Nanostructured composites of semiconductor metal 6th NANO oxides with noble metals (Au, Pt): comparison of Boston sensitivity to volatile organic compounds Conference (Virtual) Artem Marikutsa

> Chemistry Department, Moscow State University, Vorobyevy gory 1-3, Moscow 119234, Russia artem.marikutsa@gmail.com

Introduction

Metal oxide semiconductors (MOS) functionalized by catalytic noble metals are promising for gas sensors of volatile organic compounds (VOC). However, the relations of materials composition and sensing behavior is unclear. In this work, we compare the sensitivity and selectivity of different MOS and composites MOS/Au, MOS/Pt to methanol and acetone. Nanoparticles of p-type (NiO, CuO, Co₃O₄) and n-type (In₂O₃, ZnO, SnO₂, TiO₂, and WO₃) MOS were obtained by conventional aqueous deposition method. Active sites (surface oxygen species and acid sites) were analyzed. Metal-oxygen bond energy (E_{M-O}) was chosen as a descriptor for the observed difference in active sites concentration and gas sensitivity. The interaction routes of methanol and acetone with materials surfaces were examined by diffuse-reflectance infrared spectroscopy (DRIFT). Oxidation of methanol and acetone to CO, formate and acetate species was revealed, roles of active sites in these reactions were rationalized.

	MOS	Туре	E _{M-O} , eV	Band gap, eV	Grain size, nm	BET area, m²/g
	NiO	p-type	4.8	3.5	7	110
	CuO		7.1	1.6	15	30
	Co ₃ O ₄		9.3	1.5	12	70
	In ₂ O ₃	n-type	9.3	2.8	8	105
	ZnO		10.4	3.4	35	10
	SnO ₂		15.5	3.6	5	100
	TiO ₂		20.7	3.2	30-40	8

- \checkmark Surface acidity of MOS increased with the bond energy E_{M-O}, the acid sites favor adsorption of VOC molecules CH₃OH and CH₃COCH₃
- \checkmark Sensitivity to VOC followed the volcano-like dependence on E_{M-O} for *p*-type MOS-based sensors and *n*-type MOS/Au sensors due to increased concentration of adsorbed oxygen on these materials
- ✓ Sensitivity to VOC increased with E_{M-O} for *n*-type MOS/Pt due to Pt-catalyzed conversion of VOC to CO on the acidic metal oxides

 $4 CH_3COCH_3 + 9 O_7 = 4 CH_3COO^2 + 4 CO_7 + 6 H_2O + 9 e^2$

 $CH_3COCH_3 + 3Pt + 3O_2 = 3Pt-CO + 3H_2O + 3e^{-1}$ (on acidic MOS)