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Chapter 1

Introduction

This chapter aims to give an introduction into the physics of quantum phase transitions.

Besides that, we introduce some definitions and concepts used throughout this work.

1.1 Quantum phase transitions

Physicists call a phase transition between quantum phases of matter, i.e., phases of matter

at zero temperature, a quantum phase transition (QPT). Quantum phase transitions are

accessed by varying an external physical parameter. The latter can be, e.g., an external

magnetic field or pressure. A quantum phase transition is characterized by a sharp change

in the ground state of a system. The reason for this is the presence of quantum fluctuations.

Despite that the absolute zero temperature cannot be reached physically, this regime is

realizable within the following conditions: the typical quantum fluctuations’ energy ~! (being

the order of the energy difference between the vacuum and the first excited state, i.e., the

lowest eigenvalue and the next in the ascending order) should be much bigger than the

system’s thermal fluctuations kBT [1]. For convenience, hereafter we consider ~ = kB = 1.

Consider a Hamiltonian, H(⌧), which describes quantum spins positioned on the sites of a

lattice and which is controlled by a parameter ⌧ . We are interested in the dependence of the

physical observables (e.g., the ground state energy) with respect to ⌧ . If the lattice is finite,

then, in general, the ground state energy will be an analytic function of ⌧ [1]. In addition, in

most cases, the system does not exhibit level crossing (see Figure 1.1). However, the energy

gap, i.e., the energy difference between the first excited state and the ground state, could

become non-analytic at ⌧c in the infinite-size (thermodynamic) limit [1]. Also, in this limit,

some other observables, such as the magnetic susceptibility, can show non-analytic behavior
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at the quantum phase transition point.

⌧c

�

⌧

E

Figure 1.1: Low eigenvalues of a Hamiltonian H(⌧) on a finite lattice, as a function of some
dimensionless coupling ⌧ in a generic case.

Let us call � the energy gap. In most cases, it is known that as ⌧ gets closer to ⌧c, �

vanishes obeying the power law [1],

� ⇠ |⌧ � ⌧c|z⌫ , (1.1)

where z and ⌫ are the critical exponents related to the critical point ⌧c and defined as follows.

In a phase transition, one can define a length scale ⇠, an important quantity in the field of

quantum phase transitions, which determines the exponential decay of the spatial two-point

correlation function in the ground state at a fixed point in time. For example, the correlation

function G(r) of an observable O between two points separated by distance r can be written

as

G(r) = hO(0)O(r)i � hO(0)ihO(r)i / e�r/⇠, (1.2)

where averaging is performed over the quantum state, that is hOi = h |O| i. As the critical

point ⌧c is being approached, ⇠ diverges with a critical exponent ⌫ as

⇠ / |⌧ � ⌧c|�⌫ . (1.3)
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At the critical point, ⇠ ! 1 and the correlation function G(r) decays as a power law.

Similarly, one can define a two-point temporial correlation function for a fixed point in space

and the time scale ⇠t for the decay of the equal-space correlations, which diverges as

⇠t / ⇠z / |g � gc|�⌫z / ��1. (1.4)

The values of critical exponents are often universal, i.e., they do not depend on most of the

microscopic details of the Hamiltonian H(⌧), such as microscopic exchange constants, for

example. The behavior mentioned above holds both for ⌧ < ⌧c and ⌧ > ⌧c with the same

value of the exponent z⌫, but with different non-universal constants of proportionality. z

is usually called the dynamical critical exponent. An illustrative example of a system, for

which the critical exponents are known, is the well-known two-dimensional ferromagnetic

Ising model, which has � = 7/4 and z ⇡ 2.2 [2].

Magnetic properties are also important to discuss when talking about QPTs. Hereafter, we

will be considering spin-12 systems, we set µB = 1. Quantum magnetic properties and/or

magnetic ordering usually originates from the distribution of unpaired spins in the system.

For future analysis, here we define the average magnetization in the ↵-direction

m↵ =
1

L
h

LX

i=1

�↵
i i, (1.5)

where �↵ is a corresponding Pauli matrix, (↵ = x, y, z) and averaging is performed over a

quantum state which implicitly depends on the control parameter ⌧ . We omit the tensor

products ⌦ between the Pauli matrices for brevity. Thus, in our notation, �x
i stands for the

following expression, where I denotes the 2⇥ 2 identity matrix:

�x
i = I ⌦ I · · ·⌦ I| {z }

i�1

⌦ �x ⌦ 1⌦ I · · ·⌦ I| {z }
L�i

⌘ I⌦(i�1) ⌦ �x ⌦ I⌦(L�i). (1.6)

Next, we define the average magnetic susceptibility in the ↵-direction:

�↵ =
@

@⌧
m↵, (1.7)

where ↵ = x, y, z and averaging is again performed over a quantum state.

Let us now briefly itemize some experimental systems, where quantum criticality has been
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observed. We provide some examples to show that quantum phase transitions arise in numer-

ous systems, ranging from wires interacting with quantum dots to 3-dimensional materials.

This serves as a good enough reason why it is cardinal to give insights into such systems

in both analytical and numerical ways. Here we present a consistent albeit not exhaustive

review of experimental results.

• Heavy fermion materials [3]: in this paper by Lohneysen et al. from 1994, it was shown

that non-Fermi-liquid behaviour of CeCu6�xAux occurs at low temperatures which was

evidenced by sharp maxima in specific heat and magnetic susceptibility.

• Bilayer 3He [4]: in 2007 a continuous quantum phase transition was observed by show-

ing that the bilayer helium-3 system can be put in a quantum critical point at which

the effective mass diverges while interband coupling goes to zero.

• LiHoF4 – a model magnet [5]: this example is very important for us, because it allows

experimental realization of the Ising chain in a transverse field, which we will address

later in this work. This crystal is uniaxial and Ho ions behave exactly as the Ising

model prescribes at low temperatures. By applying a magnetic field perpendicular to

the easy axis (axis parallel to the direction in which it is the easiest to magnetize the

material), Bitko et al. demonstrated in 1996 that a quantum phase transition happens

at a certain magnetic field strength, where the ferromagnetic order is destroyed.

• The two-channel Kondo effect in a single electron transistor [6]: in 2007 the group of

Goldhaber-Gordon at Stanford observed an unusual effect in the two channel Kondo

model (where an 1/2 impurity spin interacts with two independent baths of electrons

thus suffering competition between two couplings) – when the difference in the cou-

plings is small a two-channel Kondo effect emerges showing non-Fermi-liquid behaviour.

• Ultracold atoms in magnetic traps and optical lattices [7]: a vibrant field in experi-

mental physics investigates atomic vapors cooled to the quantum limit. By now, in

both bosonic and fermionic systems, which can be trapped routinely, external static

potentials, interactions and even disorder can be tuned in a flexible way, thus ultracold

gases offer a new exciting possibility for simulating the properties of correlated con-

densed matter systems. The realization of bosonic Mott insulators and the observation

of the fermionic BEC-BCS transition are known among the most famous achievements

of this field.
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1.2 Motivation for using neural networks in condensed

matter physics and quantum information theory

Big and complex ensembles of particles are hard to study because of the exponential growth of

the phase space, classical or quantum. Despite the curse of dimensionality, machine learning

is routinely used for analyzing giant and non-trivial sets of data. In the past decade, machine

learning and artificial intelligence has achieved tremendous success, e.g., in the text, voice,

and computer vision technologies and also in complex games such as Atari, Chess, and Go

[8]. It is often argued that machine learning and artificial intelligence will also offer a strong

helping hand in making scientific discoveries [9, 10, 11], and in particular, there is a hope that

future techniques of this kind will be capable of automated discovery of robust characteristic

features that enable a more efficient investigation of physical effects. Such methods would be

most welcome for systems that are either highly non-integrable and even more for systems

where even a clear order parameter is missing. Moreover, the physics which serves as the

background for the quantum phase transitions discussed above is quite complex, and in many

cases, not completely understood.

The last decade has been marked by growing interest to applications of various machine

learning techniques in the field of condensed matter physics and quantum information sci-

ence. Recent works include learning phase transition of the classic Ising model [12, 13, 14],

solving the transverse field Ising model with the Boltzmann machine [15, 16, 17], super-

resolving of the Ising model with convolutional neural networks [18] and machine learning

topological invariants in one-dimensional insulator models [19], as well as quantum state

tomography for both pure and mixed states [20, 21, 22, 23, 24]. In 2018 a group of physicists

from Japan developed a deep neural network-based approach to detect phases of the quan-

tum Ising chain [25]. This work in addition to [12] served as the primary research resource

for this thesis project.

Noteworthy, all of the works mentioned above employ neural-network setups with various

numbers of hidden layers and neurons, which is usually computationally demanding, meaning

the models are expensive to train and evaluate.

1.3 Purpose statement

The goal of the study is to formulate an algorithm which uses artificial neural networks

and results in a quantity capable of serving as a qualitative order parameter, compare

the latter to physical observables, such as the entanglement entropy and the actual
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order parameter of a system studied. Finally, examine the algorithm on quantum spin

models for which the phase diagram has been known.

1.4 Problem statement

To achieve the goal of this study the following problems have been posed and successfully

solved.

1. Study the properties of one-dimensional Ising model with both transverse and lon-

gitudinal fields and one-dimensional anisotropic XY model.

2. Generate samples, i.e., local measurements of spins in a certain basis, for different

values of the corresponding control parameter, to train the algorithm on – due to lack

of experimental data.

3. Calculate the observables.

4. Program the algorithm, based on comparison of ground-state probability

distributions to detect quantum phase transitions, using modern machine

learning libraries in Python.

5. Test the algorithm on the studied models.

6. Show how useful the results of this research can be for the field of condensed

matter physics and quantum information theory.
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Chapter 2

Quantum spin models: theoretical

background

In this chapter, we review the quantum Ising model both with and without transverse and

longitudinal fields and the anisotropic XY model, describe what is already known in the

literature concerning their properties and explain the notations.

2.1 Transverse field Ising model

The transverse field Ising model (TFIM) represents a unique example of many-body in-

teracting spin systems which can be rigorously approached in both equilibrium [26] and

non-equilibrium [27] regimes. This model naturally appears upon approaching a classical

two-dimensional Ising ferromagnet with nearest neighbor interaction and its exact solution

is dated back to the original work [28]. Generally, the one-dimensional TFIM of L spins with

nearest neighbor coupling is specified by the Hamiltonian

H = �J
L�1X

i=1

�z
i �

z
i+1 � ⌧

LX

i=1

�x
i , (2.1)

which represents a 2L ⇥ 2L matrix, while a vector of Pauli matrices ~� = (�x, �y, �z) acts in

spin space, and J and ⌧ � 0 stand for the strength of the exchange coupling and the external

magnetic field respectively (in the following we put J = 1 without loss of generality).

Figure 2.1: One-dimensional chain of L = 10 sites.
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Interestingly, despite its relative simplicity this model was discussed to mimic the order-

disorder transitions in ferroelectric crystals of KH2PO4 [29]. In the ordered phase described

by the Hamiltonian (2.1) a rather strong magnetic field ⌧ � 1 destroys magnetic order

even at T = 0, making thus this system an ideal playground for studying quantum phase

transitions. At zero temperature, quantum fluctuations may lead to dramatic ground state

restructure which is manifested by a non-analiticity in the ground state energy as a function

of ⌧ , that is, the derivatives of the energy are discontinuous. The QPT in the TFIM belongs

to the class of continuous phase transition as the order parameter vanishes continuously at

the critical value ⌧c = 1 of the magnetic field.

With no magnetic field present in the system (⌧ = 0), the ground state configuration is

purely determined by the exchange interaction, the first term in (2.1), which favors collinear

magnetic ordering. For J > 0 ferromagnetic state is energetically preferable, meaning that

all magnetic moments point in the same direction h�z
i i = +1 (or �1), signalling the double

degeneracy. Increasing the transverse field higher than ⌧ = ⌧c makes the system unstable

towards spin flip and all the spins aligned in x direction in the limit ⌧ ! 1, i.e., disordered

in �z basis.

Magnetically ordered (ferromagnet)

⌧c = 1

Paramagnet
Transverse

field ⌧
•

Figure 2.2: Zero-temperature phase diagram of the transverse Ising model.

One-dimensional TFIM can be worked out analytically by virtue of Jordan-Wigner transfor-

mation [2]. Indeed, the latter makes it possible to map an interacting spin model onto that of

free spin polarized fermions [1]. Remarkably, the exact solution unambiguously demonstrates

a continuous QPT upon passing through the critical field ⌧c = 1, separating magnetically

ordered ferromagnet (⌧ < ⌧c) and disordered paramagnet states (⌧ > ⌧c). Although, there is

no exact analytical solution in higher dimensional systems a phase transition can be clearly

detected [1].

It is worth noting that the phase diagram of a one-dimensional TFIM is very similar to that

of a two-dimensional classical Ising model at finite temperature with thermal driven phase

transition. Interestingly, this dualism has a strict mathematical form corresponding to the

so-called Suzuki-Trotter decomposition and which maps a d-dimensional quantum model to

a d+ 1 dimensional classical one [30].

15



2.2 Transverse field Ising model in the longitudinal field

It is quite natural to address the properties of the Hamiltonian (2.1) in a homogeneous

longitudinal magnetic field � > 0,

H = �J
L�1X

i=1

�z
i �

z
i+1 � ⌧

LX

i=1

�x
i � �

LX

i=1

�z
i . (2.2)

In fact, recent experimental investigations of low-lying spectrum of spin excitations in

CoNb2O6, described by this Hamiltonian, allow for direct probe of QPT [31]. Unlike the

Hamiltonian (2.1) the one given by (2.2) belongs to the class of non-integrable systems,

which means that it can not be diagonalized by analytic means.

Besides that, the phase diagram still stays under thorough investigation [32]. The main

difference between this case and the case without longitudinal field is that since the ground

state in the ferromagnetic regime is not degenerate anymore due to the longitudinal field

and hence there is no spontaneous Z2 symmetry breaking between the phases [33, 34].

The ZZ-interaction and transverse terms are competing in this system. This is parametrized

when we scale everything by the Ising coupling J . We consider the model at T = 0. In case

of the vanishing transverse field, the ground state is ⌦L
i=1|1ii with all spins lined up in the

z-direction.

2.3 Anisotropic XY model

The XY model is yet another well-known quantum spin lattice model of magnetism. One

can arrive to the isotropic version of this model by switching off the ZZ couplings in the

Heisenberg Hamiltonian. In its turn, the anisotropic XY model is a generalization of it in

the sense that the interaction strength in the XY plane is not isotropic anymore. In this

study, we limit ourselves to the case when there is no field transverse to the interaction plane.

The Hamiltonian of the model is thus given by

H = �J
L�1X

i=1

✓
1 + �

2
�x
i �

x
i+1 +

1� �

2
�y
i �

y
i+1

◆
, (2.3)

where � is the anisotropy parameter that is usually restricted to �1  �  1 and J is the

coupling strength which we set to 1 hereafter. If one sets � = 0 the fully isotropic case,

which possesses an additional symmetry [H, �z
i ] = 0, is restored. On the other hand, it is

also well-known that in the opposite case, i.e. � = 1, the ground state possesses a long-range
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Neel order which yields

�x
i |�i = (�1)i|�i (2.4)

and

�y
i |�i = (�1)i|�i (2.5)

for � = �1 accordingly, as is described in detail in [35]. It is clear that as � decreases from

1 to -1, the x- and y-components begin to compete. Its phase diagram is thus given by an

x- and y-ferromagnetic states for � = 1 and �1 accordingly. The model is fully isotropic at

� = 0 and undergoes a second-order phase transition at this point while the gap continuously

vanishes [35, 36].
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Chapter 3

Methods for finding ground states of

quantum spin Hamiltonians

In this chapter, we review and briefly explain the existing techniques of tackling quantum

many-body problems and quantum phase transitions.

3.1 Analytical approaches

Studying exact analytical and numerical approaches for the transverse field models has a

long history and is summarized in a number of excellent monographs [37, 38, 39]. In this

section, we briefly discuss the main strategies with which to tackle TFIM in the vicinity of

the QPT. The presence of the transverse magnetic field ⌧ in the Hamiltonian (2.1) leads to

the tendency towards the flip of z components of spins, being thus the source of quantum

fluctuations in the system. Upon imposing periodic boundary conditions, i.e., �z
L+1 = �z

1 the

system allows an exact analytical solution by means of Jordan-Wigner transformation. The

latter makes it possible to reduce the Hamiltonian (2.1) to that of non-interacting spinless

fermions with the quasiparticle energy

!q = J
p

1 + 2 cos q + 2, (3.1)

where q specifies the quasimomentum, and  = J/⌧ is the relative strength of the external

magnetic field. It is therefore not surprising that the quasiparticle energy gap � = 2|1� |
collapses at ⌧ = J , manifesting QPT.

At criticality ⌧c = J the ground state energy E of a one-dimensional TFIM of L spins with

the Hamiltonian (2.1) and open boundary conditions is determined by the exact analytical
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expression,

E = J


1� cosec

✓
⇡

2(2L+ 1)

◆�
. (3.2)

Both order parameters, i.e., the one in magnetically ordered state mz =
1
L

PL
i=1h�z

i i and the

other in disordered paramagnet phase mx = 1
L

PL
i=1h�x

i i, continuously vanish at the QPT

point.

3.2 Numerical approaches

For a long time, a proper theoretical description of interacting quantum systems had been

based on various approximate solutions, in which the microscopic interaction was considered

either perturbatively or was simplified. In the meantime, rapid progress in technological

development has made it possible to exactly approach small and moderate-size interact-

ing quantum systems by means of numerical exact diagonalization. Most of the numerical

techniques exhibit an exponential scaling whith the size of a system, which blows up the

allocated computer memory to store a quantum state or a Hamiltonian. However, a variety

of approximations can be made to speed up the simulations beyond this issue. In particular,

numerical methods "throwing out" high-energy properties of the system, the most irrelevant

to condensed matter experiments, dramatically reduce the dimension of the corresponding

Hilbert space leaving us with the problem of polynomial complexity. The latter makes it

possible to directly estimate low lying states by means of diagonalization routine based,

e.g., on Lanczos algorithms or iterative solvers, which yields a better scaling as compared

to brute force approach [40]. More involved methods, e.g., the density matrix renormaliza-

tion group (DMRG), can be also successfully applied and involve sophisticated decimation

schemes based on the entanglement structure of the wave function [41].

Another main strategy for solving many-body interacting systems is stochastic approaches

based on Markov chain Monte Carlo. They require statistical sampling of the configurations

that are distributed according the wave function. In these methods, configurations are

sampled in a Markov process [42]. The problem with these stochastic methods is that

the coefficient of the wave function for each one of the samples has to be interpreted as a

probability distribution. Only then can one update configurations stochastically giving access

to observables. There are many cases where stochastic approaches do not work in many-

body problems, typically when the so-called sign problem (which is basically the presence of

negative probabilities) appears [43]. Where these methods do work, one can get the number

of spins L in the thousands, say for DMRG [41]. And for stochastic quantum Monte Carlo

methods, in its turn, one can reach L in the millions or more [42].
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When these methods work, we should definitely use them. But there are many cases, where

we know they do not work [44, 45]. In these cases what people are doing right now in physics,

computer science, quantum chemistry, academia and industry is turning to new approaches

based on machine learning.

3.3 Machine learning approaches

Keeping in mind that machine learning approaches are also numerical, the motivation behind

using them can be justified in a simple manner. Spin configurations from the snapshots of

the system can be mapped to either binary numbers or pixels, which immediately maps

a physics problem to an image processing problem for a large number of samples. There

are various strategies that people use to employ machine learning so that one can turn to

quantum many-body problems [12, 14, 46, 24].

Supervised learning is when one has data with labels. So if we can take configurations and

label them, say, ferromagnetic or paramagnetic, then we can essentially do many tasks in

classification with supervised learning techniques. This, of course, requires labels, which is

a nontrivial task itself.

In many cases, in quantum many-body problems, where we do not have labels, we would

turn to unsupervised learning. Unsupervised learning might be looking at a quantum wave

function and trying to find clustering or associative rules that govern its behavior. Unsu-

pervised learning can also be taking measurement data and essentially reconstructing the

wave function from individual images or snapshots. That is like a reconstruction of, say, a

probability distribution in the classical case or the full wave function in the quantum case.

These reconstruction techniques based on machine learning are now being studied and com-

pared to traditional techniques based on quantum state and quantum process tomography

[47, 48, 49, 50, 24].

So, as we go into the future, we have a toolbox made up of traditional analytical and

numerical approaches, which have been developed for decades, but we also have a new toolbox

based on machine learning that might be crucial in the investigation of future quantum

materials and devices.

3.4 Methods for detecting quantum phase transitions

Suppose for now that we managed to find the ground state of the model by any of the

methods listed above and know how to extract any type of information from it. The open
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question is then how one can determine the signature of a quantum phase transition or its

absence. To elaborate, we are gradually varying the control parameter and at any given

time would like to know which phase our system is in. As an answer, several methods can

be proposed, which nowadays tend to be used the most often.

• First of all, one can look at the behavior of an observable, typically for this role one

employs the average magnetization. In this particular method what one can try to catch

is nothing but a finite region of sudden change that shrinks in the thermodynamic limit

to a single point of non-analyticity [51].

• Secondly, one can examine the critical behavior of the energy gap � or the correlation

length ⇠, that were mentioned in Chapter 1, since the vanishing gap and the diverging

correlation length are a clear sign of the QPT [1, 52].

• And last but not least, is the fidelity approach, which is focusing on studying the

amount of change of the wave-function while changing the governing parameter. More

precisely, the fidelity approach to QPTs uses the overlap between ground states of the

system to gain some information about its quantum phases [53, 54].

Quantum many-body problems belong to the class of problems whose full solution is expo-

nentially hard. Albeit, approximate methods have been developed, many of these are also

extremely computationally demanding. As opposed to the latter, machine learning methods

can be less computationally demanding, however catching all physics, that lies beyond, e.g.,

non-local correlations.

To the best of our knowledge, the quantum transverse field Ising model and the QPT it

undergoes was addressed in the following papers:

1. In 1979, Bambi (see [55]) used the Renormalization Group (RG) approach and revealed

the QPT point and the critical exponents.

2. In 2008, Jordan et al. tackled the quantum Ising criticality with the help of the Pro-

jected Entangled-Pair State (PEPS) algorithm [56], a tensor-network based approach.

3. In 2015, tensor networks were employed in the form of the Multi-Scale Entanglement

Renormalization Ansatz (MERA) by Evenbly and Vidal to find out the critical prop-

erties of the 2D classical Ising model, which is mappable to the quantum model [57].

4. In 2018, a group from Japan [25] used deep neural networks to detect the QPT in 1D

quantum Ising model.
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As for the anisotropic XY model:

1. In 1961, Lieb et al. (see [35]) proposed the model as a model for ferromagnetic mate-

rials.

2. In 1971, Barouch and McCoy [58] solved the model exactly with the help of the usual

technique of Jordan-Wigner and Bogoluibov transformations.

3. In 2018, a group of Chinese physicists employed the fidelity approach to find the critical

point of the model [36].

In all of the works listed above, the best accuracy (relative to the exact theoretical result)

achieved was less or equal than 1%.
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Chapter 4

Classification with neural networks

4.1 Architecture

Let us begin with the description of a feed-forward neural network (we will hereafter omit

the word "feed-forward" since this is the only type of neural networks we consider in this

study) by the architecture diagram, which is presented in Figure 4.1.

...
...

...

I1

I2

I3

IL

H1

HM

O1

ON

Input
layer

Hidden
layer

Output
layer

W (I)
11

W (I)
LM

b(I)1

b(I)L

b(H)
1

b(H)
M

b(O)
1

b(O)
N

W (H)
11

W (H)
MN

Figure 4.1: A common neural network architecture with 1 hidden layer.

Such neural networks have the following characteristics.

1. They consist of neurons and connections between them (white circles and black arrows

accordingly in Figure 4.1).

2. The neurons are arranged in layers such that the first layer I = (I1, . . . , IL) takes in

the input and the last layer O = (O1, . . . , ON) produces the output.
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3. Each layer has a corresponding set of numbers b(I), b(H), b(O) which we will refer to as

biases.

4. The middle layer H = (H1, . . . , HM) is not being observed during computation and

hence is called the hidden layer.

5. Each neuron in a layer is connected to every neuron of the next layer by the corre-

sponding set of weights W , which means the information is constantly flowing forward

from one layer to the next.

6. There is no connection among neurons in the same layer.

7. The number of hidden layers is not limited and can be as large as possible, resulting

in a more expressive model, but more expensive computation.

4.2 Activation function

During the computation, we will use non-linear functions, which are usually called activation

functions. Most common choice includes one of the three functions, shown in Figure 4.2.

y = 1
2 (tanh(x) + 1) y = �(x) = 1

1+e�x y = ReLU(x) = max(0, x)

1 1 1

Figure 4.2: Nonlinear activation functions typically used for machine learning problems.

These three are referred to as hyperbolic tangent, sigmoid (or logistic), and ReLU – rectified

linear unit. The first two provide continuous maps R ! (0, 1) and so their output is inter-

preted as the probability of a neuron to be turned on. ReLU(x) however has unbounded

output and a discontinuous derivative at zero.

4.3 Computation graph

Now, let us explain how the whole computation is handled. The calculation of the output

proceeds as follows: first, the state of the hidden layer Hi, i = 1, . . . ,M is computed as
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Hi = fH

 
LX

i=1

W (I)
ij Ij + b(H)

i

!
, (4.1)

or, in the vector-matrix product form

H = fH
�
W (I)I + b(H)

�
, (4.2)

then the values of the hidden neurons are passed to the output layer, where we again apply

the activation function to the linear transform of the hidden neuron values:

O = fO
�
W (O)H + b(O)

�
= g

�
W (O)fH

�
W (I)I + b(H)

�
+ b(O).

�
(4.3)

Note, that the activation functions are applied element-wise.

4.4 Our model

Even though some problems require really deep neural networks (with the number of the

hidden layers order of 100), they are usually computationally hard to train and evaluate.

Let us proceed to the simplification of the model depicted in Figure 4.1, that we introduce

in our setup by removing the hidden layer of the network. In the present form (see Figure

4.3) this setup represents the simplest neural network possible.

...

b1

b2

b3

bL

�1

�2

�3

�L

O

W1

W2

W3

WL

Input
layer

Output
layer

Figure 4.3: Neural network architecture used in the present study.
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In Figure 4.3, �i’s stand for the spin projection values, i.e., (�1, . . . , �L) is a bitstring of

0’s and 1’s, which we obtain during the sampling procedure, described in Chapter 5, and

feed to the neural network. At the same time we will denote the values each input neuron

takes during the computations as �i as there is straight analogy of this set of neurons to

one-dimensional spin chain.

When the input neurons take certain values �i, the values of the output neuron O is calculated

in the form of

O = f

 
LX

i=1

Wi�i + bi

!
, (4.4)

where Wi is a vector of weights, which are real numbers, connecting visible neurons to hidden

neurons and bi is a bias of the ith hidden neuron.

A spin configuration of a quantum spin chain is fed to the input layer. When a configuration

is fed to the visible layer of the network Ni, the output neuron O is prescribed to take a value

of either 1 or 0, depending on the parameter value ⌧ , the spin configuration was drawn from

– ⌧0 or ⌧i (meaning that we have two probability distributions in front of us at two values of

the control parameter). The fact that we have only one output neuron can be explained by

the nature of binary classification. Should we have multiclass classification, then the number

of classes would correspond to the number of output neurons.

4.5 Training

What then happens is a so-called supervised learning phase: a network is shown a large set

of configurations belonging to either ⌧0 or ⌧i. Each configuration is known to belong to the

corresponding probability distribution � and thus this configuration is labeled with a correct

answer.

For a given configuration and a correct answer, an estimate of the classifier’s mistake is given

by the so-called binary cross-entropy, which is sometimes also called the log-loss function,

defined as:

Hp(q) = � 1

N

NX

i=1

[yi · log (p (yi)) + (1� yi) · log (1� p (yi))] , (4.5)

where N is the number of samples used during the training stage, yi is the label of i’th
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configuration (either 0 or 1), and p(yi) is the predicted probability of a configuration to

belong to one of the classes.

The value of Hp(q) is zero for a perfect classifier. For a given training set of configurations

with each one assigned a proper class, binary cross-entropy is a function of network param-

eters – the weights Wi and the biases bi. The network is trained by minimizing the log-loss

in the space of weights and biases with the help of RMSprop optimization algorithm [59].
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Chapter 5

The setup

The aim of this chapter is to introduce the reader to the machine learning setup and mani-

pulations with the Hamiltonians and the ground states we perform throughout this work.

5.1 Sampling

Having large amount of data, a so-called data set, is crucial for applications of machine

learning by its nature. As a method to sample spin configurations we decided to employ

the exact diagonalization routine instead of sophisticated quantum Monte-Carlo techniques,

which are nontrivial to realize and still remain a subject of investigations themselves [60]. In

the end, for well-studied systems, where all the properties are known in the thermodynamic

limit, we do not need tremendous chain’s size to demonstrate the success of machine learning

in detecting phase boundaries and the transitions between them.

Let us describe the sampling procedure by example of the TFIM without any longitudinal

field. Interestingly, adding the longitudinal field does not change the procedure qualitatively.

For all of the following calculations, numerics and visualization we use Python programming

language [61] with the following libraries: NumPy [62] and SciPy [63] for basic operations

and numerics, Matplotlib [64] for visualization, scikit-learn [65] and Keras [66] for machine

learning subroutines. All the code is reproducible and can be found in [67]. Detailed de-

scription of the machine learning part is given in Appendix A.

Note that in the canonical basis with �z being diagonal, which is also sometimes called the

standard or the computational basis, the TFIM Hamiltonian matrix is a sparse one, i.e., it

is a matrix with most of the elements being zeros. Adding the longitudinal field does not

change this, as �z
i is diagonal in the standard basis for every i in the chain. In Figure 5.1 one
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can see the visualized matrix elements and make sure that most of the elements are zeros.

The property that the majority of the elements are zero does not change while varying the

control parameter ⌧ .

Figure 5.1: Visualization of matrix elements of the TFIM Hamiltonian of 8 spins at ⌧ = 1.

Next, we use exact diagonalization to obtain the ground state of the system |gi, which is

the eigenvector of a hermitian matrix H = H† corresponding to the smallest eigenvalue E0

(which is actually the energy of the system in the state |gi) defined as follows:

H|gi = E0|gi. (5.1)

In general, the ground state vector |gi is 2L-dimensional vector with complex entries gi.
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|gi =

0

BB@

g0
...

g2L�1

1

CCA . (5.2)

Thus, having the ground state vector, we can obtain, following Born’s rule [68], the prob-

ability distribution of spin positions in the �z-basis. The distribution looks the following

way:

p(g) =

0

BB@

p0(g)
...

p2L�1(g)

1

CCA , (5.3)

where pi(g) = |gi|2 = ḡigi and the bar sign ¯ means the complex conjugation.

Thus pi(g) is the probability of observing the i-th bitstring (by a bitstring we mean a config-

uration of �z observables of magnetizations on sites of the lattice) if the system is prepared

and stays in the ground state.

The task is now to sample such bitstrings with the corresponding probabilities. If one has

an access to the ground state wavefunction (the ground state vector |gi), then one simple

way to do this is the following: Consider the interval (0, 1) partitioned into intervals with

respect to the probabilities pi. Then we can toss a coin – that is, a uniformly-distributed

(over (0, 1)) random number is generated, and the string that corresponds to the interval

where the coin fell is thus sampled. On the image below, L = 2 – there are two spins, thus

there are four basis bitstrings: {s1 = |00i, s2 = |01i, s3 = |10i, s4 = 11i} and the coin fell

on the |01i interval, thus the |01i string is returned. This sampling process is visualized in

Figure 5.2.

0 1

p1 p2 p3 p4

coin

Figure 5.2: Visualization of the coin toss sampling.

Luckily, such a sampling procedure can be easily performed with the help of only one function

from the NumPy package [62] – numpy.random.choice, which generates a random sample

from a given one-dimensional array.

Finally, to obtain the bitstrings from the sampled integers, one has simply to convert them
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to binary, which is trivial.

Let us now show the procedure described above with a TFIM example. The problem could

be that the major number components of the ground state vector are tiny numbers (they

have to sum up to 1 as the probability distribution properties prescribe) – and due to this

fact such corresponding bitstrings are very unlikely to be sampled for us.

Figure 5.3: Distribution of the basis bitstring configurations for the TFIM Hamiltonian on
L = 7 spins at ⌧ = 1.

Figure 5.4: Distribution of the basis bitstring configurations for the TFIM Hamiltonian on
L = 7 spins at ⌧ = 1 and N = 10000 configurations sampled by our method.
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In Figure 5.4 one can see that the distributions coincide with each other with remarkable

accuracy with the classical fidelity between two probability distributions defined as

F (p, q) =

 
X

i

p
piqi

!2

, (5.4)

being 0.99.

For a larger system, the probability distribution of the ground state over the basis states is

much harder to visualize (see Figure 5.5) due to the fact that the number of possible bitstrings

2L is exponentially big, but the fidelity (being 0.94 for two probability distributions in Figure

5.5) is still acceptable.

Figure 5.5: Distribution of the basis bitstring configurations for the TFIM Hamiltonian on
L = 15 spins at ⌧ = 1 and N = 10000 configurations sampled by our method.

5.2 Methodology

Now we will describe the main part of our work.

First of all, we set the discretized values (in quantity of D) of the Hamiltonian control

parameter ⌧ – {⌧k}D�1
k=0 .

Subsequently, for every ⌧k, we find the ground state vector |g(⌧k)i and transform it to the

probability distribution p(g(⌧k)) in the way that was described in the previous section.
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After that, we sample N bitstrings for each ⌧k using the sampling procedure described

above. The boundary values were taken as follows: ⌧0 = 0 and ⌧D�1 = 2. In our work we

take N = 20000 and D = 40.

Afterwards, a feed-forward neural network Nk is trained to classify the bitstrings sampled

from p(g(⌧0)) and p(g(⌧k)). Finally, we end up with D � 1 pairs of (ci, ⌧i) with ci 2 (0, 1)

being the mean output of the neural network evaluated on the samples drawn from the

probability distribution given by the ground state of H(⌧i). The split ratio between the

train and the test data S was kept 0.25 during all of the simulations. In what follows, we

show that the value of c with respect to ⌧ dramatically changes signalling a phase transition.

We apply a similar procedure to the anisotropic XY model with the anisotropy parameter

�1  �  1 starting with �1 = �0.99. This scanning subroutine is demonstrated in Figure

5.6.

Supervised learning

•
⌧cPhase I Phase II

Scanning window

Unsupervised learning

Transverse

field ⌧

Figure 5.6: Visualization of the setup.

Performing a numerical experiment which implies scanning this way through the whole

reasonable region of the corresponding parameter axis, we obtain the behavior of mean

output c with respect to ⌧ . It is natural to believe that c is going to have critical behavior

at the phase transition point and thus would signal the phase transition region, because the

ground states of the system should be dramatically different in distinct phases.
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Chapter 6

Results and discussion

In this chapter, we provide and discuss the main results of this work.

6.1 Transverse field Ising model

For the TFIM it first makes sense to examine the behavior of the energy gap �, as we

know from the literature, that it is an explicit order parameter obtained from exact theory

[1]. Figure 6.1 shows its dependence of the transverse field value ⌧ . The values of � were

obtained by exact diagonalization of the model’s Hamiltonian.

Figure 6.1: Energy gap � against the transverse field ⌧ for various lengths of the chain.

Indeed, one can see that the plot shows two distinct regions. In the first, the quantity

� is zero, in the second – nonzero. This behaviour can be explained in an intuitive way:
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the ground state is double-degenerate (thus the two lowest eigenvalues are equal) in the

ferromagnetic phase and non-degenerate in the paramagnetic phase. The critical point and

its neighbourhood moves closer to 1 while increasing the chain size.

Now that we can extract a critical point by fitting the plot in the paramagnetic phase with a

linear function (keeping in mind that for TFIM the critical exponent value for the energy gap

� is 1, which is common knowledge available, e.g., in [60]) and looking at the x-coordinate

of the intersection with the x axis, as displayed in Figure 6.2, we have an etalon to compare

our machine learning-based method with.

Figure 6.2: Energy gap � and the linear fitting function against the transverse field ⌧ for
L = 20 exhibiting the QPT point at ⌧c = 0.94.

Besides the energy gap �, one can also take a look at the magnetic properties of the sys-

tem. Originally, the Ising model was used to obtain macroscopic magnetic features from

microscopic interactions in the system [69]. Thus, one can expect that the phase boundaries

might be signalled by magnetic observables, for example, the transverse magnetization mx,

which we define below in the following manner:

mx =
1

L
h

LX

i=1

�x
i i, (6.1)

where averaging is performed over the quantum state.

Figure 6.3 shows our calculations of the transverse magnetization mx via exact diagonaliza-

tion with respect to the transverse field ⌧ . The curve displays a typical tangentoid form,
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exactly as we could have expected from [1].

Figure 6.3: Transverse magnetization mx against the transverse field ⌧ for various lengths
of the chain.

Figure 6.4: Transverse magnetic susceptibility �x against the transverse field ⌧ for various
lengths of the chain.

Moving further, to get clearer visualization of the QPT crossover region, one might be

interested in the behavior of the average transverse magnetic susceptibility �x which is

defined below:

�x =
@

@⌧
mx. (6.2)
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In Figure 6.4 we plot the susceptibility calculated by first-order finite difference of the average

transverse magnetization mx.

Loosely speaking, the plot in Figure 6.4 can be explained by a simple idea: it shows that

the spins are more sensitive to the change of an external transverse field ⌧ in the vicinity of

the QPT point. Of course, the x-coordinate of the hill corresponds to the point where the

energy gap � vanishes.

Now, following the logic of our work, let us look at how the method, which was derived and

explained in Chapter 5, tackles the problem of defining the critical point.

In Figure 6.5, one can see a typical plot from a large number of figures we have obtained

during our work with chains of different sizes. This particular one displays the crossover

for L = 20 at ⌧̃c = 0.96. We have performed experiments with chains from L = 7, which

appeared to be the lower limit of displaying anything distinguishable from the sampling

noise, to L = 20, which bounds the memory overflow on a typical laptop we have used.

Figure 6.5: Neural network output c plotted against the transverse field strength ⌧ for a
chain of 20 spins.

To extract the pseudocritical transverse magnetic field value ⌧̃c from the set of points our

setup returns, we fit the obtained curve by a hyperbolic tangentoid defined in the following

form:

A · tanh(B · (⌧ � ⌧̃c)) + C (6.3)
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where A, B, C and ⌧̃c are parameters of the function.

The fitting procedure was performed with the help of the standard mean square fitting

technique.

Note, that while the resulting curve is typical of a transverse magnetization curve for TFIM,

there was no information about the x-projections of the spin measurements in our setup,

but only the measurements in the z-basis.

Moreover, the simplicity of a neural-network architecture we are using gives us the op-

portunity to visualize the weight vector W of a neural network Ni without extra matrix

manipulations (as it was done, for example, in [25]), for details see Appendix A. As a result,

Figure 6.6 clearly displays the crossover in the neighborhood of the pseudocritical point ⌧̃c.

Remarkably, this picture appears to be interpretable, which is, to the best of our knowl-

edge, unusual for typical machine learning models such as deep neural networks [70, 71].

The explanation might proceed in such a manner: our architecture implies only coefficients

by which the spins’ z-projection values are multiplied before feeding the whole sum to the

output neuron. Consequently, one might suggest that the model tries to mimic the spin con-

figurations given the transverse magnetic field value ⌧ . This would be a plausible explanation

of why the columns on the color map, which correspond to coefficients to be multiplied by

spin projections, are uniform in the ferromagnetic limit and look random in the disordered

phase. The boundary spins’ coefficients might be different because of the open boundary

conditions.

Figure 6.6: Visualized weights W for every spin in a chain of 20 spins against the transverse
field ⌧ .
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We can also compare the obtained critical points to estimate the accuracy of our method

and track the finite-size critical exponent � defined with by the following equation:

|⌧c � ⌧̃c(L)| =
1

L�
. (6.4)

Figure 6.7: Critical points obtained by the neural-network method and by the explicit order
parameter for finite-size chains.

Figure 6.8: Critical points obtained by the neural-network method and by the explicit order
parameter for finite-size chains.

From Figure 6.8 one can see that our method reaches accuracy of approximately 10%. To

improve this one could reasonably suggest to run the program, obtaining the point multiple
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times to obtain the value of statistical mean. However, this is very computational- and thus

time-demanding. To the best of our knowledge, people usually take the best score of the

machine learning subroutine, but not the mean value obtained from, say, 100 software runs.

Another way to address our machine learning-based approach is to compare the widths of

the crossovers obtained by different methods. First of all, one can track the widths of the

hill the transverse magnetic susceptibility �x shows in the vicinity of the critical point.

To obtain a better understanding of how the probability distribution given by the ground

state |g(⌧)i changes with respect to ⌧ we shall use the relative entropy (also called Kullback-

Leibler divergence) which is often employed as a measure of similarity between probability

distributions.

For discrete probability distributions on the same probability space X the relative entropy

is defined as

DKL(P k Q) = �
X

x2X

P (x) log

✓
Q(x)

P (x)

◆
. (6.5)

In terms of our model, the ground state |g(⌧)i gives rise to the probability distribution p(g),

which is a stochastic vector with entries pi(g), where i varies from 0 to 2L � 1. Remember

that the ⌧ -axis is discretized, so we have the set of parameters {⌧i}Di=1. We would like to

look at the behaviour of the following function with respect to ⌧ :

DKL(⌧j, ⌧k) = �
2LX

i=1

pi(⌧j) log

✓
pi(⌧k)

pi(⌧j)

◆
. (6.6)

In what follows, we use k = j + 1 for simulations. To the best of our knowledge, there

is no widely-known definition of the quantum phase transition width. That is why for

susceptibilities and the relative entropies we looked at the width of the hill at the 0.9 for the

susceptibility and 0.7 for the entropy of the peak level, see Figures 6.5, 6.9 and 6.10.
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Figure 6.9: Relative entropy D between the ground state at ⌧j and ⌧j+1 against the transverse
field ⌧ for various lengths of the chain.

Figure 6.10: Crossover widths obtained by the neural-network method, magnetic suscepti-
bility and relative entropy for finite-size chains.

6.2 Tilted field Ising model

Concerning the transverse field Ising model in the presence of a longitudinal field we examined

the behaviour of a chain of L = 10 spins. We calculated the energy gap � as a function

of both transverse and longitudinal external magnetic fields ⌧ and �. Furthermore, we

looked at the magnetic properties of the system, i.e., the transverse magnetization mx and
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the longitudinal magnetization mz. As for the neural-network approach to this model, we

took the following strategy: we fixed the transverse field ⌧ and scanned the ground state

distributions g(�) with respect to � in order to obtain c(�). We varied the boundaries of

scanning, i.e., experimented with them until the output displayed a tangentoid curve, as for

the quantum phase transition in TFIM.

All the calculations have been performed using exact diagonalization, the code is available

in [67].

In Figure 6.11 one might spot the phase boundaries by observing the crossover of the energy

gap � from 0 to a non-zero value. Indeed, the color map seems to mimic the phase diagram

obtained in [32].

Figure 6.11: Energy gap � for the TFIM in longitudinal field on a chain of L = 10 spins
versus ⌧ and �.
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As for the magnetizations, it is clear that no phase boundaries can be observed from Figures

6.12.

Figure 6.12: The transverse magnetization mx as a function of ⌧ and � for a chain of L = 10.

In Figure 6.13 we show a typical neural-network output for L = 12 and ⌧ = 0.5.
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Figure 6.13: An example of a typical neural network output c for L = 12 and ⌧ = 0.5 versus
longitudinal magnetic field �.

By picking different values of ⌧ from 0.1 to 1.0 with step size of 0.1, we obtained the following

phase diagram, depicted in Figure 6.14.

Figure 6.14: The phase diagram of the Ising model in external longitudinal magnetic field
obtained by the neural-network method for L = 12.

6.3 Anisotropic XY model

In Figure 6.15, we show the result for an anisotropic XY chain of L = 20 spins. In this

plot, one can clearly see the phase crossover induced by the change of � which is a sign of a
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well-studied anisotropy-induced phase transition in an infinite system [72], similarly to the

phase transition induced by the critical value of the magnetic field. Noteworthy, while our

algorithm is given information about the z-components of spins, it is capable of exposing a

phase crossover induced by the anisotropy in the x-y plain.

Figure 6.15: The neural network output as a function of the anisotropy parameter � for
L = 20 spins on an anisotropic XY chain with open boundary conditions.
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Chapter 7

Summary and conclusion

In this work, we considered a simple neural network architecture with no hidden layers

present and applied this to study finite-size phase crossovers in transverse field interacting

spin models and the anisotropic XY model on a one-dimensional chain. We were able to

distinguish the regions of different phases using neural networks without prior knowledge of

the phase diagram by observing the corresponding phase boundary crossover in a finite-size

system. We managed to almost exactly extract the critical value of the transverse magnetic

field separating regions of magnetically ordered and disordered phases for the transverse spin

models. Relative simplicity of the machine learning setup allowed us to visualize the weights

of the corresponding neural network and unambiguously relate this plot to configuration of

different spin orderings. In the presence of the longitudinal magnetic field we were capable of

correctly reproducing the phase diagram, while observing the quantum criticality which is in

line with the previous results. Besides that, we proved the presence of quantum criticality via

several methods. First of all, it is the energy gap, which serves as the explicit order parameter

for the transverse field Ising model. Secondly, we looked at the transverse magnetization and

the transverse magnetic susceptibility. The latter displays a smooth crossover (hill) near the

quantum phase transition region. Finally and most importantly, our neural-network method

exhibited a tangentoid-type curve which made us able to define the quantum critical point

and the width of its neighborhood using a proper fitting function.

The results of this study have been published as a preprint [73] which is currently awaiting

publication in Journal of Physics: Complexity.
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Appendix A

Tables
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Table A.1: Variables and definitions
Variable Definition Description

L
Size of the spin

chain.

Number of sites of the graph on which the Hamiltonian is

defined on.

� Energy gap.
The difference between the ground state energy and the en-

ergy of the first excited state.

⌧
Transverse

magnetic field.
A parameter for transverse field Ising model.

�
Longitudinal

magnetic field.

A parameter for transverse field Ising with longitudinal mag-

netic field.

|g(p)i Ground state.
A vector that corresponds to the lowest eigenvalue of a

Hamiltonian controlled by a parameter p.

�x
i

0

@0 1

1 0

1

A The operator for an x-projection of the spin on site i.

�y
i

0

@0 �ı

ı 0

1

A The operator for a y-projection of the spin on site i.

�z
i

0

@1 0

0 �1

1

A The operator for a z-projection of the spin on site i.

m↵
1
Lh
PL

i=1 �
↵
i i

Average magnetization in the ↵-direction, where ↵ = x, y, z
and averaging is performed over a quantum state.

�↵
@

@⌧
m↵

Average magnetic susceptibility in the ↵-direction, where

↵ = x, y, z.

D
Discretization

value.

The total number of equidistant points that we define on a

parameter axis.

Nsamples
Total number

of samples.

N ⇥ L array of bitstrings used for training and testing a

machine learning model.

S Ntest/Nsamples A split ratio between testing and training data.

Ntrain (1�S)Nsamples
Number of samples used for training a machine learning

model.

Ntest SNsamples
Number of samples used for testing a machine learning

model.

c
Neural net-

work output.

The mean output of the neural network evaluated on the

samples drawn from the probability distribution given by

the ground state of the corresponding Hamiltonian.

W Weights. Learnable parameters of a machine learning model.

b Biases. Learnable parameters of a machine learning model.

ı ı2 = �1 The imaginary unit.
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