20, 61

41, 109, 118, 123,
126, 127, 128,
129, 130, 133

6, 11, 20, 35, 45,
56, 59, 63, 91, 109

144, 129, 9, 114,
99, 69, 39, 54, 24,
84

1303 386 234 318 040 82

19, 58, 44, 22,
101, 44, 61, 27,
81, 119

65, 70, 79, 80, 88,
90, 102, 112, 122,
134

2, 18, 29, 43, 50,
56, 67, 81, 95, 110

157, 142, 52, 22,
112, 67, 82, 37,
97, 127

4610 1 950 750 843 607 43

18, 51, 73, 14, 57,
50, 72, 57, 56 119

54, 73, 86, 89, 95,
105, 110, 116,
132, 134

1, 13, 20, 35, 44,
68, 85, 95, 96, 111

18, 155, 140, 33,
65, 50, 80, 95,
110, 125

3307 3 689 263 1 928 262 52

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 863

Table 2. Results for p ∈ {20, 25, 30}
rj dj wj Schedule TWT TNN1 TNN2 %

p = 20

71, 25, 58, 69, 93,
122, 72, 123,
95, 70

102, 116, 125, 140,
142, 151, 164,
166, 166, 175

3, 6, 8, 10, 43, 51,
67, 87, 93, 113

218, 25, 58, 198,
98, 178, 78,
138, 118, 158

3924 29 709 961 6 809 732 23

83, 67, 52, 154,
92, 60, 38, 49,
65, 80

73, 103, 103, 117,
146, 156, 166,
171, 172, 175

18, 18, 47, 58,
67, 69, 77, 81,
105, 118

198, 218, 58,
178, 98, 78, 38,
118, 138, 158

10 092 1 849 948 1 203 732 65

101, 41, 18, 116,
101, 42, 59, 138,
104, 140

86, 111, 117, 123,
137, 158, 166,
169, 170, 176

2, 19, 23, 24, 25,
27, 52, 59, 110,
110

201, 41, 18, 181,
101, 61, 81, 141,
121, 161

2692 2 074 218 88 4291 43

55, 84, 135, 56,
36, 98, 60, 5,
28, 43

83, 98, 106, 106,
111, 112, 130,
149, 165, 170

2, 22, 34, 37, 52,
54, 63, 72, 82, 113

188, 128, 168,
68, 48, 108, 88,
5, 28, 148

5002 758 835 471 049 62

145, 95, 25, 148,
40, 28, 84, 135,
46, 52

87, 87, 93, 122,
153, 155, 160,
166, 171, 178

18, 29, 36, 38, 42,
54, 75, 84, 90, 96

205, 105, 25, 185,
45, 65, 85, 145,
125, 165

7412 1 288 063 579 338 45

p = 25

5, 93, 118, 175,
140, 129, 22, 63,
20, 74

121, 129, 146, 150,
167, 168, 169,
173, 178, 211

26, 31, 32, 51, 52,
56, 84, 89, 96, 106

5, 105, 230, 205,
155, 130, 30, 80,
55, 180

8275 46 808 29 428 63

193, 142, 193,
194, 168, 175,
107, 186, 164, 59

152, 197, 200, 200,
218, 219, 220,
222, 222, 224

25, 33, 44, 46, 50,
55, 64, 71, 84, 97

317, 142, 292,
267, 242, 217,
107, 192, 167, 59

17 845 2 103 722 444 158 21

176, 177, 167, 25,
48, 113, 65, 80,
66, 170

100, 120, 136, 142,
152, 186, 201, 202,
205, 221

5, 17, 26, 28, 58,
81, 100, 106, 109,
118

250, 225, 175, 25,
50, 125, 75, 100,
150, 200

5221 973 995 807 576 83

137, 41, 14, 164,
146, 186, 74, 36,
119, 74

83, 92, 127, 132,
167, 174, 196,
208, 217, 220

5, 11, 31, 50, 58,
66, 80, 83, 114,
116

246, 41, 14, 171,
146, 221, 91, 66,
119, 196

9240 513 204 278 014 54

138, 79, 40, 50,
109, 2, 163, 156,
132, 190

72, 105, 110, 151,
153, 169, 200,
204, 208, 221

4, 48, 53, 57, 59,
60, 60, 74, 80,
118

240, 90, 40, 65,
115, 2, 215, 165,
140, 190

3652 217 856 173 628 80

p = 30

55, 1, 219, 107,
32, 190, 92, 17,
80, 130

119, 129, 143, 150,
180, 184, 198,
253, 255, 263

7, 9, 36, 40, 53,
84, 87, 102, 112,
112

280, 1, 250, 121,
61, 190, 151, 31,
91, 220

9333 641 049 342 412 53

46, 239, 103, 164,
226, 50, 209, 83,
117, 51

117, 129, 163, 166,
208, 210, 245, 264,
268, 269

19, 28, 52, 53, 79,
81, 84, 106, 110,
114

46, 316, 106, 166,
286, 76, 226, 136,
196, 256

19 060 494 327 325 578 66

139, 13, 155, 191,
31, 182, 175, 158,
53, 101

173, 191, 192, 208,
214, 221, 227, 241,
246, 257

15, 16, 17, 31, 44,
45, 61, 80, 84, 101

139, 13, 289, 259,
43, 229, 199, 169,
73, 103

6502 620 830 377 214 61

191, 75, 230, 187,
26, 51, 77, 152,
148, 45

112, 119, 154, 220,
222, 230, 232, 242,
246, 266

9, 13, 26, 26, 58,
68, 88, 99, 106,
110

298, 86, 268, 208,
26, 56, 116, 178,
148, 238

6376 536 269 269 281 50

79, 132, 172, 203,
126, 81, 179, 178,
183, 113

166, 178, 205, 210,
219, 241, 242, 247,
254, 255

2, 13, 20, 27, 66,
83, 95, 98, 114,
119

358, 328, 298,
268, 143, 81, 208,
178, 238, 113

9216 22 248 262 7 730 427 35

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

864 GAFAROV et al.

For this instance, we have 33 346 541 nodes, and the numbers of nodes considered for j = 1, 2, . . . , n
are

{
58; 1926; 43 059; 588 149; 3 820 730; 9 432 283; 14 004 668; 4 636 929; 818 539; 200

}
.

If we use the dominance rules presented in Property 1, then the number of nodes considered is
5 303 348, and the numbers of nodes for j = 1, 2, . . . , n are

{
58; 1666; 26 343; 233 762; 962 857; 1 457 811; 1 979 532; 531 006; 110 311; 2

}
.

According to results of the experiment, these dominance rules reduce the number of nodes in the
set Θj on 47%. In Tables 1 and 2, some more detailed results for the instances with p ∈ {5, 10, 15}
and p ∈ {20, 25, 30}, respectively, are reported. In columns 1–3, we give the release dates, due dates
and weights of the 10 jobs, respectively. In column 4, the schedule is described by the starting times
of the jobs. In column 5, we give the optimal function value TWT . In columns 7 and 8, the total
number TNN1 of nodes considered without using of domination rules and the total number of
nodes TNN2 considered with the use of the dominance rules are given. Finally, column 8 gives for
each instance the percentage (%) of branches considered when using the dominance rules.

We also note that the running time of the branch and bound algorithm is exponential, and it
does not solve instances with n = 20 in 60 minutes on a PC with Intel Core 2 Duo CPU P8600 2.4
GHz and 4 GB RAM.

6. COMPLEXITY OF THE PROBLEM 1|rj , pj = p|∑wjTj

To the best of our knowledge, there are two common ways to prove the NP-hardness of a
single machine problem with classical constraints pj , wj , dj , rj ,Dj and classical objective functions
Cmax, Lmax,

∑
wjCj,

∑
wjTj,

∑
wjUj :

• by a reduction from the Partition problem (Knapsack problem, 3-Partition) by assuming that
pj depends on the values bj from the Partition problem. In such a reduction, the number of
possible completion times of the jobs is not restricted by O(n2);

• by a reduction from a graph-theoretic problem (e.g., Clique) if precedence relations are given.

However, both these ways do not lead to a proof of NP-hardness of the problem 1|rj , pj =
p|∑wjTj .

In such proofs mentioned above, a special case of a single machine problem is considered and
the structure of an optimal schedule for this case is known, see, e.g., [7]. However, for a problem
with equal-length jobs, it is likely to construct a polynomial dynamic programming to find the best
solution if its structure is known.

So,

• on the one hand, problem 1|rj , pj = p|∑wjTj does not contain difficulties like an exponential
number of possible completion times or precedence relations and other single machines prob-
lems with equal-length jobs and classical constraints and functions are solvable in polynomial
time,

• on the other hand, no dominance rules for this problem are known and an effective solution
procedure is not known.

We conjecture that problem 1|rj , pj = p|∑wjTj is NP-hard, but to prove it, a new way (i.e.,
another kind of a reduction from an NP-hard problem) has to be considered.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 865

7. MAXIMIZATION PROBLEMS

Typically, in scheduling theory problems are considered, where a specific objective function
has to be minimized. For instance, the minimization of makespan is a very popular optimization
criterion. When a sum function is considered, often total completion time, total tardiness or the
number of tardy jobs have to be minimized. In this section, we consider single machine problems
with an opposite criterion, namely we consider the maximization of makespan, total completion
time or number of tardy jobs.

Investigations of problems with opposite optimization criteria itself are an important theoretical
task. In addition, such problems separately have practical interpretations and applications [2, 4, 5].
The maximal makespan can be also used to reduce the set Θ in minimization problems.

Here we consider only active schedules (note that the maximization problem considered in this
paper would be trivial when allowing arbitrarily inserted unnecessary idle times, since the maximal
objective function value can become arbitrarily large in this case).

In the single machine makespan maximization problem, the objective is to find an optimal sched-
ule π∗ that maximizes Cmax(π) = maxnj=1{Cj}. We denote this problem by 1|rj , pj = p|maxCmax.
Analogously, we denote by 1|rj , pj = p|max

∑
Cj and 1|rj , pj = p|max

∑
Uj the two problems of

maximizing total completion time and the number of tardy jobs, respectively.

In this section, we present a polynomial time algorithm to solve the problems 1|rj , pj =
p|maxCmax and 1|rj , pj = p|max

∑
Cj and some properties of the problem 1|rj , pj = p|max

∑
Uj .

7.1. Solution Algorithm for the Problems 1|rj , pj = p|maxCmax

and 1|rj , pj = p|max
∑

Cj

Let the jobs be numbered according to r1 ≤ r2 ≤ · · · ≤ rn. Without loss of generality, we assume
r1 = 0.

The idea of the algorithm is as follows. One by one, we choose a job for the next position in a
job sequence. We choose a job j according to its release date ri in order to make the gap (an idle
time) between the completion time of the previous job in a job sequence and rj as large as possible
but less than p so that no other job can be processed between the previous job and time rj .

Algorithm

1. Let t := 0 be the completion time of the last scheduled job, Nu := N be the set of unscheduled
jobs, and π := () be the job sequence.

2. FOR l := 1 TO n DO

2.1. Choose a job j := argmax
i∈Nu

{ri, t ≤ ri < t+ p}.
2.2. IF there is no such job j THEN

Choose any job j from the set Nu with ri ≤ t.
IF there is no such job j THEN

t := min
i∈Nu

{ri, t < ri}. GOTO step 2.1.

2.2. π := (π, j). Nu := Nu \ {j}. t := Cj(π).

3. π is an optimal schedule.

Algorithm requires O(n) operations, and O(n log n) operations are needed to order the jobs
according to r1 ≤ r2 ≤ . . . ≤ rn.

Lemma. Algorithm constructs an optimal schedule for the problems 1|rj , pj = p|maxCmax and
1|rj , pj = p|max

∑
Cj.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

866 GAFAROV et al.

Proof. Assume there exists an optimal sequence π∗ = (l, π1, j, π2), where the first job is l, but
job j had to be chosen first by Algorithm. If rl ≤ rj, then for the job sequence π = (j, π1, l, π2), we
have Ci(π) ≥ Ci(π

∗) for each i ∈ N \ {j} and Cmax(π) ≥ Cmax(π
∗).

If rj < rl, then the job sequence π∗ is not active, since job 1 can be scheduled first from time
S1 = 0.

The rest of the proof can be done by induction.

7.2. Properties of the Problem 1|rj , pj = p|max
∑

Uj

It is known that the problem 1|rj |max
∑

Uj is NP-hard [5] but the special case 1|rj =
0|max

∑
Uj can be solved in O(n2) time [2]. For this special case, there exists an optimal job

sequence (G,W), where all jobs from the set G are on-time and all jobs from the set W are tardy
and processed in order of non-decreasing due dates.

Next, we present some properties of the problem 1|rj , pj = p|max
∑

Uj .

Property 12. There exists an optimal job sequence, where the tardy job 2 precedes the on-time
job 1 and r1 < r2.

For an illustration, see Fig. 1d, where jobs 2 and 4 are tardy and jobs 1 and 3 are on-time.

Property 13. There exists an optimal job sequence, where the tardy job 2 precedes the tardy
job 1 and d1 < d2.

For an explanation see, Fig. 1d, where d2 = r2 + p− 1 and d1 = r2 + p.

Property 14. There exist instances for which Algorithm does not construct an optimal schedule.

For an explanation, see Fig. 1e, where job 2 is the only tardy job. In addition, in Fig. 1f, we
show that a maximal total gap does not lead to an optimal schedule, where job 3 is the only tardy
job.

Let there are k jobs j for which rj ∈ [0, p]. Then Algorithm can be modified to consider k
schedules, where the first job in a job sequence is one of them. However, we suppose that there
exists an instance for which all k schedules are not optimal.

To solve the problem, the following heuristic can be used: if in a job sequence π, job j is on-time
and Sj(π) > rj holds, then we try to schedule it earlier. Additionally, we can consider a reason
why a job is started in a sequence π not from its release date. Either it is tardy in the sequence π,
or we need to try to schedule it earlier.

Property 15. If in a job sequence π job j is on time and i is tardy and both of them are started
not earlier than from time t ≥ max{ri, rj} on, then there exists a job sequence π′, where job j
precedes job i and

∑
Uj(π

′) ≥∑
Uj(π).

This property means that, if two jobs are processed not earlier than from time t ≥ max{ri, rj}
on, then an on-time job precedes a tardy one.

Property 16. If in a job sequence π both jobs j and i are tardy, dj ≤ di and both jobs are
processed not earlier than from time t ≥ max{ri, rj} on, then there is a job sequence π′, where
job j precedes job i and

∑
Uj(π

′) ≥∑
Uj(π).

This property means that, if tardy jobs are processed not earlier than from time t ≥ max{ri, rj}
on, then they can be processed according to non-decreasing due dates.

Property 17. If we choose a job from the two jobs j and i to be processed from time

max{ri, rj} ≤ t ≤ min{dj − p, di − p}
on (and the second will be processed later), then choose a job with the largest due date.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

MINIMIZING TOTAL WEIGHTED TARDINESS 867

Property 18. Let for the job sequence π = (π1, j1, j2, j3, j4, π2, j5, π3), the following inequality
hold:

Sj2(π) < rj5 < Cj2(π), Cj1 > rj5 − p, Sj4 = rj4 < rj5 + 2p and Cj5(π) < dj5 .

Then for the job sequence π′ = (π1, j5, j3, j4, π2, j1, j2, π3), we have F (π) ≤ F (π′).

For an explanation, see Fig. 1g. This property means that we have to exclude such situations
by interchanging job j5 with the jobs j2, j3.

Property 19. There exists a schedule, where each pairwise interchange decreases the optimal
function value, but the simultaneous realization of several ones increases it.

For an explanation, see Fig. 1h. For the job sequence π = (4, 5, 6, 1, 2, 3, 7, 8, 9, 10), each pairwise
interchange, e.g., the interchanges 4 ↔ 1, 5 ↔ 2 etc., reduce the number of tardy jobs, but their
simultaneous realization π = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) increases it.

8. CONCLUDING REMARKS

Some properties of the classical scheduling problem 1|rj , pj = p|∑wjTj and several solution
procedures were considered. The complexity status of the problem remains open. To the best
of our knowledge, no pseudo-polynomial algorithms or approximation schemes are known for this
problem.

We conjecture that problem 1|rj , pj = p|∑wjTj is NP-hard, but for a proof a new way (another
kind of a reduction from an NP-hard problem) has to be considered.

In addition, we formulated some new maximization scheduling problems with equal-length jobs
and presented some of their properties.

FUNDING

This work was supported by the DAAD (Deutscher Akademischer Austauschdienst)
no. 91695276, the Russian Foundation for Basic Research, project no. 18-07-00656, and the Russian
Science Foundation, project no. 17-19-01665.

REFERENCES

1. van den Akker, J.M., Diepen, G., and Hoogeveen, J.A., Minimizing Total Weighted Tardiness on a Single
Machine with Release Dates and Equal-Length Jobs, J. Scheduling , 2010, no. 13, pp. 561–576.

2. Aloulou, M.A., Kovalyov, M.Y., and Portmann, M.-C., Evaluation Flexible Solutions in Single Machine
Scheduling via Objective Function Maximization: the Study of Computational Complexity, RAIRO
Oper. Res., 2007, no. 41, pp. 1–18.

3. Baptiste, P., Scheduling Equal-Length Jobs on Identical Parallel Machines, Discr. Appl. Math., 2003,
no. 103(1–3), pp. 21–32.

4. Gafarov, E.R., Lazarev, A.A., and Werner, F., Transforming a Pseudo-Polynomial Algorithm for the
Single Machine Total Tardiness Maximization Problem into a Polynomial One, Ann. Oper. Res., 2012,
no. 196(1), pp. 247–261.

5. Gafarov, E.R., Lazarev, A.A., and Werner, F., Single Machine Total Tardiness Maximization Problems:
Complexity and Algorithms, Ann. Oper. Res., 2013, no. 207, pp. 121–136.

6. Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., Optimization and Approximation
in Deterministic Machine Scheduling: A Survey, Ann. Discr. Math., 1979, no. 5, pp. 287–326.

7. Du, J. and Leung, J.Y.-T., Minimizing Total Tardiness on One Processor is NP-hard, Math. Oper. Res.,
1990, no. 15, pp. 483–495.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

868 GAFAROV et al.

8. Held, M. and Karp, R.M., A Dynamic Programming Approach to Sequencing Problems, J. Soc. Ind.
Appl. Math., 1962, no. 10, pp. 196–210.

9. Kravchenko, S.A. and Werner, F., Parallel Machine Problems with Equal Processing Times: A Survey,
J. Scheduling , 2011, no. 14, pp. 435–444.

10. Leung, J.Y.-T., Handbook of Scheduling , New York: Chapmann and Hall/CRC, 2004.

11. Verma, S. and Dessouky, M., Single-Machine Scheduling of Unit-Time Jobs with Earliness and Tardiness
Penalties, Math. Oper. Res., 1998, no. 23(4), pp. 930–943.

This paper was recommended for publication by F.T. Aleskerov, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020

