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In this paper natural deduction systems for four-valued logic FDE (first degree
entailment) and its extensions are constructed. At that B. Kooi and A. Tamminga’s
method of correspondence analysis is used. All possible four-valued unary (⋆) and binary
(◦) propositional connectives which could be added to FDE are considered. Then FDE
is extended by Boolean negation (∼) and every entry (line) of truth tables for ⋆ and
◦ is characterized by inference scheme. By adding all inference schemes characterizing
truth tables for ⋆ and ◦ as rules of inference to the natural deduction for FDE, natural
deduction for extension of FDE is obtained. In addition, applying of correspondence
analysis gives axiomatizations of implicative extensions of FDE including BN4 and
some extensions by classical implications.
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1. Introduction
A history of the logic FDE dates back to N.D. Belnap’s abstract [5] and
A.R. Anderson and N.D. Belnap’s paper [1]. They investigate a system of
first degree (tautological) entailment which inferences avoid paradoxes of
classical entailment and contain connectives ¬, ∧, and ∨. An implication
is occured in a formula only once: as the main connective. In other words,
all first degree formulas are of the form A → B, where A and B do not
contain →. Since the definitions of → and |= are equivalent, → is replaced by
|= in many papers on this subject (including this one). Moreover, Anderson
and Belnap proved that FDE is a first degree fragment of relevant logic E,
i.e. A→ B (where A and B don’t contain →) is provable in E iff A→ B is
a first degree (tautological) entailment.

There are various semantics for FDE, but in this paper only two of
them will be need: N.D. Belnap’s semantics [3, 4] and J.M. Dunn’s one [8].
They will be discussed in the next section.

The first formalisation of FDE was introduced in [1]. Since then,
various studies of proof systems for FDE have been carried out. For this
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paper G. Priest’s monography [15] is of particular importance: natural
deduction system built in it is actively used here. It should be noted that
there are also investigations devoted to extensions of FDE. (Some of them
are considered in the section 6.)

This paper is a kind of continuation and generalization of these studies:
it is an attempt to explore natural deductions systems axiomatizing all
possible truth-table expansions of FDE1. Solving this problem, I use the
technique of correspondence analysis, first applied by B. Kooi and A.
Tamminga [13] for three-valued logic K2

3 (LP) [16] and its extensions2.
In [20] A. Tamminga explains the idea of correspondence analysis

applied to LP as follows:

<...> characterize every possible single entry in the truth table of a unary
or a binary truth-functional operator by a basic inference scheme. As
a consequence, each unary and each binary truth-functional operator is
characterized by a set of basic inference schemes. Kooi and Tamminga show
that if we add the inference schemes that characterize an operator to a natural
deduction system for LP, we immediately obtain a natural deduction system
that is sound and complete with respect to the logic that contains, next
to LP’s negation, disjunction, and conjunction, the additional operator [20,
p. 256].

Thus, this paper continues B. Kooi and A. Tamminga’s proof-theoretic
studies of three-valued logics, spreading them on the field of four-valued
logics and thereby offering universal instrument of axiomatization of all
possible truth-table extensions of FDE+.

2. Semantics

N.D. Belnap’s semantics [3, 4]. Consider a matrix M4 = ⟨{1, b, n, 0},
¬,∧,∨, {1, b}⟩ of the logic FDE, a matrix M+

4 = ⟨{1, b, n, 0}, ¬,∼,∧,∨,
{1, b⟩} of the logic FDE+, and a matrix M#

4 = ⟨{1, b, n, 0}, ¬,∼,∧,∨,
⋆1, ... , ⋆n, ◦1, ... , ◦m, {1, b⟩} of the logic FDE#.

1Note that for some technical reasons before constructing such systems FDE
(alphabet of which language contains ¬ (De Morgan negation), ∧ (conjunction) and
∨ (disjunction)) should be expanded by Boolean negation ∼. Let us denote this logic
through FDE+.

2In A. Tamminga’s paper [20] the similar result is obtained for K3 [12, 11] and its
extensions.
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A ¬ ∼
1 0 0
b b n
n n b
0 1 1

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

Unary operators ⋆1, ... , ⋆n and binary operators ◦1, ... , ◦m are arbitrary. In
the particular case they can be connectives of FDE+ or all possible four-
valued connectives. By these reason I do not give here truth tables for them.

The values are ordered as follows: 0 4 n, 0 4 b, n 4 1, b 4 1; n and b
are incomparable (see a picture below).
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It is natural to regard the value 1 as “true”, b as “true and false”,
n as “not true and not false” and 0 as “false”. Note that N.D. Belnap
himself defined the entailment through the relation 4. It was J.M. Font
[9] who first proved that it is possible to redefine the entailment relation
through designated values. The same result was independently obtained
by D.V. Zaitsev and Y.V. Shramko [22]. Moreover, Y. Shramko and
H. Wansing [18] proved that it is possible to define entailment through
set {0, b} of antidesignated values.
J.M. Dunn’s semantics [8]. Truth values here are subsets of a set of
classical truth values {t, f}, that is {t}, {t, f}, ∅ and {f} which are analogues
of values 1, b, n and 0 from Belnap’s semantics. The conditions of truth and
falsity for formulas are as follows (v is a valuation):

t ∈ v(¬A) ⇔ f ∈ v(A);
f ∈ v(¬A) ⇔ t ∈ v(A);
t ∈ v(∼A) ⇔ t ̸∈ v(A);
f ∈ v(∼A) ⇔ f ̸∈ v(A);

t ∈ v(A ∧B) ⇔ t ∈ v(A) ∧̇ t ∈ v(B);
f ∈ v(A ∧B) ⇔ f ∈ v(A) ∨̇ f ∈ v(B);
t ∈ v(A ∨B) ⇔ t ∈ v(A) ∨̇ t ∈ v(B);
f ∈ v(A ∨B) ⇔ f ∈ v(A) ∧̇ f ∈ v(B).
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In terms of J.M. Dunn’s semantics the relation of entailment in logics
FDE, FDE+ and FDE# is defined as follows:

Γ |= A ⇔ ∀̇v( ∀̇B
B∈Γ

t ∈ v(B) ⇒ t ∈ v(A)).

3. Inference schemes for arbitrary connectives

Remark 1 (About designations). Let us denote through L# a language
of FDE#, through Prop a set of all propositional variables of the language
L#, through Form# a set of all L#-formulas (formulas in the language
L#); through f⋆ a truth table for ⋆ and through f◦ a truth table for ◦.
Let x, y, z ∈ {1, b, n, 0}, then let us denote through f⋆(x) = y such entry
(line) of a truth table f⋆ that ∀̇A∀̇v(v(A) = x ⇒ v(⋆A) = y); and through
f◦(x, y) = z such entry of a truth table f◦ that ∀̇A∀̇v((v(A) = x ∧̇ v(B) =
y) ⇒ v(A ◦B) = z).

So, in this section propositions 1 and 2 are formulated. The first one
states that for every entry of the form f⋆(x) = y a characteristic inference
scheme corresponds. The second one states that for every entry of the form
f◦(x, y) = z a characteristic inference scheme corresponds. It is clear that
every operator ⋆ has 4 entries and it is characterised by 4 inference schemes;
and every operator ◦ has 16 entries and it is characterised by 16 inference
schemes. In the section 5 it is proved that by adding all inference schemes
which characterise operators ⋆1, ... ,⋆n, ◦1, ... ,◦m as rules of inference to
FDE+ we get not only sound, but complete natural deduction system for
FDE# (i.e. for FDE+ extended by ⋆1, ... ,⋆n, ◦1, ... ,◦m).

Proposition 1. For every L#-formula A:

f⋆(0) =


0 ⇔ ∼A, ¬A |= ∼⋆A ∧ ¬ ⋆ A
n ⇔ ∼A, ¬A |= ∼⋆A ∧ ∼¬ ⋆ A
b ⇔ ∼A, ¬A |= ⋆A ∧ ¬ ⋆ A
1 ⇔ ∼A, ¬A |= ⋆A ∧ ∼¬ ⋆ A

f⋆(n) =


0 ⇔ ∼A, ∼¬A |= ∼⋆A ∧ ¬ ⋆ A
n ⇔ ∼A, ∼¬A |= ∼⋆A ∧ ∼¬ ⋆ A
b ⇔ ∼A, ∼¬A |= ⋆A ∧ ¬ ⋆ A
1 ⇔ ∼A, ∼¬A |= ⋆A ∧ ∼¬ ⋆ A

f⋆(b) =


0 ⇔ A, ¬A |= ∼⋆A ∧ ¬ ⋆ A
n ⇔ A, ¬A |= ∼⋆A ∧ ∼¬ ⋆ A
b ⇔ A, ¬A |= ⋆A ∧ ¬ ⋆ A
1 ⇔ A, ¬A |= ⋆A ∧ ∼¬ ⋆ A
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f⋆(1) =


0 ⇔ A, ∼¬A |= ∼⋆A ∧ ¬ ⋆ A
n ⇔ A, ∼¬A |= ∼⋆A ∧ ∼¬ ⋆ A
b ⇔ A, ∼¬A |= ⋆A ∧ ¬ ⋆ A
1 ⇔ A, ∼¬A |= ⋆A ∧ ∼¬ ⋆ A

Proof. Suppose f⋆(0) = 1. Let us show that ∀̇A: ∼A, ¬A |= ⋆A ∧ ∼¬⋆A.
According to the remark 1, f⋆(0) = 1 means that f⋆ has an entry such that
∀̇A∀̇v(v(A) = 0 ⇒ v(⋆A) = 1). In the terms of J.M. Dunn’s semantics the
last statement is interpreted as (α) ∀̇A∀̇v((t ̸∈ v(A) ∧̇ f ∈ v(A)) ⇒ (t ∈
v(⋆A) ∧̇ f ̸∈ v(⋆A))). Now suppose (β) t ∈ v(∼A) and t ∈ v(¬A). Therefore,
(γ) t ̸∈ v(A) and f ∈ v(A). From (α) and (γ) obtain that (δ) t ∈ v(⋆A) ∧̇
f ̸∈ v(⋆A)). Hence, (ε) t ∈ v(⋆A ∧ ∼¬ ⋆ A). From (β) and (ε) obtain (ζ)
∀̇A∀̇v((t ∈ v(∼A) ∧̇ t ∈ v(¬A)) ⇒ t ∈ v(⋆A ∧ ∼¬⋆A)). Therefore, (η) ∀̇A:
∼A, ¬A |= ⋆A ∧ ∼¬ ⋆ A.

Suppose (θ) ∀̇A: ∼A, ¬A |= ⋆A ∧ ∼¬ ⋆ A, let us prove that f⋆(0) =
1. From (θ) obtain (ι) ∀̇A∀̇v((t ∈ v(∼ A) ∧̇ t ∈ v(¬A)) ⇒ t ∈ v(⋆A ∧
∼¬ ⋆ A)). From (ι) follows (κ) ∀̇A∀̇v((t ̸∈ v(A) ∧̇ f ∈ v(A)) ⇒ (t ∈ v(⋆A)
∧̇ f ̸∈ v(⋆A))), which is equivalent to (λ) ∀̇A∀̇v(v(A) = 0 ⇒ v(⋆A) = 1).
According to the remark 1, f⋆(0) = 1 is an abbreviation for (λ).

The other cases are proved similarly. 2

Now let us formulate the analogues proposition for binary operators.

Proposition 2. For every L#-formulas A and B:

f◦(0, 0) =


0 ⇔ ∼A, ¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ¬A, ∼B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ¬A, ∼B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(0, n) =


0 ⇔ ∼A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ¬A, ∼B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ¬A, ∼B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(0, b) =


0 ⇔ ∼A, ¬A, B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ¬A, B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ¬A, B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ¬A, B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(0, 1) =


0 ⇔ ∼A, ¬A, B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ¬A, B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ¬A, B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ¬A, B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)
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f◦(n, 0) =


0 ⇔ ∼A, ∼¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ∼¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ∼¬A, ∼B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ∼¬A, ∼B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(n, n) =


0 ⇔ ∼A, ∼¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ∼¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ∼¬A, ∼B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ∼¬A, ∼B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(n, b) =


0 ⇔ ∼A, ∼¬A, B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ∼¬A, B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ∼¬A, B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ∼¬A, B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(n, 1) =


0 ⇔ ∼A, ∼¬A, B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ ∼A, ∼¬A, B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ ∼A, ∼¬A, B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ ∼A, ∼¬A, B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(b, 0) =


0 ⇔ A, ¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ¬A, ∼B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ¬A, ∼B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(b, n) =


0 ⇔ A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ¬A, ∼B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ¬A, ∼B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(b, b) =


0 ⇔ A, ¬A, B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ¬A, B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ¬A, B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ¬A, B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(b, 1) =


0 ⇔ A, ¬A, B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ¬A, B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ¬A, B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ¬A, B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(1, 0) =


0 ⇔ A, ∼¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ∼¬A, ∼B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ∼¬A, ∼B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ∼¬A, ∼B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)
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f◦(1, n) =


0 ⇔ A, ∼¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ∼¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ∼¬A, ∼B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ∼¬A, ∼B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(1, b) =


0 ⇔ A, ∼¬A, B, ¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ∼¬A, B, ¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ∼¬A, B, ¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ∼¬A, B, ¬B |= (A ◦B) ∧ ∼¬(A ◦B)

f◦(1, 1) =


0 ⇔ A, ∼¬A, B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B)
n ⇔ A, ∼¬A, B, ∼¬B |= ∼(A ◦B) ∧ ∼¬(A ◦B)
b ⇔ A, ∼¬A, B, ∼¬B |= (A ◦B) ∧ ¬(A ◦B)
1 ⇔ A, ∼¬A, B, ∼¬B |= (A ◦B) ∧ ∼¬(A ◦B)

Proof. Suppose f◦(b, n) = 0. Let us show that ∀̇A∀̇B: A, ¬A, ∼B, ∼¬B
|= ∼(A◦B) ∧ ¬(A◦B). According to the remark 1, f◦(b, n) = 0 means that
f◦ has an entry such that ∀̇A∀̇B∀̇v((v(A) = b ∧̇ v(B) = n) ⇒ v(A◦B) = 0).
In the terms of J.M. Dunn’s semantics the last statement is understood as
(α) ∀̇A∀̇B∀̇v((t ∈ v(A) ∧̇ f ∈ v(A) ∧̇ t ̸∈ v(B) ∧̇ f ̸∈ v(B)) ⇒ (t ̸∈ v(A ◦B)
∧̇ f ∈ v(A ◦ B))). Now suppose (β) t ∈ v(A), t ∈ v(¬A), t ∈ v(∼B) and
t ∈ v(∼¬B). Therefore, (γ) t ∈ v(A) ∧̇ f ∈ v(A) ∧̇ t ̸∈ v(B) ∧̇ f ̸∈ v(B).
From (α) and (γ) obtain that (δ) t ̸∈ v(A ◦ B) ∧̇ f ∈ v(A ◦ B). Hence, (ε)
t ∈ v(∼ (A ◦ B) ∧ ¬(A ◦ B)). From (β) and (ε) obtain (ζ) ∀̇A∀̇v((t ∈ v(A)
∧̇ t ∈ v(¬A) ∧̇ t ∈ v(∼B) ∧̇ t ∈ v(∼¬B))⇒ t ∈ v(∼ (A ◦B) ∧ ¬(A ◦B))).
Therefore, (η) ∀̇A∀̇B: A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B).

Suppose (θ) ∀̇A∀̇B: A, ¬A, ∼B, ∼¬B |= ∼(A ◦B) ∧ ¬(A ◦B), let us
prove that f◦(b, n) = 0. From (θ) obtain (ι) ∀̇A∀̇v((t ∈ v(A) ∧̇ t ∈ v(¬A)
∧̇ t ∈ v(∼B) ∧̇ t ∈ v(∼ ¬B))⇒ t ∈ v(∼ (A ◦ B) ∧ ¬(A ◦ B))). From (ι)
follows (κ) ∀̇A∀̇B∀̇v((t ∈ v(A) ∧̇ f ∈ v(A) ∧̇ t ̸∈ v(B) ∧̇ f ̸∈ v(B)) ⇒ (t ̸∈
v(A ◦B) ∧̇ f ∈ v(A ◦B))), which is equivalent to (λ) ∀̇A∀̇B∀̇v((v(A) = b ∧̇
v(B) = n) ⇒ v(A ◦ B) = 0). According to the remark 1, f◦(b, n) = 0 is an
abbreviation for (λ).

The other cases are proved similarly. 2

4. Natural deduction system
A natural deduction system for FDE is as follows3:

(¬¬I) A

¬¬A
(¬¬E)

¬¬A
A

(∨I1)
A

A ∨B
(∨I2)

B

A ∨B
3This system was first introduced by G. Priest [15].
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(∨E)
[A]+1 [B]+2

A ∨B, C, C

C

(∧I) A, B

A ∧B

(∧E1)
A ∧B
A

(∧E2)
A ∧B
B

(¬ ∨ I) ¬A ∧ ¬B
¬(A ∨B)

(¬ ∨ E)
¬(A ∨B)

¬A ∧ ¬B
(¬ ∧ I) ¬A ∨ ¬B

¬(A ∧B)
(¬ ∧ E)

¬(A ∧B)

¬A ∨ ¬B

Rules for Boolean negation are as follows:

(EFQ)
A, ∼A
B

(EM)
A∨ ∼A

(∼¬E)
∼¬A
¬ ∼A

(¬ ∼E)
¬ ∼A
∼¬A

A rule of inference of the form R⋆(x, y)
A1, ... , An

B
corresponds to

an entry f⋆(x) = y of a truth table f⋆ and a rule of the form R◦(x, y, z)
A1, ... , Am

B
corresponds to an entry f◦(x, y) = z of a truth table f◦. Each

connective ⋆ needs 4 rules of the form R⋆(x, y) and each connective ◦ needs
16 rules of the form R◦(x, y, z). These rules are inference schemes introduced
in the section 3. Here is an example. According to the proposition 1, the
rule R⋆(0, 0) corresponds to the entry f⋆(0) = 0 of the truth table f⋆:

R⋆(0, 0)
∼A, ¬A

∼⋆A ∧ ¬ ⋆ A
.

5. Completeness theorem
It is not difficult to prove the following theorem 1.

Theorem 1 (Soundness). For every set of L#-formulas Γ and for every
L#-formula A: Γ ⊢ A⇒ Γ |= A.

While proving completeness theorem prime theories are used as
syntactic analogues of valuations.

Definition 1. For every set of L#-formulas Γ and for every L#-formulas
A and B Γ is a prime theory, if the following conditions are true:

(Γ1) Γ ̸= Form# (non-triviality);

(Γ2) Γ ⊢ A⇔ A ∈ Γ (closure of ⊢);

(Γ3) A ∨B ∈ Γ ⇒ (A ∈ Γ ∨̇ B ∈ Γ) (primeness).
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Elementhoods of L#-formulas in prime theories are used as syntactic
analogues of truth values.

Definition 2. For every prime theory Γ and for every L#-formula A let
us call e(A, Γ) an elementhood of A in Γ and define it as follows:

e(A,Γ) =


1 ⇔ A ∈ Γ, ¬A ̸∈ Γ;
b ⇔ A ∈ Γ, ¬A ∈ Γ;
n ⇔ A ̸∈ Γ, ¬A ̸∈ Γ;
0 ⇔ A ̸∈ Γ, ¬A ∈ Γ.

The following lemma 1 shows us that the definition 2 is consistent with
the truth tables for the propositional connectives.

Lemma 1. For every prime theory Γ and for every L#-formulas A and B:

(1) f¬(e(A,Γ)) = e(¬A,Γ);

(2) f∼(e(A,Γ)) = e(∼A,Γ);

(3) f∨(e(A,Γ), e(B,Γ)) = e(A ∨B,Γ);

(4) f∧(e(A,Γ), e(B,Γ)) = e(A ∧B,Γ);

(5) f⋆(e(A,Γ)) = e(⋆A,Γ);

(6) f◦(e(A,Γ), e(B,Γ)) = e(A ◦B,Γ).

Proof.

(1) (A) e(A,Γ) = 0. Then A ̸∈ Γ, ¬A ∈ Γ. Suppose ¬¬A ∈ Γ. According
to (¬¬E), A ∈ Γ. Contradiction. Hence, ¬¬A ̸∈ Γ. Therefore,
e(¬A,Γ) = 1 = f¬(0) = f¬(e(A,Γ)).

(B) e(A,Γ) = n. Then A ̸∈ Γ, ¬A ̸∈ Γ. Similar to (A).

(C) e(A,Γ) = b. Then A ∈ Γ, ¬A ∈ Γ. According to (¬¬I), ¬¬A ∈ Γ.
Therefore, e(¬A,Γ) = n = f¬(n) = f¬(e(A,Γ)).

(D) e(A,Γ) = 1. Then A ∈ Γ, ¬A ̸∈ Γ. Similar to (C).

(2) (A) e(A,Γ) = 0. A ̸∈ Γ, ¬A ∈ Γ. According to (EM) and (Γ3),
A ∈ Γ ∨̇ ∼A ∈ Γ. Since A ̸∈ Γ, ∼A ∈ Γ. Let ¬ ∼A ∈ Γ. By the
rule (¬ ∼E) ∼¬A ∈ Γ, by the rule (EFQ) B ∈ Γ. Contradiction.
¬ ∼A ̸∈ Γ. Hence, e(∼A,Γ) = 1 = f∼(0) = f∼(e(A,Γ)).
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(B) e(A,Γ) = n. A ̸∈ Γ, ¬A ̸∈ Γ. According to (EM) and (Γ3),
¬A ∈ Γ ∨̇ ∼¬A ∈ Γ. Since ¬A ̸∈ Γ, ∼¬A ∈ Γ. By the rule (∼¬E)
¬ ∼A ∈ Γ. According to (EM) and (Γ3), A ∈ Γ ∨̇ ∼A ∈ Γ. Since
A ̸∈ Γ, ∼A ∈ Γ. Hence, e(∼A,Γ) = b = f∼(n) = f∼(e(A,Γ)).

(C) e(A,Γ) = b. A ∈ Γ, ¬A ∈ Γ. Let ∼A ∈ Γ. Then by the rule
(EFQ) B ∈ Γ, that is Γ = Form#, that contradicts to (Γ1).
∼A ̸∈ Γ. Let ¬ ∼A ∈ Γ. By the rule (¬ ∼E) ∼¬A ∈ Γ,
by the rule (EFQ) B ∈ Γ. Contradiction. ¬ ∼A ̸∈ Γ. Hence,
e(∼A,Γ) = n = f∼(b) = f∼(e(A,Γ)).

(D) e(A,Γ) = 1. A ∈ Γ, ¬A ̸∈ Γ. Let ∼A ∈ Γ. Then by the rule
(EFQ) B ∈ Γ, that is Γ = Form#, that contradicts to (Γ1).
∼A ̸∈ Γ. According to (EM) and (Γ3), ¬A ∈ Γ ∨̇ ∼¬A ∈ Γ.
Since ¬A ̸∈ Γ, ∼¬A ∈ Γ. By the rule (∼¬E) ¬ ∼A ∈ Γ. Hence,
e(∼A,Γ) = 0 = f∼(1) = f∼(e(A,Γ)).

(3) (A) e(A,Γ) = 0, e(B,Γ) = 0. A ̸∈ Γ, ¬A ∈ Γ, B ̸∈ Γ, ¬B ∈ Γ.
Suppose A ∨ B ∈ Γ. According to (Γ3), A ∈ Γ ∨̇ B ∈
Γ. Contradiction. Then A ∨ B ̸∈ Γ. According to (∧I) and
(¬ ∨ I), ¬(A ∨ B) ∈ Γ. Hence, e(A ∨ B,Γ) = 0 = f∨(0, 0) =
f∨(e(A,Γ), e(B,Γ)).

(B) e(A,Γ) = n, e(B,Γ) = b. A ̸∈ Γ, ¬A ̸∈ Γ, B ∈ Γ, ¬B ∈ Γ.
By the rule (∨I2), A ∨ B ∈ Γ. Suppose ¬(A ∨ B) ∈ Γ, then
by the rule (¬ ∨ E), ¬A ∧ ¬B ∈ Γ, but by the rule (∧E1),
¬A ∈ Γ. Contradiction. Hence, ¬(A ∨ B) ̸∈ Γ. Consequently,
e(A ∨B,Γ) = 1 = f∨(n, b) = f∨(e(A,Γ), e(B,Γ)).

The other cases are proved similarly.

(4) (A) e(A,Γ) = 0, e(B,Γ) = n. A ̸∈ Γ, ¬A ∈ Γ, B ̸∈ Γ, ¬B ̸∈ Γ.
Suppose A ∧B ∈ Γ. Then by the rules (∧E1) and (∧E2), A ∈ Γ
and B ∈ Γ. Contradiction. A ∧ B ̸∈ Γ. By the rules (∨I1) and
(¬ ∧ I), ¬(A ∧ B) ∈ Γ. Hence, e(A ∧ B,Γ) = 0 = f∧(0, n) =
f∧(e(A,Γ), e(B,Γ)).

(B) e(A,Γ) = 1, e(B,Γ) = 1. A ∈ Γ, ¬A ̸∈ Γ, B ∈ Γ, ¬B ̸∈ Γ. By
the rule (∧I), A ∧ B ∈ Γ. Suppose ¬(A ∧ B) ∈ Γ. By the rule
(¬ ∧ E), ¬A ∨ ¬B ∈ Γ, but then, according to (Γ3), ¬A ∈ Γ
∨̇ ¬B ∈ Γ. Contradiction. Hence, ¬(A ∧ B) ̸∈ Γ. Consequently,
e(A ∧B,Γ) = 1 = f∧(1, 1) = f∧(e(A,Γ), e(B,Γ)).

The other cases are proved similarly.
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(5) (A) Let e(A,Γ) = 0. Then A ̸∈ Γ, ¬A ∈ Γ.

(α) Suppose e(⋆A,Γ) = 0. Then f⋆(0) = 0 and R⋆(0, 0) is a rule
for ⋆ in FDE#. According to (EM) and (Γ3), A ∈ Γ ∨̇
∼A ∈ Γ. Since A ̸∈ Γ, ∼A ∈ Γ. Then by the rules R⋆(0, 0),
(∧E1) and (∧E2) ∼⋆A ∈ Γ and ¬⋆A ∈ Γ. Let ⋆A ∈ Γ. Then
by the rule (EFQ) B ∈ Γ, that contradicts to (Γ1). ⋆A ̸∈ Γ.
Hence, e(⋆A,Γ) = 0 = f⋆(0) = f⋆(e(A,Γ)).

(β) Suppose e(⋆A,Γ) = n. Then f⋆(0) = n and R⋆(0, n) is a
rule for ⋆ in FDE#. Using (EM) and (Γ3), obtain that
∼A ∈ Γ. By the rules R⋆(0, n), (∧E1) and (∧E2) ∼⋆A ∈ Γ
and ∼ ¬ ⋆ A ∈ Γ. Using (EFQ), obtain that ⋆A ̸∈ Γ and
¬ ⋆ A ̸∈ Γ. Hence, e(⋆A,Γ) = n = f⋆(0) = f⋆(e(A,Γ)).

(γ) Suppose e(⋆A,Γ) = b. Then f⋆(0) = b and R⋆(0, b) is a
rule for ⋆ in FDE#. Clearly, that ∼ A ∈ Γ. By the rules
R⋆(0, b), (∧E1) and (∧E2) ⋆A ∈ Γ and ¬ ⋆ A ∈ Γ. Hence,
e(⋆A,Γ) = b = f⋆(0) = f⋆(e(A,Γ)).

(δ) Suppose e(⋆A,Γ) = 1. Then f⋆(0) = 1 and R⋆(0, 1) is a rule
for ⋆ in FDE#. Clearly, that ∼A ∈ Γ. By the rules R⋆(0, 1),
(∧E1) and (∧E2) ⋆A ∈ Γ and ∼¬⋆A ∈ Γ. By the rule (EFQ)
B ∈ Γ, ¬⋆A ̸∈ Γ. Hence, e(⋆A,Γ) = 1 = f⋆(0) = f⋆(e(A,Γ)).

The other cases are proved similarly.

(6) Analogues to (5).

2

Lemma 2. For every prime theory Γ and for every valuation vΓ such that
∀̇p

p∈Prop
(vΓ(p) = e(p,Γ)): ∀̇A

A∈Form#
(vΓ(A) = e(A,Γ)).

Proof. By structural induction on L#-formula A using the lemma 1. 2

Lemma 3 (Lindenbaum). For every set of L#-formulas Γ, for every L#-
formula A: if Γ ̸⊢ A, then ∃̇Γ∗: Γ∗ ⊆ Form# and (1) Γ ⊆ Γ∗, (2) Γ∗ ̸⊢ A
and (3) Γ∗ is a prime theory.

Proof. Let B1, B2, ... be an enumeration of all L#-formulas. Now define
a sequence of sets of L#-formulas Γ1,Γ2, ... . Let Γ1 = Γ and Γn somehow
defined. Then let Γn+1 = Γn

∪
{Bn+1}, if Γn

∪
{Bn+1} ̸⊢ A; and Γn+1 = Γn

otherwise. Let Γ∗ is the union of all Γi.
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(1) Follows from the definition of Γ∗.

(2) I will use the straightforward induction on i. Since Γ1 = Γ, Γ1 ̸⊢ A.
By the inductive assumption, Γi ̸⊢ A. If Γi+1 = Γi, then Γi+1 ̸⊢
A. If Γi+1 ̸= Γi, then Γi+1 = Γi

∪
{Bi+1}. Suppose Γi

∪
{Bi+1} ⊢

A. But then (by the definition of the sequence of Γ1,Γ2, ...) Γi+1 =
Γi. Contradiction. Hence, Γi

∪
{Bi+1} ̸⊢ A. Thus, if Γi+1 ̸= Γi, then

Γi+1 ̸⊢ A. Clearly, that if for all Γi true, that Γi ̸⊢ A, then Γ∗ ̸⊢ A.

(3) Let us prove that: (A) Γ∗ ̸= Form# (non-triviality); (B) Γ∗ ⊢ B ⇔
B ∈ Γ∗ (closure of ⊢); (C) B ∨ C ∈ Γ∗ ⇒ (B ∈ Γ∗ ∨̇ C ∈ Γ∗)
(primeness).

(A) Since Γ∗ ̸⊢ A, obviously, that Γ∗ ̸= Form#.
(B) (⇒). Suppose Γ∗ ⊢ B. Then ∃̇i: B = Bi and ∃̇Γi: Γi ⊢ Bi.

Suppose Bi ̸∈ Γi. Hence, Γi−1
∪
{Bi} ⊢ A. But then Γ∗ ⊢ A,

because Γi−1 ⊆ Γ∗ and Γ∗ ⊢ B. Nonetheless, it was proved in (2)
that Γ∗ ̸⊢ A. Then Bi ∈ Γi. Thus, Γ∗ ⊢ B ⇒ B ∈ Γ∗.
(⇐). Suppose B ∈ Γ∗, Γ∗ ̸⊢ B. Then ∃̇i: B = Bi and ∃̇Γi−1:
Γi−1

∪
{Bi} ⊢ A. Since Γi−1 ⊆ Γ∗, Γ∗∪{Bi} ⊢ A. From here

and the fact, that Γ∗ ̸⊢ A, obtain, that Bi ̸∈ Γ∗, that is B ̸∈ Γ∗.
Contradiction. Hence, Γ∗ ⊢ A. Thus, B ∈ Γ∗ ⇒ Γ∗ ⊢ A.

(C) Suppose B∨C ∈ Γ∗, but B ̸∈ Γ∗, C ̸∈ Γ∗. Since B∨C ∈ Γ∗, Γ∗ ⊢
B∨C (see (B)). On the other hand, ∃̇i: B = Bi and ∃̇j: C = Bj ;
Γi−1

∪
{Bi} ⊢ A and Γj−1

∪
{Bj} ⊢ A. Moreover, Γi−1 ⊆ Γ∗ and

Γj−1 ⊆ Γ∗. Then Γ∗∪{Bi} ⊢ A and Γ∗∪{Bj} ⊢ A. From here
and the fact, that Γ∗ ⊢ Bi ∨ Bj , by the rule (∨E) obtain, that
Γ∗ ⊢ A, but according to (2), Γ∗ ̸⊢ A. Hence, B ∨ C ∈ Γ∗ ⇒
(B ∈ Γ∗ ∨̇ C ∈ Γ∗).

2

Theorem 2 (Completeness). For every set of L#-formulas Γ and for
every L#-formula A: Γ |= A⇒ Γ ⊢ A.

Proof. By contraposition. Let Γ ̸⊢ A. Then, by lemma 3, ∃̇Γ∗(Γ ⊆ Γ∗,
Γ∗ ̸⊢ A and Γ∗ is a prime theory). According to lemma 2, there is a valuation
vΓ∗ such, that ∀̇B

B∈Γ
vΓ∗(B) ∈ {1, b} ∧̇ vΓ∗(A) ̸∈ {1, b}. But then Γ ̸|= A. 2

Theorem 3 (Adequacy). For every set of L#-formulas Γ and for every
L#-formula A: Γ |= A⇔ Γ ⊢ A.

Proof. The theorem follows from the theorems 1 and 2. 2
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6. Natural deduction for implicative extensions of FDE
6.1. History and semantics
Using the technique of correspondence analysis, it is possible to axiomatize
extensions of FDE, for example, implicative: BN4, Par, FDEA, FDEB,
FDEC, and FDED. Connective 7→ is implication of the logic BN4, →e is
implication of the logic Par, →a is implication of the logic FDEA, →b is
implication of the logic FDEB, →c is implication of the logic FDEC, and
→d is implication of the logic FDED.

7→ 1 b n 0
1 1 0 n 0
b 1 b n 0
n 1 n 1 n
0 1 1 1 1

→e 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 1 1 1
0 1 1 1 1

→a 1 b n 0
1 1 b n 0
b 1 1 n n
n 1 1 1 1
0 1 1 1 1

→b 1 b n 0
1 1 b n 0
b 1 1 n n
n 1 b 1 b
0 1 1 1 1

→c 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 b 1 b
0 1 1 1 1

→d 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 b 1 b
0 1 b 1 b

A ¬e ¬a ¬c ¬d

1 0 0 0 0
b 0 n 0 0
1 1 b b b
0 1 1 1 b

The logic BN4 first appeared in R.T. Brady’s paper [6], where several
semantics for it and a Hilbert-style calculus are introduced. There is another
reference of this logic (independent of [6]) in J.K. Slaney’s paper [19].

The logic Par was first formulated by V.M. Popov [14] in the form
of sequent and Hilbert-style calculuses. A similar Hilbert-style system
independently appeared in A. Avron’s paper [2] under the name HBe. Avron
also introduced four-valued semantics for →e [2]. Moreover, functional
equivalence of →e and 7→ was proven in [2]. Furthermore, the truth table
for →e is mentioned in A.P. Pynko’s paper [17] in relation to [14], but
independent of [2]. In addition, it is easy to see that A→e B ≡def ¬eA∨B4.

4M. De and H. Omori [7] investigated four-valued classical negations ¬e, ¬a, ¬c and
¬d (in the notation of [7] ¬e, ¬1, ¬2 and ¬5) in line with the study of the relationship
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Using negations ¬a, ¬c and ¬d, it’s possible to define implications of
logics FDEA, FDEC5 and FDED: A→a B ≡def ¬aA∨B; A→c B ≡def

¬cA ∨B; A→d B ≡def ¬dA ∨B.
A semantics of the logic FDEB is first explored in D.V. Zaitsev’s

doctoral dissertation [21]. Notice that A→b B ≡def ∼A ∨B.
It is noteworthy that in the paper [7] by M. De and H. Omori a logic

BD+ with connectives ¬, ∼, ∨, ∧ and →b is analyzed.
It is easy to see that for all i (i ∈ {a, b, c, d, e}) A, A →i B |= B,

|= A→i (B →i A), |= (A→i (B →i C)) →i ((A→i B) →i (A→i C)), and
|= ((A →i B) →i A) →i A. Thus, implications →a, →b, →c, →d and →e

are classical.

6.2. Rules of inference
Using the proposition 2 and the theorem 3, it is not difficult to find necessary
rules of inference for →i (i ∈ {a, b, c, d, e}). Nonetheless, it makes sense to
reduce the number of the rules. As a result, natural deduction systems will
become more convenient for work in them. It is possible to prove that the
rules for 7→ can be reformulated as follows6:

( 7→ I1)
¬A, B
A 7→ B

( 7→ I2)
¬A

A ∨ (A 7→ B)
( 7→ I3)

A ∨ ¬B ∨ (A 7→ B)

( 7→ I4)
B

¬B ∨ (A 7→ B)
(MP )

A, A 7→ B

B
(MT )

A 7→ B, ¬B
¬A

(¬ 7→ I)
A, ¬B

¬(A 7→ B)
(¬ 7→ E)

¬(A 7→ B)

A ∧ ¬B

Logics Par, FDEA, FDEB, FDEC and FDED contain the following
rules in common:

(→ I1)
B

A→ B
(→ I2)

A ∨ (A→ B)
(MP )

A, A→ B

B

The axiomatization of Par contains also the following rules:

of classical negation and properties of paraconsistency and paracompleteness of logical
systems.

5Logics FDEA and FDEC have two relatives: BD1 with the connectives ¬, ¬a, →a,
∨ and ∧; and BD2 with the connectives ¬, ¬c, →c, ∨ and ∧ [7].

6There are two ways of proving this statement: (1) by proving the deductive
equivalence of modified rules and rules based on the proposition 2; or (2) by completeness
proof for implications just as it was done for the other connectives in the section 5.
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(¬ →e I)
A, ¬B

¬(A→e B)
(¬ →e E)

¬(A→e B)

A ∧ ¬B

The axiomatization of FDEA contains also the following rules:

(¬ →a I)
A, ¬B

¬A ∨ ¬(A→a B)
(¬ →a E1)

¬(A→a B)

A ∧ ¬B

(¬ →a E2)
¬(A→a B), ¬A

C

The axiomatization of FDEB contains also the following rules:

(¬ →b I)
¬B

¬A ∨ ¬(A→b B)
(¬ →b E1)

¬(A→b B)

¬B

(¬ →b E2)
¬(A→b B), ¬A

C

The axiomatization of FDEC contains also the following rules:

(¬ →c I1)
A, ¬B

¬(A→c B)
(¬ →c I2)

¬B
¬A ∨ ¬(A→c B)

(¬ →c E1)
¬(A→c B)

¬B
(¬ →c E2)

¬(A→c B), ¬A
A

The axiomatization of FDED contains also the following rules:

(¬ →d I1)
A, ¬B

¬(A→d B)
(¬ →d I2)

¬B
¬A ∨ ¬(A→d B)

(¬ →d I3)
¬A, ¬B

A ∨ ¬(A→d B)
(¬ →d E)

¬(A→d B)

¬B

7. Conclusion
In summary, the result obtained in this paper allows to get immediately
adequate natural deduction systems for all possible truth-table expansions
of FDE+. Consequently, a problem for future research arises: to formulate
propositions 1 and 2 without the use of Boolean negation, in other words,
to apply the technique of correspondence analysis to FDE directly, without
recourse to FDE+. In future prospect one more direction of research opens:
to apply the technique of correspondence analysis to other four-valued logics
or even to arbitrary k-valued logics with l designated values, where k > 3
and l ∈ {1, ..., k − 1}.
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