
ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, No. 6, pp. 603–612. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2020, Vol. 56, No. 6, pp. 689–699.
A Simple Description of the Turbulent Transport 
in a Stratified Shear Flow as Applied to the Description 

of Thermohydrodynamics of Inland Water Bodies
I. A. Soustovaa, Yu. I. Troitskayaa, b, D. S. Gladskikha, c, e, *, E. V. Mortikovc, d, e, and D. A. Sergeeva

aInstitute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 603950 Russia
bObukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 119017 Russia

cResearch Computing Center, Moscow State University, Moscow, 119234 Russia
dMarchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333 Russia

eMoscow Center for Fundamental and Applied Mathematics, Moscow, Russia
*e-mail: daria.gladskikh@gmail.com

Received May 22, 2020; revised July 22, 2020; accepted August 5, 2020

Abstract—A way to parameterize the turbulent Prandtl number is proposed based on the model of turbulent
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INTRODUCTION

By now, it has been established [1–4] that inland
water bodies play an important part in processes of the
interaction between the atmosphere and active layer of
the land surface. At the same time, it is well known
that processes of small-scale turbulent mixing in the
near-surface layer of the ocean and inland water bod-
ies play the key role both in the development of global
climate models [5–8] and in the creation of regional
weather forecast models [9, 10]. Present-day global
oceanic models do not resolve small-scale processes of
turbulent mixing in the near-surface layer of the ocean.
For this reason, these processes are taken into account
due to the parameterization of turbulent exchange
coefficients—turbulent viscosity and diffusion, which
relate turbulent f luxes of mass, momentum, buoyancy,
etc., with characteristics of average large-scale fields of
velocity, density (temperature), and other parameters.
Values of these coefficients significantly depend on the
state of the water–air interface, density stratification,
and other factors. In most present-day numerical mod-
els, the description of turbulent mixing processes in the
ocean and inland water bodies requires solving partial
differential equations for the mean flow; the turbulent
transfer terms (Reynolds stresses) appearing in these
equations are determined according to the assumed

hypotheses of turbulence closure, e.g., gradient ones
allowing one to relate Reynolds stresses to gradients of
the average velocity (or any other scalar transported
substance [11]). One-dimensional (along the vertical)
models are most widely used in modeling turbulent pro-
cesses in inland water bodies, which is related to their
computational simplicity. Such models can also include
the so-called k [12, 13] and k–ε [14, 15] schemes, in
which evolutionary equations for the kinetic energy of

turbulent fluctuations are considered ( ,

where  are turbulent fluctuations of the i-th velocity
component), or an additional equation for the rate of its
(kinetic energy density) dissipation (ε). Note that the
introduction of an additional equation for ε is related to
the fact that the expressions for coefficients of turbulent
viscosity  and turbulent heat conduction , as well
as dissipation rate ε, in the k model with a single equa-
tion for the kinetic energy of turbulent fluctuations (see,
e.g., [16]) include an unknown quantity—the exter-
nal linear turbulence scale L. In particular, according to
the Kolmogorov–Prandtl hypothesis [12], 

and  the determination of L in the case of

complex f lows is difficult. Solving equations in the
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604 SOUSTOVA et al.
k–ε model at large Reynolds numbers under conditions
of local isotropic turbulence allows one to determine

the distribution of linear turbulence scales  It is

important to note that the calculation of heat transfer
within the framework of the standard k–ε model
assumes that the turbulent Prandtl number relating
the coefficients of turbulent viscosity and diffusion

 is constant.

Applicability of the k–ε scheme can be extended
using additional algebraic relationships taking into
account, e.g., the action of buoyancy forces, turbu-
lence anisotropy, etc. In recent years, more compli-
cated models also appeared, allowing one to take into
account, e.g., the difference in the evolution of differ-
ent components of Reynolds stresses (e.g., [17]). This,
in turn, requires turning to more complicated schemes
for the closure of higher order turbulent Reynolds
stresses. However, equations obtained in this process
allow one to take into account and analyze a series of
interesting features appearing in turbulent f lows in the
presence of, e.g., buoyancy forces, horizontal motions
of inland water bodies, anisotropy, etc.

The small-scale turbulence in oceans, seas, and
inland water bodies is affected as a rule by two fac-
tors—density stratification and velocity shear, which
must be taken into account when constructing its sta-
tistical theory. As was shown in [18], taking into
account the stratification of density depending, e.g.,
only on temperature, leads to the appearance of the
so-called dynamic (or f lux) Richardson number

 (here,  is the mass f lux,

 is the momentum flux, and  is the velocity
shear) in the energy balance equations. The number
characterizes the role of Archimedean forces and
averaged shear motion in the balance of turbulent
energy. In particular, it was shown in [18] that
undamped turbulence is possible only at

 or, with allowance for the definition
of coefficients of turbulent viscosity and turbulent dif-
fusion, the condition for the existence of undamped

turbulence is reduced to , where 

(N is the Brunt–Väisälä frequency) is the gradient
Richardson number. However, there are some reasons
to believe that the Prandtl number  does not
remain constant and, with a change in the gradient
Richardson number Ri, can be so large that the
dynamic Richardson number  remains lower than
the critical value and turbulence exists [18]. In partic-
ular, experimental measurements in the atmosphere,
upper ocean layer, and laboratory [18–21] demon-
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strate that the Prandtl number can take large values
even under strongly stable stratification, i.e., the coef-
ficient of turbulent heat diffusion turns out to be con-
siderably lower than the turbulent viscosity coeffi-
cient; therefore, turbulence can also exist at large val-
ues of the gradient Richardson number. It follows
from the above that the question about the depen-
dence  seems to be important for studying the
possibility to sustain the turbulence by weak shear in a
stratified f luid which are characteristic both for the
ocean and for inland water bodies.

There is a sufficient number of works in which fea-
tures of semi-empirical models of turbulent closure
[11–14] for stratified shear f lows and, in particular,
question about the existence of turbulence at large
Richardson numbers are studied. Numerous empiri-
cal dependences  were proposed (for example,
[22–25]); they characterize mainly the asymptotic
behavior of the dependence , but do not allow
one to sufficiently accurately establish the dependence
shape at intermediate Ri values characterizing the
transition from weak to strong turbulent stratified
shear f lows of the f luid.

In this work, we propose a parameterization of the
Prandtl number obtained based on the modified theory
of turbulent closure in stratified shear flows. The theory
was developed by one of the authors in 19871 [28]. The
procedure of obtaining the corresponding equations
for means is similar to that used in the kinetic theory
of gases [29, 30]. It includes a solution of the equation
for the single-point distribution function f—the so-
called kinetic equation; Reynolds stresses are calcu-
lated by the known distribution function. The pro-
posed approach made it possible to take into account
some important but usually neglected effects, e.g., the
dependence of vertical turbulence anisotropy on strat-
ification; nongradient correction to the traditional
expression of the turbulent mass f low; and inverse
transition from potential energy of turbulent f luctua-
tions to kinetic energy, which eliminates restrictions
on the existence of turbulence at large Richardson
numbers.

We verify the dependence of the Prandtl number
within the framework of numerical simulation of the
thermohydrodynamic regime of inland water bodies
with the use of the three-dimensional thermohydro-
static model [31, 32] verified earlier [33] using a more
widely known one-dimensional (along the vertical)
LAKE model by a modification of the k–ε scheme,
allowing one to take into account particularities of tur-
bulent mixing in stratified water bodies. It is shown

1 Later, in works by S.S. Zilitinkevich’s group [26, 27], the theory
of turbulent closure was proposed. It is based on balance equa-
tions for the kinetic and potential energy of turbulence, turbu-
lent momentum fluxes, potential temperature, and relaxation
equation for the turbulent time scale. This model also allows one
to remove restrictions on the existence of turbulence at large
Reynolds numbers.
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A SIMPLE DESCRIPTION OF THE TURBULENT TRANSPORT 605
that a similar parameterization of the Prandtl number
can also be obtained within the framework of the
modified k–ε scheme taking into account the mutual
transformation of kinetic and potential turbulence
energies.

FUNDAMENTAL PRINCIPLES 
OF THE MODEL OF TURBULENT 

TRANSPORT IN A STRATIFIED SHEAR FLOW

Let us briefly turn our attention to main results of
the model [28]. The main problem arising in calcula-
tions of average values of hydrodynamic quantities is
related to an adequate approximation of the so-called
collision integral (summands related to pressure f luc-
tuations and fluctuation components of viscous forces).
As is shown in [28], to obtain general expressions for
turbulent f lows of the momentum, density, energy,
and other hydrodynamic quantities, it is possible to
solve the equation of single-point distribution func-
tion f under some assumptions. After finding the dis-
tribution function, Reynolds stresses are calculated by
formulas of the probability theory. For the turbulent

fluxes of momentum  and mass , as well as

for f luxes of kinetic energy  and density

variance , the following expressions were
obtained:

(1)

(2)

(3)

Here, L is the characteristic external scale of turbu-
lence, V is the characteristic scale of the velocity,  is
the acceleration of gravity, and  are components of
the vector  characterizing pressure f luctuations in the
stratified f luid (see below).

Note that the expression for the mass f lux (2)

includes an additional summand ,

which leads to some significant differences from
results obtained within the framework of usual gradi-
ent models [34]. For a statistically homogeneous field
of density f luctuations, components of the vector 
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have the form  and  where
R is the anisotropy parameter:

where  are the vertical and horizontal scales of
the density field correlation, respectively.

The expressions presented above allow one to
obtain a closed model of a turbulent f low in a stratified
fluid in the form of equations for averages: velocity 
and density , as well as kinetic energy of turbulence

k and variance of density pulsations :

(4.1)

(4.2)

(4.3)

(4.4)

Note that dissipative and diffusive processes in
Eqs. (4.3) and (4.4) are taken into account using Kolm-
ogorov hypotheses. The turbulence energy dissipation
rate ε and turbulent diffusion rate  are determined by

the expressions  and , where

 are empirical constants.
Based on the proposed model, some examples of the

interaction between turbulence and shear flows in a
stratified liquid were considered; in particular, in [28],
the evolution of homogeneous turbulence in the field
of a f low with a constant velocity shear was studied.
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Fig. 1. Dimensionless kinetic energy   (the solid line) and potential energy 

 (the dashed line) of turbulence as functions of dimensionless time   at different values of
the Richardson number Ri = (a) 0.5 and (b) 5. The anisotropy parameter  in both cases. 
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We turn our attention to the last problem in more
detail because, within the framework of this formula-
tion, one can successively analyze the influence of
mutual transformation of the kinetic and potential
energies on the turbulence evolution at large Richard-
son numbers and calculate the dependence of the tur-
bulent Prandtl number on the Richardson number.

We briefly mention results of [28]. System (4)
under the abovementioned assumptions is reduced to
two equations for the kinetic and potential turbulence

energies k and  and has the form

(5.1)

(5.2)

First and foremost, an analysis of system (5) shows
that the system has stationary solutions for the kinetic
and potential energies:

(6)

which are attained during the time 
(see Fig. 1), where  +

 is a function of the
Richardson number.

It is clear from system (5) that the gradient summand
 in the expression for the buoyancy flux
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describes the transition from kinetic energy to potential
energy (stable stratification damps the turbulence). The

additional summand  related

to the nongradient addition in the mass f lux has a sign
opposite to the gradient sign and describes the reverse
transition from potential energy to kinetic energy due
to the work of the buoyancy force. Here, if the Rich-
ardson number is large (  (see Fig. 1), the frac-
tion of turbulent f luctuation energy transiting from
kinetic to potential and back is balanced the work of
the buoyancy force during a rather short time

 . This means that, at large

Richardson numbers, a relationship 
between the kinetic and potential turbulence energies
is reached during a rather short time; the further evo-
lution of turbulence does not depend on the Richard-
son number (see [28]).

The results presented above allow one to calculate
the turbulent Prandtl number in the steady state. By
definition,

from system (6), we obtain an increasing dependence
of the Prandtl number on the Richardson number:

(7)

It is important to emphasize the certain universal-
ity of the dependence , which is determined by
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Fig. 2. Dependence of the Prandtl number on the Richard-
son number in two different models.
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(8)

Note that expressions (7) and (8) also preserve their
form within the framework of the k–ε model, when
the expression  is used for the coefficient
of eddy viscosity and, correspondingly, for the turbu-

lence scale,  Using the traditional approxi-

mation for the diffusion rate of turbulent f luctuations
of a scalar quantity (see, e.g., [16]), one can find the
dissipation rate of potential energy of turbulent f luctu-

ations by the expression  at R1 = 1 (which

means that the time scales of pulsations of the velocity
and scalar quantity are equal). Then, expressions (6)
are transformed to the form

Since the Prandtl number parameterization
obtained above (see (7) and (8)) depends only on the
ratio П/k, it follows from (*.2) that it is also valid for
the extended k–ε model.

Therefore, it is clear from (7) and (8) that the con-
dition of turbulence sustainment in a stratified f luid

 is satisfied at any Ri; i.e., there is no gener-
ation threshold for the Richardson number. Note
that the asymptotic dependence (7), (8) agrees with
results in [27, 35], where parameterizations with an
unbounded growth of the Prandtl number were pre-
sented. The comparison with the EFB model of
S.S. Zilitinkevich’s group is presented in Fig. 2.

The next section demonstrates the result of using
the obtained parameterization of the turbulent Prandtl
number (7) in idealized calculations of thermohydro-
dynamics of inland water bodies.

APPLICATION OF THE PROPOSED 
PARAMETERIZATION IN THE MODEL 
OF THE THERMODYNAMIC REGIME 

OF AN IDEALIZED INLAND WATER BODY
The effect of the turbulent Prandtl number param-

eterization on processes of mixing in inland water bod-
ies in this work was estimated using the RANS (Reyn-
olds-Averaged Navier–Stokes) three-dimensional
hydrostatic model developed in the Research Com-
puting Center, Moscow State University, based on the
common code combining both the RANS and the
DNS (Direct Numerical Simulation) and LES (Large-

( )−3П  1 R
k

Ri  1@

( ) ( )= −Pr Ri   4 3   Ri.T R

μ=mK c kL

=
ε

3
2

.kL C

ε = εП 1
ПR
k

( )ε =
22

0
2 Ri , (*.1)

2
zV C

f
k

( )( )
( )

−= 2 1 RiП . (*.2)
Ri
f

k f

 Ri PrT!
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
Eddy Simulation) approaches for the calculation of
geophysical turbulent f lows at high spatial and tempo-
ral resolution (see, e.g., [31–33]).

The numerical model includes equations of hydro-
dynamics in a stratified turbulent rotating f luid layer in
the shallow-water approximation, as well as the equa-
tion for heat transfer with allowance for horizontal and
vertical diffusion:

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

Here,  is the velocity vector; η is the free
surface deviation from the equilibrium state; f is the
Coriolis parameter; T is the temperature; ρ is the den-
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608 SOUSTOVA et al.
sity;  (λm) and  (λh) are coefficients of vertical
(horizontal) turbulent viscosity and temperature con-
ductivity, respectively; ν and χ' are coefficients of
molecular viscosity and temperature conductivity; z is
the vertical coordinate passing from the water body
bottom z = –H(x, y) to the surface; and t is time. In
addition,  is the advection operator,

and  and  are operators of horizontal
and vertical diffusion with coefficients  and K,
respectively:

Processes of vertical turbulent mixing (calculation
of the coefficients  and ) were described using the
two-equation model, the so-called standard k–ε model
(see, e.g., [22]), which involves prognostic equations
for the kinetic energy of turbulence and rate of its dis-
sipation:

(10.1)

(10.2)

(10.3)

(10.4)

Here, the summand P corresponds to turbulence energy
production by the velocity shear and B describes pro-
duction or consumption by the action of buoyancy
forces; are the turbulent Schmidt numbers for
the turbulent kinetic energy and dissipation rate,
respectively; , , and  are empirical constants;
and  and  are the stability functions for the
momentum and scalar quantities. In the standard
k‒ε model, they are assumed to be constant.

Note that, for a homogeneous and steady turbulent
flow, using the expressions for sources of turbulence
energy P and G, it follows from (10.2) that
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of the Richardson number Ri, we find that constants
of the k–ε model are not independent but connected
by the relation depending on Ri:

In particular, taking into account the asymptotic
behavior of the function f(Ri) as Ri → ∞, we obtain a
relationship between the constants in the form

This feature was taken into account when choosing
constants of the k–ε model used in calculations.

As for numerical methods used in the calculations,
the system of equations is spatially discretized using
conservative second-order accurate finite-difference
schemes and integrated in time with by semi-implicit
approximation [20].

To estimate the effect of turbulent Prandtl num-
ber parameterization on the description of turbulent
mixing processes, we carried out in this model two
types of numerical experiments. In both cases, ideal-
ized water bodies with a rectangular cross section and
parameters characteristic of real lakes and water reser-
voirs were considered: depth of 10 m, surface tempera-
ture of 20°C with the initial gradient °C/m,
and Brunt–Väisälä frequency (buoyancy frequency)

 s–1. Within the framework of the
first experiment, the calculations by the standard
k‒ε scheme were compared; in this scheme, the
Prandtl number was assumed to be constant:

 Such a value agrees with estimates of  at
 according to data of laboratory investigations

and direct numerical simulation [36, 37]; as a rule, it
is used in calculations of circulation in inland water
bodies with neutral (or close to neutral) stratification
(see, e.g., [38]). In the second series of numerical
experiments, calculations with the use of the modified
k–ε were compared with the standard model at the
Prandtl number , which, according to param-
eterization (7) presented above, corresponds to the
case . The influence of the magnitude of the
momentum flux on the surface and rotational forces
on mixing processes in both closures was also consid-
ered. In the first experiment, wind forcing was
assumed to be one-dimensional: components of the
friction velocity are  m/s and  m/s
and the value of the anisotropy parameter R in the for-
mula for  is 0.5. In the second experiment, forc-
ing was increased:  m/s; values of the
parameter R were equal to 0.2 and 0.7.

The following presents calculation results for the
main characteristics of the thermohydrodynamic
regime of mixing in an idealized inland water body: the
vertical distribution of temperature and kinetic energy
in the first experiment (Fig. 3); the same characteris-
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Fig. 3. Vertical distribution of (a) temperature, °C, and (b) kinetic energy of turbulence, m2/s2, in the first experiment. 
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Fig. 4. Vertical distribution of (a) temperature and (b) temperature gradient in the second experiment. 
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tics, as well as their gradients (Figs. 4, 5), in the second
experiment; and profiles of variation in the Richard-
son number in the process of mixing (Fig. 6).

Results of calculations with parameterization
demonstrate that the main characteristics of mixing—
vertical distribution of temperature and profile of the
heat conduction coefficient—are sensitive to the
parameterization . In the process of the
numerical experiment, the Richardson number Ri
varies considerably in the range from ~0.001 to ~100
and reaches the value of 10 as early as at a depth of
about 2.5–3 m. The kinetic energy varies smoothly
over the whole depth of the mixing region. It is
important to emphasize that taking into account the

( )Pr RiT
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
parameterization leads to smoothing all sharp
changes in vertical distributions of turbulent kinetic
energy, temperature, and thickness of the transition
layer. The results are related to the features of this
parameterization from which the existence of turbu-
lence follows at .

A change in input calculation data (forcing and
anisotropy parameter) also has an effect on character-
istic parameters of mixing. However, these changes
are expectable and are not of a fundamental nature
(the changing quantities are the formation time, depth,
and thickness of the temperature thermocline) for this
model. A change in values of the friction velocity has an
effect mainly on the time of the mixed layer formation
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Fig. 5. Vertical distribution of (a) turbulent kinetic energy and (b) turbulent kinetic energy gradient in the second experiment. 
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Fig. 6. Profile of the Richardson number (a) in the first experiment on the seventh day and (b) in the second experiment after
one day. 
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(in particular, processes of mixing occur faster with an
increase in u*; also see calculations in [20]).

It should be noted that the sensitivity of the numeri-
cal scheme to the parameterization  (especially
in the region of large gradients) seems to be important
in problems of reproducing concentrations of biochem-
ical admixtures in inland water bodies and describing
the gas exchange with the atmosphere (see [39]). In this
work, we restricted ourselves to the consideration of a
thermally stratified medium in the absence of passive
admixtures; however, in models of inland water bodies

( )Pr RiT
IZVESTIYA, ATMOSPHER
including the transport of biochemical components,
turbulent Schmidt numbers describing the similarity
between processes of turbulent diffusion of the scalar
and turbulent transport of the momentum are, as a
rule, supposed to be equal to the turbulent Prandtl
number (see, e.g., [40]). Thus, one can expect that
using the parameterization  can have an effect
on the transport of biochemical admixtures in small
inland water bodies, in particular, through the ther-
mocline. In turn, measurement data [41] demonstrate
that seasonal changes in the extinction coefficient of
penetrating shortwave radiation for water bodies in

( )Pr RiT
IC AND OCEANIC PHYSICS  Vol. 56  No. 6  2020



A SIMPLE DESCRIPTION OF THE TURBULENT TRANSPORT 611
northern latitudes are directly related to the vertical
distribution of concentrations of organic substances
having an effect on transmission capacity of the f luid.
Results of the numerical simulation on reproducing
the seasonal variability and, in particular, the time of
ice cover formation [41], are strongly sensitive to
parameterization of these processes and, therefore,
require a detailed study with the use of complete mod-
els, including a description of radiative processes and
the transport of biochemical admixtures.

CONCLUSIONS
In this work, a turbulent Prandtl number parame-

terization based on the turbulent closure model [28] is
proposed. It takes into account the two-sided transfor-
mation of kinetic and potential energies of turbulent
fluctuations. One distinctive feature of the proposed
parameterization is that it contains the ratio of the
potential energy of turbulent f luctuations П to the
kinetic energy k; the ratio, in turn, determines the
nongradient addition in the expression for the average
mass f lux. This parameterization is in good qualitative
agreement with the model obtained relatively recently
by S.S. Zilitinkevich and colleagues [26, 27]. The
parameterization is introduced into the formula for the
coefficient of turbulent heat conduction of the k–ε
model to correctly take into account the stable stratifi-
cation in calculations of the thermohydrodynamic
regime of inland water bodies.

Results of calculations allow one to conclude that
the description of the vertical mixing in inland water
bodies, even in the idealized formulation, is sensitive
to the parameterization of the turbulent Prandtl num-
ber. It is important to emphasize that taking into
account the parameterization leads to smoothing all
sharp changes in vertical distributions of turbulent
kinetic energy, temperature, and thickness of the tran-
sition layer. This is related to features of this parame-
terization, which is valid in a wide range of Richardson
numbers (in particular, at large values ), while
calculations by the standard model with a constant
value of the Prandtl number assume the existence of a
critical value of the dynamic (f lux) Richardson num-
ber, in the neighborhood of which some hypotheses of
the semiempirical theory of turbulence lose their
meaning [18].

The result that was obtained suggests the expedi-
ency of carrying out additional laboratory and field
measurements of corresponding coefficients of turbu-
lent viscosity and diffusion with the aim of choosing
justified parameterizations of the turbulent Prandtl
number in calculations of the seasonal and interannual
dynamics of stratified inland water bodies.
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