
Chapter

Polynomial Algorithm for
Constructing Pareto-Optimal
Schedules for Problem
1∣r j∣Lmax,Cmax

Alexander A. Lazarev and Nikolay Pravdivets

Abstract

In this chapter, we consider the single machine scheduling problem with given
release dates, processing times, and due dates with two objective functions. The first
one is to minimize the maximum lateness, that is, maximum difference between
each job due date and its actual completion time. The second one is to minimize
the maximum completion time, that is, to complete all the jobs as soon as possible.
The problem is NP-hard in the strong sense.We provide a polynomial time algorithm
for constructing a Pareto-optimal set of schedules on criteria of maximum lateness
and maximum completion time, that is, problem 1∣r j∣Lmax,Cmax, for the subcase of
the problem: d1 ≤ d2 ≤…≤ dn; d1 � r1 � p1 ≥ d2 � r2 � p2 ≥…≥ dn � rn � pn.

Keywords: single machine scheduling, two-criteria scheduling, Pareto-set, Pareto-
optimality, minimization of maximum lateness, minimization of maximum
completion time, polynomial time algorithm

1. Introduction

We consider a classical scheduling problem on a single machine. A release time
of each job is predefined and represents the minimum possible start time of the job.
When constructing schedules, we consider two objective functions. The first one is
to minimize the maximum lateness, that is, maximum difference between each job
due date and its actual completion time. The second one is to minimize the maxi-
mum completion time, that is, to complete all the jobs as soon as possible. The
problem is NP-hard in the strong sense [1]. We provide a polynomial time algo-
rithm for constructing a Pareto-optimal set of schedules on criteria of maximum
lateness and maximum completion time, that is, problem 1∣r j∣Lmax,Cmax, for the
subcase of the problem when due dates are: d1 ≤ d2 ≤…≤ dn; d1 � r1 � p1 ≥ d2 �
r2 � p2 ≥…≥ dn � rn � pn. Example of a problem case that meets these constraints
will be the case when all jobs have the same time for processing before due date.

2. Statement of the problem 1∣r j∣Lmax,Cmax

We consider single machine scheduling problem, where a set of n jobs N ¼
1, 2,…, nf g has to be processed on a single machine. Each job we is numbered, that
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is, the entry “job j” is equivalent to the entry “job numbered j.” Simultaneous
executing of jobs or preemptions of the processing of a job are prohibited. For jobs
j∈N, value r j is the minimum possible start time, p j ≥0 is a processing time of job j
and d j is a due date of job j.

The schedule is represented by a set π ¼ s jj j∈N
� �

of start times of each job. By
τ, we denote the permutation of j1,…, jn

� �
elements of the set N. A set of all

different schedules of jobs from the set N is denoted by Π Nð Þ. Schedule π is called
feasible if s j πð Þ≥ r j, ∀j∈N. We denote the completion time of job j∈N in schedule π
as C j πð Þ. Difference L j πð Þ ¼ C j πð Þ � d j, j∈N, denotes lateness of job j in the
schedule π. Maximum lateness of jobs of the set N under the schedule π is

Lmax πð Þ ¼ max
j∈N

C j πð Þ � d j
� �

: (1)

We denote the completion time of all jobs of the set N in schedule π as

Cmax πð Þ ¼ max
j∈N

C j πð Þ:

The problem is to find the optimal schedule π ∗ with the smallest value of the
maximum lateness:

L ∗
max ¼ min

π ∈Π Nð Þ
Lmax πð Þ ¼ Lmax π ∗ð Þ: (2)

For any arbitrary set of jobs M⊆N we also denote:

rM ¼ min
j∈M

r j, dM ¼ max
j∈M

d j, pM ¼
X
j∈M

p j: (3)

In the standard notation of Graham et al. [2], this problem is denoted as 1∣r j∣Lmax.
Intensive work on the solution of this problem has continued since the early 50s of
the 20th century. Lenstra et al. [1] showed that the general case of the problem
1∣r j∣Lmax is NP-hard in the strong sense.

Potts [3] introduced an iterative version of extended Jackson rule (IJ) [4] and

proved that
Lmax πIJð Þ

L ∗
max

≤ 3
2. Hall and Shmoys [5] modified the iterative version and

created an algorithm (MIJ) that guarantees the evaluation
Lmax πMIJð Þ

L ∗
max

≤ 4
3. They also

presented two approximation schemes that guarantee finding ε-approximate solu-

tion in O n log nþ n 1=εð ÞO 1=ε2ð Þ� �
and O n=εð ÞO 1=εð Þ

� �
operations. Mastrolilli [6]

introduced an improved approximation scheme with complexity of

O nþ 1=εð ÞO 1=εð Þ
� �

operations.

A number of polynomially solvable cases of the problem were found, starting
with Jackson’s early result [4] for the case r j ¼ 0, j∈N, when the solution is a
schedule in which jobs are ordered by nondecreasing due dates (by rule EDD). Such
a schedule is also be optimal for the case when the release times and due dates are
associated (ri ≤ r j ⇔ di ≤ d j, ∀i, j∈N).

Schedule is constructed according to the extended Jackson rule (Schrage
schedule): on the next place in the schedule we select a released non-ordered job
with the minimum due date; if there are no such jobs, then we select the job with
the minimum release time among the unscheduled jobs.
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If process times of all jobs are equal, the complexity can be reduced to O n log nð Þ
[7]. Vakhania generalized this result [8] considering the case when the processing
times of some jobs are restricted to either p or 2p. An algorithm with complexity of
O n2 log n log pð Þ was suggested.

A case when job processing times are mutually divisible is considered in [9].
Author suggest a polynomial-time algorithm with a complexity of
O n3 log n log 2pmax

� �
operations for solving this case.

Special cases 1∣prec; r j∣Cmax, 1∣prec; p j ¼ p; r j∣Lmax and 1∣prec; r j; pmtn∣Lmax with
precedence constraints for jobs have been addressed in works of Lawler [10],
Simons [11], Baker et al. [12]. Hoogeveen [13] proposed a polynomial algorithm for
the special case when job parameters satisfy the constraints d j � p j � A≤ r j ≤ d j �
A, ∀j∈N, for some constant A. A pseudo-polynomial algorithm for the NP-hard
case when release times and due dates are in the reversed order (d1 ≤…≤ dn and
r1 ≥…≥ rn) was developed in [14].

We denote by LA
j πð Þ and CA

j πð Þ the lateness and completion time of job j∈N in

schedule π, for instance, A with job parameters rAj , p
A
j , d

A
j

n o
, j∈N. Respectively,

LA
max πð Þ ¼ max

j∈N
LA

j πð Þ is a maximum lateness of the schedule π for instance A.

This paper deals with a problem with two objective functions Lmax and Cmax,
which in general case can be referred as 1∣r j∣Lmax,Cmax. This problem was consid-
ered in [15], where authors consider some dominance properties and conditions
when the Pareto-optimal set can be formed in polynomial time.

Definition 1.1 For any instance A of the problem, each permutation τ of the jobs
of the setN is uniquely defines early schedule πAτ . In the early schedule, each job j∈N
starts immediately after the end of the previous job in the corresponding permuta-
tion. If the completion time of the previous job is less than the release time of the
current job, then the beginning of the current job is equal to its release time. That is,
if τ ¼ j1, j2,…, jn

� �
, then πAτ ¼ s j1 , s j2 ,…, s jn

� �
, where

s j1 ¼ rAj1 , s jk ¼ max s jk�1
þ pAjk�1

, rAjk

n o
, k ¼ 2,…, n: (4)

Early schedules play an important role in our construction, since it is sufficient
to check all early schedules to find the optimal schedule of any problem instance.

By τA we denote the optimal permutation and πA we denote the optimal schedule
for instance A. Only early optimal schedules are be considered, that is, πA ¼ πAτA .

We denote by Π Nð Þ the set of all permutations of jobs of the set N, and by ΠA
the set of feasible schedules for instance A.

3. Problem 1∣di ≤d j,di � ri � pi ≥d j � r j � p j∣Lmax,Cmax

This section deals with the problem of constructing a Pareto-optimal set by
criteria Cmax and Lmax, that is, problem 1∣r j∣Lmax, Cmax. We suggest an algorithm for
constructing a set of schedules Φ N, tð Þ ¼ π01, π

0
2,…, π0m

� �
for which

Cmax π01
� �

<Cmax π02
� �

<…<Cmax π0m
� �

, (5)

Lmax π01
� �

>Lmax π02
� �

>…>Lmax π0m
� �

: (6)
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There is no schedule π such that Cmax πð Þ≤Cmax π0i
� �

and Lmax πð Þ≤Lmax π0i
� �

,
at least one of the inequalities is strict for some i, i ¼ 1,…,m. It is shown
that m≤ n.

3.1 Problem properties

We denote the precedence of the jobs i and j in schedule π as i ! jð Þπ . We also
introduce

r j tð Þ ¼ max r j, t
� �

; (7)

r N, tð Þ ¼ min
j∈N

r j tð Þ
� �

: (8)

In cases when its obvious how many jobs we mean, we write r tð Þ instead of
r N, tð Þ.

We assume that the job parameters satisfy the following constraints:

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn: (9)

For example, these constraints correspond to the case when d j ¼ r j þ p j þ z,
j ¼ 1,…, n, where z is a constant, that is, when all jobs have the same time for
processing before due date. A problem with similar constraints but for a single
objective function (Lmax) is considered in [16].

We assume that ∣N∣> 1 and t is the time when the machine is ready. From the set
N, we find two jobs f ¼ f N, tð Þ and s ¼ s N, tð Þ in the following way:

f N, tð Þ ¼ arg min
j∈N

d jjr j tð Þ ¼ r N, tð Þ� �
, (10)

s N, tð Þ ¼ arg min
j∈Nn ff g

d jjr j tð Þ ¼ r Nnf , tð Þ� �
, (11)

where f ¼ f N, tð Þ. If N ¼ if g, then we set f N, tð Þ ¼ i, s N, tð Þ ¼ 0, ∀t. We also
define d0 ¼ þ∞, f ∅, tð Þ ¼ 0, s ∅, tð Þ ¼ 0, ∀t. For jobs f and s the following properties
are true.

Lemma 1.1 If the jobs of the set N satisfy (4), then for any schedule π ∈Π Nð Þ for
all j∈Nn ff g, for which j ! fð Þπ

L j πð Þ<L f πð Þ (12)

is true, and for all j∈Nn f , sf g, satisfying the condition j ! sð Þπ,

L j πð Þ<Ls πð Þ, (13)

where f ¼ f N, tð Þ and s ¼ s N, tð Þ, is also true.
Proof: For each job j such that j ! fð Þπ, completion time C j πð Þ<C f πð Þ. If

d j ≥ d f , then obviously

L j πð Þ ¼ C j πð Þ � d j <C f πð Þ � d f ¼ L f πð Þ, (14)

therefore (12) is valid.
If for job j∈N, j ! fð Þπ, then d j < d f . Then r j > r f . If r j ≤ r f , then r j tð Þ≤ r f tð Þ

and r f tð Þ ¼ r tð Þ, as follows from (7) and (10). Then r j tð Þ ¼ r f tð Þ ¼ r tð Þ and d j < d f ,
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but this contradicts the definition of job f (10). Therefore, r j > r f . Its obvious that
C j πð Þ � p j <C f πð Þ � p f and, since r j > r f ,

C j πð Þ � p j � r j <C f πð Þ � p f � r f , (15)

C j πð Þ � C f πð Þ< p j þ r j � p f � r f : (16)

Since d j < d f , then (from (9)) d j � r j � p j ≥ d f � r f � p f or d j � d f ≥ r j þ p j �
r f � p f , so C j πð Þ � C f πð Þ< p j þ r j � p f � r f ≤ d j � d f . Then, L j π, tð Þ<L f π, tð Þ for
each job j, j ! fð Þπ.

The inequality (13) can be proved in a similar way.
For each job j satisfying the condition j ! sð Þπ, we have C j πð Þ<Cs πð Þ. If d j ≥ ds,

then L j π, tð Þ ¼ C j πð Þ � d j <Cs πð Þ � ds ¼ Ls π, tð Þ, therefore (13) is true.
Let for the job j∈Nn ff g, j ! sð Þπ, d j < ds, then r j > rs. Indeed, if we assume

that r j ≤ rs, then r j tð Þ≤ rs tð Þ (it follows from (7)). In addition, rs tð Þ≥ r tð Þ for any job
s according to definitions (8) and (11). If rs tð Þ ¼ r tð Þ, then for the jobs j and swe can
write r j tð Þ ¼ rs tð Þ ¼ r tð Þ and d j < ds, which contradicts the definition (11) of job
s N, tð Þ. If rs tð Þ> r tð Þ, that is, rs > r tð Þ, then there is no job i∈Nn f , sf g, for which
rs > ri > r tð Þ. Therefore, for the jobs j and s we get r j tð Þ ¼ rs tð Þ and d j < ds, which
contradicts the definition (11) of job s N, tð Þ. Therefore, r j > rs:

Since C j πð Þ≤Cs πð Þ � ps and p j >0, then C j πð Þ � p j <Cs πð Þ � ps and since r j > rs,
therefore C j πð Þ � p j � r j <Cs πð Þ � ps � rs and

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs: (17)

Since d j < ds, then from (9) we have d j � r j � p j ≥ ds � rs � ps or

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs ≤ d j � ds: (18)

Hence, L j πð Þ<Ls πð Þ for each job j∈Nn ff g, j ! sð Þπ.
Theorem 1.1 If conditions (9) are true for jobs in the subset N0 ⊆N, then at any

time t0 ≥ t and any early schedule π ∈Π N0ð Þ there exists π0 ∈Π N0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ (19)

and one of the jobs f ¼ f N0, t0ð Þ or s ¼ s N0, t0ð Þ is at the first position in schedule
π0. If d f ≤ ds, then job f is at the first position in schedule π0.

Proof: Let π ¼ π1, f , π2, s, π3ð Þ, where π1, π2 and π3 are partial schedules of π.
Then, we construct a schedule π0 ¼ f , π1, π2, s, π3ð Þ. From the definitions (7), (8),
(10) we get r f t0ð Þ≤ r j t0ð Þ, j∈N0, hence Cmax f , π1ð Þ, t0ð Þ≤Cmax π1, fð Þ, t0ð Þ and

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (20)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π2, s, π3ð Þf g: (21)

From the lemma 1.1 we have

L j π
0, t0ð Þ<Ls π

0, t0ð Þ, ∀j∈ π1f g∪ π2f g: (22)

Obviously, the following inequality is true for job f
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L f π0, t0ð Þ≤L f π, t0ð Þ: (23)

From (20)–(23) we get Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and Lmax π0, t0ð Þ≤Lmax π, t0ð Þ.
Let π ¼ π1, s, π2, f , π3ð Þ, that is, job s is before job f . Construct a schedule π0 ¼

s, π1, π2, f , π3ð Þ. Further proof may be repeated as for job f . The first part of the
theorem is proved.

Let us assume d f ≤ ds and the schedule π ¼ π1, s, π2, f , π3ð Þ. Then, we construct a
schedule π0 ¼ f , π11, π12, π3ð Þ, where π11, π12 are schedules of jobs of the sets

j∈N0 : j∈ π1, s, π2ð Þf g, d j < d f
� �

and j∈N0 : j∈ π1, s, π2ð Þf g, d j ≥ d f
� �

. Jobs in π11
and π12 are ordered according to nondecreasing release times r j. From ds ≥ d f we
can conclude that s∈ π12f g.

For each job j∈ π11f g we have d j < d f . Of (9) we get d j � r j � p j ≥ d f � r f � p f ,
hence r j þ p j < r f þ p f , ∀j∈ π11f g, and Cmax f , π11ð Þ, t0ð Þ ¼ r f t0ð Þ þ p f þ

P
j∈ π11f gp j.

Since jobs in schedule π12f g are sorted by nondecreasing release times, then
Cmax f , π11, π12ð Þ, t0ð Þ≤Cmax π1, s, π2, fð Þ, t0ð Þ. As a result

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (24)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π3f g: (25)

Job j∈ π12f g satisfies d j ≥ d f and C j π0, t0ð Þ≤C f π, t0ð Þ, which means

L j π
0, t0ð Þ≤L f π, t0ð Þ, ∀j∈ π12f g: (26)

Since s∈ π12f g, then

Ls π
0, t0ð Þ≤L f π, t0ð Þ: (27)

From the lemma 1.1

L j π
0, t0ð Þ≤Ls π

0, t0ð Þ, ∀j∈ π11f g: (28)

Moreover, it is obvious that

L f π0, t0ð Þ≤L f π, t0ð Þ: (29)

From inequalities (24)–(29) it follows that Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, the theorem is proved.

We call a schedule π0 ∈Π Nð Þ effective if there is no schedule π ∈Π Nð Þ such that
Lmax πð Þ≤Lmax π0ð Þ and Cmax πð Þ≤Cmax π0ð Þ, that is, at least one inequality would be
strict.

Thus, when constraints (9) are satisfied for jobs from the set N, then there is an
effective schedule π0, in which either the job f ¼ f N, tð Þ, or s ¼ s N, tð Þ is present.
Moreover, if d f ≤ ds, then there is an effective schedule π0 with a priority of job f .

We define the set of schedules Ω N, tð Þ as a subset of Π Nð Þ consisting of n!
schedules. Schedule π ¼ i1, i2,…, inð Þ belongs to Ω N, tð Þ if we choose job ik, k ¼
1, 2,…, n as f k ¼ f Nk�1,Cik�1

� �
or sk ¼ s Nk�1,Cik�1

� �
, where Nk�1 ¼

Nn i1, i2,…, ik�1f g, Cik�1 ¼ Cik�1 πð Þ and N0 ¼ N, Ci0 ¼ t. For d f k ≤ dsk it is true that
ik ¼ f k, so if d f k > dsk , then ik ¼ f k or ik ¼ sk. Its obvious that the set of schedules
Ω N, tð Þ contains at most 2n schedules.that is, p2i > y≥ p2i�1.
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Example 1.1

n ¼ 2m, t≤ r1 < r2 <…< rn,
r2i�1 < r2i þ p2i < r2i�1 þ p2i�1, 1≤ i≤m,

r2i�1 þ p2i�1 þ p2i < r2iþ1 < r2i þ p2i þ p2i�1 < r2iþ2, 1≤ i≤m� 1,

r2i�1 þ p2i�1 þ p2i � d2i�1 > y, 1≤ i≤m� 1,

r2i þ p2i þ p2i�1 � d2i ≤ y:

8>>>>>><
>>>>>>:

The set Ω N, tð Þ contains 2m schedules. The value of y is used below in the text.
The optimal solution of the problem 1∣r j, d j ¼ r j þ p j,Lmax ≤ y∣Cmax is π ∗ ¼
2, 1, 4, 3,…, n, n� 1ð Þ:

Theorem 1.2 If for the jobs of the subset N0 ⊆N, ∣N0∣ ¼ n0, is true (9), then at any
time t0 ≥ t and any schedule π ∈Π N0ð Þ exists a schedule π0 ∈Ω N0, t0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ: (30)

Proof: Let π ¼ j1, j2,…, jn0
� �

be an arbitrary schedule. We denote the first l jobs
of the schedule π as πl, l ¼ 0, 1, 2,…, n0, where π0 is an empty schedule, and πl ¼
jlþ1,…, jn0

� �
, then π ¼ πl, πlð Þ. We introduce Nl ¼ N0n πlf g and Cl ¼ Cmax πl, t0ð Þ.

Suppose for some l, 0≤ l< n0, πl is the largest initial partial the schedule of some
schedule from Ω N0, t0ð Þ. If j1 6¼ f N0, t0ð Þ and j1 6¼ s N0, t0ð Þ, then πl ¼ π0, l ¼ 0, then
the largest partial schedule is empty. Let us say f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ. If
d f > ds, then jlþ1 6¼ f and jlþ1 6¼ s, moreover when d f ≤ ds, then jlþ1 6¼ f , since πlþ1 is
not an initial schedule of some schedule from Ω N0, t0ð Þ.

According to the theorem 1.1 for the jobs of the set πlf g, πl ∈Π Nlð Þ, there is a
schedule π0l starting at time Cl, for which Lmax π0l,Cl

� �
≤Lmax πl,Clð Þ,

Cmax π0l,Cl
� �

≤Cmax πl,Clð Þ, and π0l
� 	

1 ¼ f or sð Þ, moreover, with d f ≤ ds, true
π0l
� 	

1 ¼ f , where σ½ �k is the job in the k-th place in schedule σ. Hence,
Lmax πl, π0l

� �
, t0

� �
≤Lmax πl, πlð Þ, t0ð Þ and Cmax πl, π0l

� �
, t0

� �
≤Cmax πl, πlð Þ, t0ð Þ.

Let us denote π0 ¼ πl, π0l
� �

. A feature of schedule π0 is that the first lþ 1 jobs are
the same as first lþ 1 jobs of some schedule from the set Ω N0, t0ð Þ, and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, Cmax π0, t0ð Þ≤Cmax π, t0ð Þ.

After no more than n0 sequential conversions (since schedule length n0 ≤ n) of
the original randomly selected schedule π we come to schedule π0 ∈Ω N0, t0ð Þ, for
which Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ. The theorem is proved.

We form the following partial schedule ω N, tð Þ ¼ i1, i2,…, ilð Þ. For each job
ik, k ¼ 1, 2,…, l, we have ik ¼ f k and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼
s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ inequality d f > ds is true. In case
when d f > ds for f ¼ f N, tð Þ and s ¼ s N, tð Þ, then ω N, tð Þ ¼ ∅. So ω N, tð Þ is the
“maximum” schedule, during the construction of which job (like f ) for the next
place of the schedule can be uniquely selected. We can construct a schedule ω N, tð Þ
for set of jobs N starting at time t using the algorithm 1.1.

Algorithm 1.1 for constructing schedule ω N, tð Þ.
1: Initial step. Let ω ¼ ∅.
2: Main step. Find the jobs f ≔ f N, tð Þ and s≔ s N, tð Þ;
3: if d f ≤ ds then
4: ω≔ ω, fð Þ
5: else
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6: algorithm stops;
7: end if
8: Let N≔Nn ff g, t≔ r f tð Þ þ p f and go to the next main step.

Lemma 1.2 The complexity of the algorithm 1.1 for finding the schedule ω N, tð Þ
is at most O n log nð Þ operations for any N and any t.

Proof: At each iteration of the algorithm 1.1 we find two jobs: f ¼ f N, tð Þ and
s ¼ s N, tð Þ. If jobs are ordered by release times r j (and, accordingly, time r tð Þ is for
O 1ð Þ operations), then to find two jobs (f and s) you need O log nð Þ operations. Total
number of iterations is not more than n. Thus, constructing a schedule ω N, tð Þ
requires O n log nð Þ operations.

The main step of algorithm 1.1 is finding the jobs f and s and it requires at least
O log nð Þ operations. Obviously, the number of iterations of the algorithm is O(n),
therefore, the complexity of the algorithm 1.1 of O n log nð Þ operations is the mini-
mum possible for constructing the schedule ω N, tð Þ.

Lemma 1.3 If for jobs of the set N conditions (9) are true, then any schedule
π ∈Ω N, tð Þ starts with the schedule ω N, tð Þ.

Proof: If ω N, tð Þ ¼ ∅, that is, d f > ds, where f ¼ f N, tð Þ, s ¼ s N, tð Þ, the state-
ment of the lemma is true, since any schedule starts from empty.

Let ω N, tð Þ ¼ i1, i2,…, ilð Þ, l>0, and so for each ik, k ¼ 1, 2,…, l, we have ik ¼ f k
and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼ s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ
and s ¼ s Nl,Clð Þ it is true that d f > ds. As seen from the definition of the set of
schedules Ω N, tð Þ all schedules in this subset start with a partial schedule ω N, tð Þ.

Let us use the following notation ω1 N, tð Þ ¼ f ,ω N0, t0ð Þð Þ and ω2 N, tð Þ ¼
s,ω N00, t00

� �� �
, where f ¼ f N, tð Þ, s ¼ s N, tð Þ,N0 ¼ Nn ff g,N00 ¼ Nn sf g, t0 ¼

r f tð Þ þ p f , t
00 ¼ rs tð Þ þ ps. Obviously, the algorithm for finding ω1 (as well as ω2)

requires O n log nð Þ operations, as much as the algorithm for constructing ω N, tð Þ.
Consequence 1.1 from Lemma 1.3. If the jobs of the set N satisfy conditions (9),

then each schedule π ∈Ω N, tð Þ starts either with ω1 N, tð Þ, or with ω2 N, tð Þ.
Theorem 1.3 If the jobs of the set N satisfy conditions (9), then for any schedule

π ∈Ω N, tð Þ it is true that i ! jð Þπ for any i∈ ω1 N, tð Þ� �
and j∈Nn ω1 N, tð Þ� �

.
Proof: In the case ω1 N, tð Þ� � ¼ N statement of the theorem is obviously true.

Let ω1 N, tð Þ� � 6¼ N. Further in in the proof we use the notation ω1 ¼ ω1 N, tð Þ.
If f ¼ f N, tð Þ and s ¼ s N, tð Þ are such that d f ≤ ds, then all schedules from the set

Ω N, tð Þ begin with a partial schedule ω N, tð Þ ¼ ω1, therefore the statement of the
theorem is also true.

Consider the case of d f > ds. All schedules from set Ω N, tð Þ starting with job f
have partial schedule ω N, tð Þ ¼ ω1.

Let us choose any arbitrary schedules π ∈Ω N, tð Þ with job s comes first, π1 ¼ s,
and any schedule ∣ω1∣ ¼ l, l< n, containing l jobs. Let πl ¼ j1, j2,…, jl

� �
be a partial

schedule of schedule π containing l jobs, where j1 ¼ s. We need to prove that
πlf g ¼ ω1

� �
. Let us assume the contrary that there is a job j∈ πlf g, but j ∉ ω1

� �
.

For case j ! fð Þπ we need to check two subcases. If d j < d f , then from (9) we
have d j � r j � p j ≥ d f � r f � p f , therefore r j þ p j < r f þ p f . Then job j is included

in schedule ω1 according to the definition of ω N, tð Þ and ω1, but by our assumption
j ∉ ω1

� �
. If d j ≥ d f , then from the fact that π ∈Ω N, tð Þ follows f ! jð Þπ, but this

contradicts j ! fð Þπ . Therefore, j∈ ω1
� �

.
The other case is f ! jð Þπ. Then for each job i∈ ω1

� �
, for which i ∉ πlf g,

conditions ri < ri þ pi ≤Cmax ω1ð Þ< rslþ1 ≤ r j are true, because j ∉ ω1
� �

,
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where slþ1 ¼ s Nn ω1
� �

,Cmax ω1ð Þ� �
. Jobs slþ1 and j were not ordered in schedule ω1,

therefore, Cmax ω1ð Þ< rslþ1 ≤ r j. Besides, di ≤ d j. If di > d j, then ri þ pi ≥ r j þ p j, but
ri þ pi < r j is true. Hence i ! jð Þπl , since π ¼ πl, πlð Þ∈Ω N, tð Þ, but it contradicts our
guess that i ∉ πlf g and j∈ πlf g.

Therefore, our assumption is not true and ω1
� � ¼ πlf g. The theorem is proved.

Therefore, jobs of the set ω1 N, tð Þ� �
precede jobs of the set Nn ω1 N, tð Þ� �

for any
schedule from the set Ω N, tð Þ, including the optimal schedule.

3.2 Performance problem with constraint on maximum lateness

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax consists of the
following. We need to find schedule θ for any y with Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ yf g. If Lmax πð Þ> y for any π ∈Π Nð Þ, then θ ¼ ∅.

Lemma 1.4 The complexity of algorithm 1.2 does not exceed O n2 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.2 we find the
schedules ω1 and, if necessary, ω2 in O n log nð Þ operations. Since ω1 and ω2 consist
of at least one job, then at each iteration of the algorithm we either add one or mere
jobs to the schedule θ, or assume θ ¼ ∅ and stop. Therefore, the total number of
steps of the algorithm is at most n. Thus, algorithm 1.2 requires O n2 log nð Þ
operations.

Algorithm 1.2 for solving the problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j �
p j;Lmax ≤ y∣Cmax.

1: Initial step. Let θ≔ω N, tð Þ, t0 ≔ t;
2: Main step.
3: if Lmax θ, t0ð Þ> y then
4: θ≔∅ and the algorithm stops.
5: end if
6: Find N0 ≔Nn θf g, t0 ≔Cmax θð Þ and ω1 N0, t0ð Þ,ω2 N0, t0ð Þ.
7: if N0 ¼ ∅ then
8: the algorithm stops.
9: else
10: if Lmax ω1, t0ð Þ≤ y then
11: θ≔ θ,ω1ð Þ and go to next step;
12: end if
13: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ≤ y then
14: θ≔ θ,ω2ð Þ and go to next step;
15: end if
16: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ> y then
17: θ≔∅ and the algorithm stops.
18: end if
19: end if

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax cannot be solved

in less than O n2 log nð Þ operations because there exists (Example 1.1). The optimal
schedule for this example is π ∗ ¼ 2, 1, 4, 3,…, n, n� 1ð Þ. To find this schedule, we
need O n2 log nð Þ operations.
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We denote by θ N, t, yð Þ the schedule constructed by algorithm 1.2 starting at
time t from the jobs of the set N with the maximum lateness not more than y. If
N ¼ ∅, then θ ∅, t, yð Þ ¼ ∅ for any t and y.

Theorem 1.4 Let the jobs of the set N satisfy conditions (9). If the algorithm 1.2
constructs the schedule θ N, t, yð Þ 6¼ ∅, then Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ y, π ∈Π Nð Þf g. If, as a result of the algorithm 1.2 the sched-
ule will not be generated, that is, θ N, t, yð Þ ¼ ∅, then Lmax πð Þ> y for each π ∈Π Nð Þ.

Proof: In case if for schedule π ∈Π Nð Þ condition Lmax πð Þ≤ y is true, then
according to Theorem 1.2 there is a schedule π0 ∈Ω N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ
≤ y and Cmax π0ð Þ≤Cmax πð Þ. Therefore, the required schedule θ contains in set Ω N, tð Þ.

According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with ω N, tð Þ. Let us
take θ0 ¼ ω N, tð Þ.

After k, k≥0 main steps of the algorithm 1.2 we got the schedule θk and N0 ¼
Nn θkf g, t0 ¼ Cmax θkð Þ. Let us assume that there is an optimal by the criterion of
maximum completion time (Cmax) schedule θ starting with θk. According to
Theorem 1.2, there is an optimal extension of the schedule θk among the schedules
from the set Ω N0, t0ð Þ.

Let θkþ1 ¼ θk,ω1 N0, t0ð Þð Þ, that is, Lmax θkþ1ð Þ≤ y. According to Theorem 1.3, for
schedule ω1, ω1 ¼ ω1 N0, t0ð Þ, there is no artificial idle times of the machine and all
schedules from the set Ω N0, t0ð Þ start with jobs of the set ω1 N0, t0ð Þ� �

. Therefore,
ω1 N0, t0ð Þ is the best by the criterion of Cmax among all feasible by maximum
lateness (Lmax) extensions of the partial schedule θk.

If θkþ1 ¼ θk,ω2 N0, t0ð Þð Þ, that is, Lmax ω1, t0ð Þ> y, and Lmax ω2, t0ð Þ≤ y. All sched-
ules of the set Ω N0, t0ð Þ start with either schedule ω1 N0, t0ð Þ or ω2 N0, t0ð Þ. As
Lmax ω1, t0ð Þ> y, then the only suitable extension is ω2 N0, t0ð Þ.

Thus, at each main step of the algorithm, we choose the fastest continuation of
the partial schedule θk among all those allowed by the maximum lateness. After no
more than n main steps of the algorithm, the required schedule is constructed.

Let us assume that after the kþ 1 steps of the algorithm Lmax ω1, t0ð Þ> y and
Lmax ω2, t0ð Þ> y. If schedule θ could exist, that is, θ 6¼ ∅, then θ would start with θk.
Then for any schedule π ∈Π N0, t0ð Þ there would exist a schedule π0 ∈Ω N0, t0ð Þ such
that Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥Lmax ω1, t0ð Þ> y or Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥
Lmax ω2, t0ð Þ> y. Therefore θ ¼ ∅.

Repeating our proof as many times as the main step of algorithm 1.2 (no more
than n), we come to the truth of the statement of the theorem.

3.3 Algorithm for constructing a set of Pareto schedules by criteria Cmax and
Lmax

Let us develop an algorithm for constructing a set of Pareto schedules Φ N, tð Þ ¼
π01, π

0
2,…, π0m

� �
, m≤ n, by criteria Cmax and Lmax according to conditions (5)–(6).

Schedule π0m is a solution to problem 1∣r j∣Lmax if (9) is true.

Algorithm 1.3 for constructing a set of Pareto schedules by criteria Cmax and Lmax.

1: Initial step. Y≔ þ∞, π ∗ ≔ω N, tð Þ, Φ≔∅, m≔0, N0 ≔Nn π ∗f g and
t0 ≔Cmax π ∗ð Þ.

2: if N0 ¼ ∅ then
3: Φ≔Φ∪ π ∗ð Þ,m≔ 1 and the algorithm stops.
4: end if
5: Main step.
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6: if Lmax ω1, t0ð Þ≤Lmax π ∗ð Þ then
7: π ∗ ≔ π ∗ ,ω1ð Þ, where ω1 ¼ ω1 N0, t0ð Þ and go to the next step;
8: end if
9: if Lmax ω1, t0ð Þ>Lmax π ∗ð Þ then
10: if Lmax ω1, t0ð Þ< y then
11: find θ ¼ θ N0, t0, y0ð Þ using algorithm 1.2, where y0 ¼ Lmax ω1, t0ð Þ;
12: if θ ¼ ∅ then
13: π ∗ ≔ π ∗ ,ω1ð Þ and go to the next step;
14: else
15: π0 ≔ π ∗ , θð Þ
16: if Cmax π0m

� �
<Cmax π0ð Þ then

17: m≔mþ 1, π0m ≔ π0, Φ≔Φ∪ π0m
� �

, y ¼ Lmax π0m
� �

;
18: else
19: π0m ¼ π0 and go to next step;
20: end if
21: end if
22: if Lmax ω1, t0ð Þ≥ y then
23: find ω2 ¼ ω2 N0, t0ð Þ;
24: if Lmax ω2, t0ð Þ< y then
25: π ∗ ¼ π ∗ ,ω2ð Þ and go to the next step;
26: else
27: π ∗ ¼ πm0 and the algorithm stops.
28: end if
29: end if
30: end if
31: end if

As a result of the algorithm 1.3, a set of schedules Φ N, tð Þ is constructed, for the
set of jobs N starting at time t, for which inequality 1≤ ∣Φ N, tð Þ∣ ≤ n true. We should
note that the set Φ N, tð Þ for Example 1.1 consists of two schedules, although set
Ω N, tð Þ consists of 2n

2 schedules:

π10 ¼ 1, 2, 3, 4,…, n� 1, nð Þ, (31)

π20 ¼ 2, 1, 4, 3,…, n, n� 1ð Þ: (32)

Lemma 1.5 The complexity of the algorithm 1.3 does not exceed O n3 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.3 we find schedules
ω1 and, if necessary, ω2, which requires O n log nð Þ operations according to lemma
1.2, and also schedule θ in O n2 log nð Þ operations. As ω1 and ω2 consist of at least one
job, then at any iteration of the algorithm one or more jobs are added to the
schedule π ∗ , or the algorithm stops at last schedule π0. Therefore, the total number
of iterations is at most n. Thus, it takes no more than O n3 log nð Þ operations to
execute algorithm 1.3.

Theorem 1.5 If case if (9) is true for each job of the set N, then the schedule π ∗ ,
constructed by algorithm 1.3, is optimal according to the criterion Lmax. Moreover,
for any schedule π ∈Π Nð Þ there exists a schedule π0 ∈Φ N, tð Þ such that
Lmax π0ð Þ≤Lmax πð Þ and Cmax π0ð Þ≤Cmax πð Þ.

Proof: According to Theorem 1.2, there exists an optimal (by Lmax) schedule
from set Ω N, tð Þ. According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with
a partial schedule ω N, tð Þ.
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Let π0 ¼ ω N, tð Þ. After k, k≥0, main steps of algorithm 1.3 we have a partial
schedule πk. Suppose there is an optimal (by Lmax) schedule starting with πk. We
denote N0 ¼ Nn πkf g and t0 ¼ Cmax πkð Þ.

If πkþ1 ¼ πk,ω1ð Þ, where ω1 ¼ ω1 N0t0ð Þ, then either Lmax ω1, t0ð Þ≤Lmax πkð Þ, or
Lmax πkð Þ<Lmax ω1, t0ð Þ< y, that is, current value of the criterion and the maximum
lateness will “appear” on next steps of the algorithm 1.3. That is, θ N0, t0, y0ð Þ ¼ ∅,
where y0 ¼ Lmax ω1, t0ð Þ. If θ ¼ θ N0, t0, y0ð Þ 6¼ ∅, then we improve the current maxi-
mum lateness value: π0 ¼ πk, θð Þ and y ¼ Lmax π0ð Þ ¼ Lmax ω1, t0ð Þ. The schedule π0 is
added to the set of schedules Φ N, tð Þ. Moreover, according to Theorem 1.3 jobs of
set ω1

� �
precede jobs of set N0n ω1

� �
. Thus, the schedule ω1alert(without artificial

idle times of the machine) would be the best continuation for πk.
If πkþ1 ¼ πk,ω2ð Þ, where ω2 ¼ ω2 N0, t0ð Þ, that is, according to algorithm 1.3

Lmax ω2, t0ð Þ<Lmax π0ð Þ≤Lmax ω1, t0ð Þ. In this case the continuation ω2 is “better” than
ω1. Hence, the partial schedule πkþ1 is a part of some optimal schedule.

Repeating our proof no more than n times, we come to optimality (for Lmax) of
the schedule π ∗ .

The set of schedules Φ N, tð Þ contains at most n schedules, since at each main step
of the algorithm in the set Φ N, tð Þ at most one schedule is “added,” and this step is
executed no more than n times.

Suppose there is a schedule π ∈Π Nð Þ, π ∉ Φ N, tð Þ, such that either
Cmax πð Þ≤Cmax π0ð Þ and Lmax πð Þ≥Lmax π0ð Þ, or Cmax πð Þ≥Cmax π0ð Þ and
Lmax πð Þ≤Lmax π0ð Þ for each schedule π0 ∈Φ N, tð Þ. Moreover, in each pair of inequal-
ities at least one inequality is strict. According to Theorem 1.1, there is a schedule
π00 ∈Ω N, tð Þ such that Lmax π00

� �
≤Lmax πð Þ and Cmax π00

� �
≤Cmax πð Þ. If π00 ∈Φ N, tð Þ.

Thus, it becomes obvious that our assumption is not correct. Let
π00 ∈Ω N, tð ÞnΦ N, tð Þ. Algorithm 1.3 shows that the structure of each schedule

π0 ∈Φ N, tð Þ can be represented as a sequence of partial schedules π0 ¼
ω0
0,ω

0
1,ω

0
2,…,ω0

k0

� �
, where ω0

0 ¼ ω N, tð Þ, and ω0
i is either ω

1 N0
i,C

0
i

� �
, or ω2 N0

i,C
0
i

� �
,

and N0
i ¼ Nn ω0

0,…,ω0
i�1

� �
, C0

i ¼ Cmax ω0
0,…,ω0

i�1

� �
, t

� �
, i ¼ 1, 2,…, k0. The schedule

π00 has the same structure according to the definition of the set Ω N, tð Þ, that is,
π ¼ ω00

0,ω
00
1,ω

00
2,…,ω00

k0 0
� �

, possibly k00 6¼ k0, where ω00
0 ¼ ω0

0 ¼ ω N, tð Þ,ω00
i is equal

to either ω1 N00
i,C

00
i

� �
, or ω2 N00

i,C
00
i

� �
, a N00

i ¼ Nn ω00
0,…,ω00

i�1

� �
,

C00
i ¼ Cmax ω00

0,…,ω00
i�1

� �
, t

� �
, i ¼ 1, 2,…, k00.

We assume that the first k partial schedules π00 and π0 are equal, that is, ω00
i ¼

ω0
i ¼ ωi, i ¼ 0, 1,…, k� 1,ω00

k 6¼ ω0
k: If y ¼ Lmax ω0,…,ωk�1ð Þ, let us construct a

schedule θ using algorithm 1.2, θ ¼ θ Nk,Ck, yð Þ: If θ ¼ ∅, then according to algo-
rithm 1.3, ω0

k ¼ ω1 Nk,Ckð Þ. Because of ω00
k 6¼ ω0

k, schedule ω
00
k ¼ ω2 Nk,Ckð Þ: Objec-

tive function value (Lmax) can be reached on a job from the set Nk, since θ ¼ ∅: The
whole structure of the algorithm 1.3 construct in such a way that up to the “critical”
job (according to Lmax) order the jobs as “tightly” as possible, therefore we complete
the schedule ω1, after which Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. If θ 6¼ ∅,

then for schedules π0 and π00 Cmax π0ð Þ≤Cmax π00
� �

and Lmax π0ð Þ ¼ Lmax π00
� �

. Thus, for
any schedule π00 ∈Ω N, tð ÞnΦ N, tð Þ exists schedule π0 ∈Φ N, tð Þ such that
Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. Hence, for any schedule π ∈Π Nð Þ

there exists schedule π0 ∈Φ N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ and
Cmax π0ð Þ≤Cmax πð Þ. The theorem is proved.

Figure 1 schematically shows the considered schedule.
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For the set of schedules Φ N, tð Þ ¼ π01, π
0
2,…, π0m

� �
, m≤ n, we conditions (5)–(6)

are true.
The schedule π01 is optimal in terms of speed (Cmax), and π0m is optimal in terms

of the maximum lateness (by Lmax) if the jobs of the set N satisfy the conditions (9).

4. Conclusions

Single machine scheduling problem with given release dates and two objective
functions is considered in this chapter, which is NP-hard in the strong sense.
A number of new polynomially and pseudo-polynomially solvable subcases of the
problem were found. For a case when

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn, (33)

an algorithm for constructing a Pareto-optimal set of schedules by criteria Cmax

and Lmax is developed. It is proved that the complexity of the algorithm does not
exceed O n3 log nð Þ operations.

An experimental study of the algorithm showed that it can be used to construct
optimal schedules (by Lmax) even for instances not satisfying the conditions (33).
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The set of Pareto-optimal schedules.
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