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Abstract: The review describes articles that provide data on the synthesis and study of the proper-
ties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear
complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for exam-
ple are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB- 1

4 N,N,N0,N0-tetrakis(2-
benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4

[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4- diphenylbut-2-en-1,4-
dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi-
and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·
2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)
benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane).
For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols
with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynu-
clear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased
regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description
of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing
the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst
structures, which allows researchers to conclude about the nature of the oxidizing species. This
review is focused on recent works, as well as review articles and own original studies of the authors.

Keywords: hydrogen peroxide; alkanes; alcohols; alkyl hydroperoxides; mechanisms of oxidation

1. Introduction

Hydrocarbons, in particular, saturated hydrocarbons (alkanes) are the main con-
stituents of petroleum and natural gas. These compounds are raw materials for the chem-
ical industry in production of polymers, pharmaceuticals, fragrances, fuels, etc. One of
the ways of converting hydrocarbons is catalytic oxygenation with formation of alcohols,
ketones, aldehydes, carboxylic acids, and alkyl peroxides. Usually these processes are
carried out under severe conditions (high temperature and pressure using heterogeneous
catalysts). New catalytic systems for the oxidation of organic compounds with peroxides
were described in recent decades (see reviews) [1–13]. Hydrogen peroxide, alkyl peroxides,
peroxy acids, Oxone, as well as molecular oxygen were used in these reactions as oxidants.
Derivatives of transition metals are widely employed in such reactions. These reactions
are carried out under mild conditions (at low temperatures, even at room temperature;
atmospheric pressure and often using environmentally friendly solvents such as water and
alcohols). Polynuclear complexes are especially interesting catalysts [14,15]. Indeed, these
compounds can in many cases exhibit higher catalytic activity in comparison with simple
mononuclear complexes and they oxygenate long and branched alkanes with enhanced
selectivity [16,17]. Most frequently such reactions proceed with the formation of radical
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intermediate species such as hydroxyl radicals [1,2]. A comparison of such catalytic sys-
tems for the oxidation of hydrocarbons with simple catalysts—mononuclear complexes
or metal salts, is interesting, because the comparison can shed light on the features of
oxidation mechanisms.

2. Oxidations Catalyzed by Soluble Polynuclear Compounds

This Chapter describes oxidation of organic compounds with peroxides catalyzed by
di- and polynuclear metal complexes and (as comparison) by some mononuclear complexes
of transition metals. Polynuclear complexes are of particular interest both from a practical
and an academic point of view, since such compounds can have increased catalytic activity
and exhibit unique selectivity in the oxidation of organic compounds, in particular, alkanes.

2.1. Oxidation Catalyzed by Iron Complexes

Iron ions have been known for a long time as initiators and catalysts for the decompo-
sition of hydrogen peroxide [1,18]. Thus, the reaction of H2O2 with Fe+2 gives hydroxyl
radicals and Fe(+3) (stoichiometric Fenton reaction). The interaction of Fe+3 with H2O2
causes formation of hydroxyl radicals and Fe+2. The resulting Fe+2 ion is further involved
into a catalytic cycle of generating hydroxyl radicals with an intermediate participation
of the Fenton reaction. Hydroxyl radicals attack organic compounds, for example, with
the abstraction of a hydrogen atom. The abstraction of a hydrogen atom from a saturated
hydrocarbon (RH) gives rise to an unstable alkyl radical(R•). The latter attaches an O2
molecule from atmosphere, ultimately forming a relatively stable alkyl hydroperoxide
(ROOH) [1].

The formation of alkyl hydroperoxide in the reaction of the binuclear complex 1
[Fe2(HPTB)(µ-OH)(NO3)2](NO3)2·CH3OH·2H2O [HPTB = N,N,N′,N′-tetrakis(2-benzimida-
zolylmethyl)-2-hydroxo-1,3-diaminopropane] [19] containing the 1,4,7-triazacyclononane
ligand turned out to be almost inactive as a catalyst in the cyclohexane oxidation with
H2O2 at room temperature. However, the addition of a comparatively small amount of
2-pyrazinecarboxylic acid (PCA), to the reaction solution causes intense alkane oxidation
(Figure 1) to form cyclohexyl hydroperoxide which decomposes during the reaction to
produce the corresponding cyclohexanone and cyclohexanol. Total turnover number (TON)
attained was 240 after 24 h. In kinetic measurements the authors determined only the
concentrations of the ketone and the alcohol after the reduction with triphenylphosphine.
The iron (III) complex 1 was used as catalyst.
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Figure 1. Compound 1 in the absence (curves a) and in the presence of PCA; curves b) in MeCN at 
25 °C. catalyzed the oxidation of cyclohexane by H2O2 (0.59 M) Accumulation of cyclohexanol 
(curves 1b) and cyclohexanone (curves 2b) (concentrations were measured after the reduction with 
PPh3, used method by Shul’pin, which is in comparison with the concentrations of alcohol and ke-
tone in solution samples before and after adding PPh3) are shown. The data are adapted from [19], 
Copyright (2004) with permission of Wiley. 

Another binuclear iron complex 2 [20] also requires the presence of 
2-pyrazinecarboxylic acid (PCA) for the oxidation of alkanes. The accumulation of 
products during oxidation with hydrogen peroxide catalyzed by complex 2 is shown in 
Figure 2. As you can see, 2-pyrazinic acid has a dramatic effect on the reaction rate and 
product yield. As can be seen in the Figure 2, other acids are much less effective in ac-
celerating the reaction compared to 2-pyrazinecarboxylic acid. 

 

Figure 1. Compound 1 in the absence (curves a) and in the presence of PCA; (curves b) in MeCN
at 25 ◦C. catalyzed the oxidation of cyclohexane by H2O2 (0.59 M) Accumulation of cyclohexanol
(curves 1b) and cyclohexanone (curves 2b) (concentrations were measured after the reduction with
PPh3, used method by Shul’pin, which is in comparison with the concentrations of alcohol and
ketone in solution samples before and after adding PPh3) are shown. The data are adapted from [19],
Copyright (2004) with permission of Wiley.

Another binuclear iron complex 2 [20] also requires the presence of 2-pyrazinecarboxy-
lic acid (PCA) for the oxidation of alkanes. The accumulation of products during oxidation
with hydrogen peroxide catalyzed by complex 2 is shown in Figure 2. As you can see,
2-pyrazinic acid has a dramatic effect on the reaction rate and product yield. As can be seen
in the Figure 2, other acids are much less effective in accelerating the reaction compared to
2-pyrazinecarboxylic acid.

In works [21–36] other polynuclear iron complexes have been described. The oxidation
of cyclohexane by H2O2 and tert-butyl hydroperoxide under catalysis by binuclear iron
complexes [(SO4)(L)Fe(µ-O)Fe(L)(SO4)]·6H2O, 3, and [Cl(L)Fe(µ-O)Fe(L)Cl]Cl2·2H2O, 4;
1-(bis-pyridin-2-ylmethylamino)-3-chloropropan-2-ol (L) have been described [21]. The
electrochemical analysis showed that the dinuclear species is more stable under reduction
in compound 3 than in compound 4. It was found that compound 4 is more active than
compound 3 in oxidation cyclohexane with hydrogen peroxide in acetonitrile at 50 degrees.
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μ-nitrido diiron phthalocyanine activates H2O2 to oxidize CH4 in water at 25–60 °C 
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Figure 2. Accumulation of sum of oxygenates (predominantly cyclohexyl hydroperoxide) in the
reaction of cyclohexane with hydrogen peroxide (in acetonitrile at 25 ◦C catalysed by complex 2 in the
absence of additives (curve 1) and in the presence of aminoacids: PCA (2), pyrazine-2,3-dicarboxylic
acid (3), picolinic acid (4), and pyridine-2,6-dicarboxylic acid (5). Adapted from [20] Copyright (2002),
with permission of Elsevier.

Oxidation of alkanes with m-chloroperoxybenzoic acid catalyzed by binuclear iron
complexes non-heme µ-oxo-bridged diiron(III) complexes [Fe2(µ-O)(L1)2], where H2(L1)
is N,N′-o-phenylenebis(salicylideneimine), [Fe2(µ-O)(L2)2]·2H2O, where H2(L2) is N,N′-
o-phenylenebis(3,5-di-tert-butylsalicylideneimine), and [Fe2(µ-O)(L3)2], where H2(L3) =
1,4-bis(2-hydroxybenzyl)-1,4-diazepane, occurs with the intermediate formation of the
complex [Fe2 (O) (L2) 2 (OOR)] and leads mainly to the formation of alcohols and a small
amount of ketones [22].

Remarkable results were obtained in the oxidations of alkanes by hydrogen peroxide
catalyzed by N-bridged diiron phthalocyanine complex ((FePc tBu4)2N [23], especially
very inert methane and ethane. Reactions were performed in MeCN. Formic acid was
the main product of the oxidation of methane. Kinetic analysis showed that the ratio
of the rates of oxidation of acetonitrile and methane is incompatible with the concept of
the participation of the hydroxyl radical in this process. Water was also investigated in
this reaction as a solvent. m-nitrido complex was supported onto silica. Heterogeneous
oxidations of CH4 were performed in pure H2O. In this case, the following mechanism was
tentatively proposed. In the first stage, (FePBu4)2N coordinates H2O2 to form hydroperoxo
complex FeIVNFeIIIOOH which is probably in equilibrium with the deprotonated form
FeIVNFeIIIOO−. The heterolytic cleavage of the O–O bond in FeIVNFeIIIOOH complex and
the formation of very strong oxidizing FeIVNFeV=O species was favored in the presence of
acid by the protonation of peroxide oxygen.

µ-nitrido diiron phthalocyanine activates H2O2 to oxidize CH4 in water at 25–60 ◦C
to methanol, formaldehyde and formic acid as evidenced. The similar binuclear porphyrin
iron complex was also used in the oxidation of methane with m-chloroperoxybenzoic
acid [24]. It is assumed that oxidation with binuclear complex proceeds with the intermedi-
ate formation N-bridged high-valent diiron–oxo species.

The diiron–oxo complex demonstrated significantly stronger oxidizing properties than
similar mononuclear complex [(TMP†þ)Fe(IV)(O)]þ (TMP 1/4tetramesitylporphyrin) [25].

It is not uninteresting to note that iron mononuclear complex [FeII(Me3NTB)(CH3CN)]
(CF3SO3)2, (Me3NTB = tris(N-methylbenzimidazol-2-ylmethyl)amine, exhibits a rather
high activity in the oxidation of cyclohexane [26]. It cannot be ruled out that the mononu-
clear complex in solution forms polynuclear particles that are involved in the oxidation of
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alkane. Other compounds appearing on the oxidation of organic compounds with perox-
ides catalyzed by polynuclear iron derivatives have been also published in works [27–36].

In recent years, polynuclear silsesquioxane complexes of iron have been synthesized
and their catalytic activity in the oxidation of alkanes and alcohols with peroxides and
oxygen has been investigated [37–40]. Such complexes are usually highly active and
contribute to the formation of oxidation products in high yields at low temperatures and
atmospheric pressure. Examples of structures of such complexes are presented in Figure 3.
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As mentioned above, mononuclear iron derivatives are often less active in alkane
oxidation reactions, which proceed according to Fenton-like mechanism involving hydroxyl
radicals [41–59].

2.2. Oxidation Catalyzed by Copper Complexes

The large number of works are devoted to catalysts containing copper. Usually these
complexes contain N-ligands [60–88]. Formulae and structures of some of the catalysts
used in the reactions are shown in Figures 4–9.

Complex 5 (Figure 4) [63] efficiently catalyzes the oxygenation of alkanes with tert-
butyl hydroperoxide (TBHP) in acetonitrile solution under relatively mild conditions
(temperature 50–70 ◦C, under normal pressure of air). Concentrations of the final products
(alcohols and ketones) in the oxidation of cyclohexane gives after 8.5 h cyclohexanol and
cyclohexanone in 17% yield (after addition of PPh3), and the turnover number (TON)
attains 800. Complex 6 does not exhibit catalytic activity in the oxidation of alkanes with
TBHP, which can be associated with its relatively rapid decomposition or transformation
into a catalytically inactive species under the reaction conditions. It should be noted that
the oxidation of alcohols with TBHP is effectively catalyzed by both complexes 5 and 6.
In the case of the cyclohexanol oxidation the maximum values of TON and yield of cyclo-
hexanone attained 820 and 78%, respectively. However, in oxidation of alcohol the activity
of compound 6 is a bit less than activity of compound 5. Both compounds 5 and 6 catalyze
the hydrocarboxylation of cycloalkanes to the corresponding cycloalkanecarboxylic acids.
In all cases, catalyst 6 shows a slightly higher activity over the dicopper (II) complex 6.

Dinuclear [Cu2(1κNO2:2κN′O′2-H2L)(NO3)2(H2O)2] (7) (Figure 5) and the tetranuclear
[Cu4(µ-1κNO2:2κN′O2-H2L)2(µ-NO3)2(H2O)4]·2C2H5OH (8) (Figure 6) complexes were
used as catalysts for oxidation of alcohols and alkanes [66]. The catalytic activity of both 7
and 8 has been screened toward the solvent-free microwave-assisted oxidation of alcohols
and the peroxidative oxidation of alkanes under mild conditions. Complex 7 (Figure 5)
exhibits the highest activity for both oxidation reactions, leading selectively to a maximum
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product yield of 99% (for the 1-phenylethanol oxidation after 1 h without any additive)
and 13% (for the cyclohexane oxidation to cyclohexyl hydroperoxide, cyclohexanol, and
cyclohexanone after 3 h).  

 

 

 

 

Figure 4. Formulae Complex 5 (left) and 6 (right), which have been used in oxidations with peroxides adapted from Ref. [64],
Copyright (2011) with permission of Elsevier.

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 39 
 

 

complexes 5 and 6. In the case of the cyclohexanol oxidation the maximum values of 
TON and yield of cyclohexanone attained 820 and 78%, respectively. However, in oxida-
tion of alcohol the activity of compound 6 is a bit less than activity of compound 5. Both 
compounds 5 and 6 catalyze the hydrocarboxylation of cycloalkanes to the correspond-
ing cycloalkanecarboxylic acids. In all cases, catalyst 6 shows a slightly higher activity 
over the dicopper (II) complex 6. 

 
Figure 4. Formulae Complex 5(left) and 6 (right), which have been used in oxidations with perox-
ides adapted from Ref. [64], Copyright (2011) with permission of Elsevier. 

Dinuclear [Cu2(1κNO2:2κN′O′2-H2L)(NO3)2(H2O)2] (7) (Figure 5) and the tetranuclear 
[Cu4(μ-1κNO2:2κN′O2-H2L)2(μ-NO3)2(H2O)4]·2C2H5OH (8) (Figure 6) complexes were 
used as catalysts for oxidation of alcohols and alkanes [66]. The catalytic activity of both 7 
and 8 has been screened toward the solvent-free microwave-assisted oxidation of alco-
hols and the peroxidative oxidation of alkanes under mild conditions. Complex 7 (Figure 
5) exhibits the highest activity for both oxidation reactions, leading selectively to a 
maximum product yield of 99% (for the 1-phenylethanol oxidation after 1 h without any 
additive) and 13% (for the cyclohexane oxidation to cyclohexyl hydroperoxide, cyclo-
hexanol, and cyclohexanone after 3 h). 

 
Figure 5. Complex 7 Adapted from Ref. [67], Copyright (2018), Molecules (MDPI), Open Access. Figure 5. Complex 7 Adapted from Ref. [67], Copyright (2018), Molecules (MDPI), Open Access.

Catalysts 2021, 11, x FOR PEER REVIEW 7 of 39 
 

 

 
Figure 6. Complex 8 Adapted from Ref. [67], Copyright (2018), Molecules (MDPI). 

The catalytic activity of a hexanuclear Cu(II) complex 
[Cu3(μ2-1kNO2,2kNO2-L)(μ-Cl)2(Cl)(MeOH)(DMF)2]2) (Figure 7) for the micro-
wave-assisted neat oxidation of alcohols was explored. This Cu (II) complex was found to 
exhibit high activity under milder reaction conditions of oxidation of 1-Phenylethanol by 
tert-butyl hydroperoxide. Yield 95% of acetophenone in the presence of catalyst was 
found [70]. 

 
Figure 7. Complex tested in oxidations with peroxides adapted from Ref. [70], Copyright (2020), 
Int. J. Mol. Sci. (MDPI), Open Access. 

The copper complexes shown in Figure 8 [72] were tested in catalytic oxidation. It 
should be noted that in the case of binuclear complex 15 (Figure 10), the initial rate of 
accumulation of oxidation products is higher than for complex 9 (Figure 9), however, the 
maximum product yield is somewhat lower than in catalysis with mononuclear complex 
9. The authors proposed the following explanation for this fact. This phenomenon is 
probably due to a higher rate of interaction of 15 with the resulting hydroperoxide in 
comparison with the situation found for the complex 9 or the dimeric complex 15 effec-
tively decomposes hydrogen peroxide via a catalase pathway that is not associated with 
the generation of intermediate species of an oxidizing nature, and therefore the yield of 
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The catalytic activity of a hexanuclear Cu(II) complex [Cu3(µ2-1kNO2,2kNO2-L)(µ-
Cl)2(Cl)(MeOH)(DMF)2]2) (Figure 7) for the microwave-assisted neat oxidation of alcohols
was explored. This Cu (II) complex was found to exhibit high activity under milder
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reaction conditions of oxidation of 1-Phenylethanol by tert-butyl hydroperoxide. Yield 95%
of acetophenone in the presence of catalyst was found [70].
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Int. J. Mol. Sci. (MDPI), Open Access.

The copper complexes shown in Figure 8 [72] were tested in catalytic oxidation.
It should be noted that in the case of binuclear complex 15 (Figure 10), the initial rate of
accumulation of oxidation products is higher than for complex 9 (Figure 9), however, the
maximum product yield is somewhat lower than in catalysis with mononuclear complex 9.
The authors proposed the following explanation for this fact. This phenomenon is probably
due to a higher rate of interaction of 15 with the resulting hydroperoxide in comparison
with the situation found for the complex 9 or the dimeric complex 15 effectively decomposes
hydrogen peroxide via a catalase pathway that is not associated with the generation of
intermediate species of an oxidizing nature, and therefore the yield of oxidizing species
decreases. The lowest activity was found for compound 17 (see Figure 11), in which the
copper ion is strongly screened by methyl groups in the ligand.
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Figure 9. Oxidation of cyclohexane with hydrogen peroxide (50% aqueous) catalyzed by compound 9
in MeCN at 50 ◦C (Graphs (A,B)); total volume of the reaction solution was 5 mL. Concentrations of
cyclohexanone and cyclohexanol were determined before (Graph A) and after (Graphs B) reduction
of the aliquots with solid PPh3. Total yield of products 27% after 2 h, TON = 250 at 50 ◦C and 30%
after 1 h, TON = 280 at 60 ◦C. adapted from [72], Copyright (2020) with permission of Elsevier.
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Figure 10. Oxidation of cyclohexane with hydrogen peroxide (50% aqueous;) catalyzed by com-
pound 15 in MeCN at 60 ◦C. Concentrations of cyclohexanone and cyclohexanol were after reduction
of the aliquots with solid PPh3. Points for cyclohexanol (red) and cyclohexanone (blue) are marked by
numbers 1 and 2, respectively. Total yield of products 20% after 1 h, TON = 180. Adapted from [72],
Copyright (2020) with permission of Elsevier.
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Figure 11. Oxidation of cyclohexane with hydrogen peroxide (50% aqueous) catalyzed by com-
pound 17 in MeCN at 60 ◦C; Concentrations of cyclohexanone and cyclohexanol were after reduction
of the aliquots with solid PPh3. Points for cyclohexanol (red) and cyclohexanone (blue) are marked
by numbers 1 and 2, respectively. Total yield of products 2.5% after 2 h, TON = 22. Adapted from
Ref. [72], Copyright (2020) with permission of Elsevier.

As in the case of iron ions, a large number of works have been devoted to silsesquiox-
ane complexes with copper and their use in catalytic oxidation [73–88]. A few structures of
the catalysts used in the most recent years are shown in Figures 12–15.

First examples of heptanuclear cage silsesquioxanes, (PhSiO1.5)14(CuO)7 18 and (Me-
SiO1.5)14(CuO)7 19, were obtained [81]. It should be noted that in Ref. [81] (Figure 12), the
complexes 18 and 19 used in the catalysis of alkane oxidation exhibited somewhat different
activity. Compound 18 gave a higher yield of oxidation products. Product accumulation
curves are shown in Figure 13. The maximum observed in the Figure 13B and the decrease
in the alcohol yield can be explained by the over-oxidation of alcohol with the formation of
unidentifiable oxidation products. It is important that the oxidation requires the presence of
nitric acid. Under conditions of the experiment shown in Figure 13 the yield of oxygenates
was 39%. This is a high value taking into account the pronounced inertness of alkanes. The
oxidation of n-heptane allowed to measure the regioselectivity parameters for positions
1, 2, 3 and 4: C (1): C (2): C (3): C (4) = 1.0: 6.0: 6.0: 5.5. This data also indicates that the
reaction proceeds with the participation of free hydroxyl radicals generated from hydrogen
peroxide. However, these parameters are higher than those usually observed in oxidation
with hydroxyl radicals (1: 2: 2: 2). Such an increase in regioselectivity can be explained
by the fact that oxidation in the case of complex 18 occurs in the cavities formed by bulky
ligands surrounding the reaction centers of the catalyst molecule.

Complex 20 [82] (see Figure 14) was found to be a good catalyst in oxidations of
alcohols and alkanes with TBHP and H2O2, respectively. 1-Phenylethanol and heptanol-2
could be converted into corresponding ketones in yields up to 94% and 50%, respectively.
Hydroperoxidation of alkanes by H2O2 was found when complex 20 is used as a catalyst.
Cyclohexane has been converted into cyclohexyl hydroperoxide which was gradually trans-
formed in a mixture of cyclohexanol and cyclohexanone over the course of the oxidation.
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Figure 12. Molecular structures of 18 and 19. Color code: Si—yellow, O—red, Cu—green, N—blue,
adapted from [81] Copyright (2018) with permission from Wiley.

Not only silsesquioxane complexes, but germsesquioxanes, which are precatalysts in
the oxidation of organic compounds, were obtained and described [86–88]. An example of
structure of such catalysts is given in Figure 15. Germanium-based sesquioxane copper
complex exhibits an extremely high nuclearity (Cu42Ge24Na4) and unusual encapsula-
tion features. This compound is a very active catalyst in the oxidation of alkanes and
alcohols [87].
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Figure 13. Oxidation of cyclohexane with H2O2 (50%) catalyzed by complex 18 at 60 °C. Concen-
trations of cyclohexanol and cyclohexanone were measured both before (A)and after reduction (B) 
with PPh3 (used method of Shul’pin). Adapted from [81], Copyright (2018) with permission of 
Wiley. 
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tions of cyclohexanol and cyclohexanone were measured both before (A) and after reduction (B) with
PPh3 (used method of Shul’pin). Adapted from [81], Copyright (2018) with permission of Wiley.
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A recent publication [89] described the synthesis and catalytic properties of complex 21
(see Figure 16). The kinetic study allowed authors to propose the mechanism of the oxida-
tion reaction of alkanes and alcohols with hydrogen peroxide and tert-butyl hydroperoxide.
Complex 21 exhibited high catalytic activity in the oxidation of cyclohexane and other
alkanes with H2O2 in acetonitrile in the presence of nitric acid. The following selectivity pa-
rameters were obtained for the oxidation of n-heptane: C(1):C(2):C(3):C(4) = 1.0:5.6:5.6:5.0.
These data as well as the character of dependence of the initial cyclohexane oxidation
rate on the initial hydrocarbon concentration (approaching a plateau at [cyclohexane]0 >
0.3 M) (see Figure 17) indicate that the reaction occurs with the participation of hydroxyl
radicals and alkyl hydroperoxides are formed as the main primary products. However,
the regioselectivity in the oxidation of n-heptane (see above) is noticeably higher than the
regioselectivity usually observed for oxidation with hydroxyl radicals (1: 2: 2: 2). The
increased regioselectivity in the case of catalysis by complex 21 can be explained by the fact
that steric hindrances arise in the molecule of this complex around the copper-containing
reaction center. Previously, for most of the catalytic systems studied, based on the data
on the selectivity of alkane oxidation, it was concluded that the oxidizing species is a
hydroxyl radical. This conclusion has received kinetic confirmation see Ref. [20]. On the
one hand, the calculated ratio of the constants of the rates of reactions of the interaction
of an oxidizing species with acetonitrile and cyclohexane k2/k3 is much higher than for
the reactions ratio characterized the reactions involving hydroxyl radicals [20,86]. The
obtained value (k2/k3 = 0.033) is very different from the 0.006–0.01.
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Figure 16. Molecular structure of complex 21. (A): side view. (B): top. View. Color code: Ge: grey, O:
red, Cu: green, N: blue. Adapted from [89], Copyright (2019) with permission of Elsevier.

On the other hand, the low selectivity of the effect of oxidizing species (Z = HO•)
is close to the selectivity found for reactions involving hydroxyl radicals, indicates that
hydroxyl radicals are generated in the catalytic system studied in the work [89]. Similar
results (a decrease in the relative reactivity of the oxidizing species for cyclohexane in
comparison with acetonitrile) were obtained earlier [86]. Thus, based on the kinetic data
and selectivity parameters in alkane oxidation, authors came to different conclusions about
the nature of the oxidizing species in the 21/H2O2 catalytic system. This contradiction
can be resolved if it is assumed that the concentrations of acetonitrile and cyclohexane
near the reaction center (that is, at the place where the oxidizing species originated) differ
from their concentrations in the volume. In this model, the results obtained indicate that
the ratio of acetonitrile and cyclohexane concentrations inside the cluster of the catalytic
species (near the reaction center) exceeds their ratio in volume. Such a difference may occur
due to a higher concentration of acetonitrile and hydrogen peroxide inside a cavity in the
catalyst cage.

As can be seen from the above, polynuclear copper complexes have great potential as
catalysts in the oxidation of alkanes and alcohols. For comparison, we present several ref-
erences to articles devoted to mononuclear copper complexes in oxidative catalysis [90–96].
These works investigated mononuclear complexes that exhibit significant activity.
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Figure 17. Accumulation of cyclohexanol and cyclohexanone in oxidation of cyclohexane with hy-
drogen peroxide catalyzed by compound 21 in MeCN at 50 °C. Dependence of the initial rate of 
oxygenate formation W0 on initial concentration of cyclohexane is shown in graph (A). Lineariza-
tion of curve from graph A in coordinates W0−1—[CH3CN]/[C6H12] is presented in graph (B). Con-
centrations of cyclohexanone and cyclohexanol were determined after reduction of the aliquots 
with solid PPh3. Accumulation of cyclohexanol and cyclohexanone (under conditions given above) 
is shown when their concentrations were measured before (graph (C)) and after treating the reac-
tion sample with PPh3 (graph (D)). Adapted from [89], Copyright (2019) with permission of Else-
vier. 

As can be seen from the above, polynuclear copper complexes have great potential 
as catalysts in the oxidation of alkanes and alcohols. For comparison, we present several 
references to articles devoted to mononuclear copper complexes in oxidative catalysis 
[90–96]. These works investigated mononuclear complexes that exhibit significant activ-
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Figure 17. Accumulation of cyclohexanol and cyclohexanone in oxidation of cyclohexane with
hydrogen peroxide catalyzed by compound 21 in MeCN at 50 ◦C. Dependence of the initial rate of
oxygenate formation W0 on initial concentration of cyclohexane is shown in graph (A). Linearization
of curve from graph (A) in coordinates W0

−1—[CH3CN]/[C6H12] is presented in graph (B). Concen-
trations of cyclohexanone and cyclohexanol were determined after reduction of the aliquots with
solid PPh3. Accumulation of cyclohexanol and cyclohexanone (under conditions given above) is
shown when their concentrations were measured before (graph (C)) and after treating the reaction
sample with PPh3 (graph (D)). Adapted from [89], Copyright (2019) with permission of Elsevier.

2.3. Polymanganese Complexes in Oxidations with H2O2

Manganese complexes are active in the oxidation of hydrocarbons and
alcohols [97–120]. Carbonyl manganese complexes with chelating or bridging mesoionic
di(1,2,3-triazolylidene) ligands were synthesized and characterized of a bimetallic man-
ganese(0) complex 23 [99]. (Figure 18). This complex exhibited high activity (yields up to
99%) and selectivity in the catalytic oxidation of secondary alcohols and benzyl alcohol
with tert-butyl hydroperoxide). Comparison of the mono- and bimanganese complexes
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22 and 23 showed that the binuclear complex is more active in the oxidation of spites
by tert-butyl hydroperoxide. The yield of acetophenone in the reaction with complex 23
attained 99% at 40 ◦C after 2 h. A similar yield was obtained by carrying out the reaction
without solvent.
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Figure 18. Carbonyl manganese compounds as a catalysts in oxidation with peroxides, Adapted
from Ref. [99] Copyright (2019) with permission from Royal Society of Chemistry.

In 1998, the effective catalytic action of the binuclear manganese (IV) complex 24
(Figure 19) was described in the oxidation of organic compounds with hydrogen peroxide
in acetonitrile at low temperatures [100,101]. This system works efficiently only in the
presence of an added organic acid. This acid was acetic acid, and later it was found
that oxalic acid is even more effective [112–117]. Thus, for example, the system complex
24/oxalic acid/H2O2/O2 gives products in oxidation cyclohexane with yield up to 50%
(TON = 2700) [115]. Other organic acids also accelerate the oxidation reaction [102–120].
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The work [109] on the oxidation of organic compounds in water is of particular interest.
In oxidation of n-heptane TON was attained 160 at 50 ◦C after 3 h. That study revealed a
remarkable regio-selectivity in the oxidation of higher n-alkanes.
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Figure 19. Binuclear manganese complex 24 which catalyzes a very efficient oxidation with peroxides,
Adapted from [120], Copyright (2017) with permission of Elsevier.

Further, this system was investigated in more detail [119,120]. The kinetic study led
to the conclusion about the oxidation mechanism proposed in [120], which includes the
formation of intermediate complexes. A catalytic cycle shown in Figure 20 (see below).
Many catalytic reactions of alkane oxidation into alkyl hydroperoxides contain as a crucial
step the abstraction of a hydrogen atom from the alkane with subsequent fast interaction
of the formed alkyl radical with atmospheric dioxygen (Route 1 in Figure 20). The data
obtained in the present study show that, on the one hand, the transformation of the
alkane R′R′′R′′′C–H into the corresponding alkyl hydroperoxide R′R′′R′′′C–OOH proceeds
with the formation of alkyl radical R′R′′R′′′C• which rapidly reacts with atmospheric
molecular oxygen. On the other hand, alkyl radicals can be generated via hydrogen
abstraction from the alkane not by hydroxyl radicals but most likely by manganyl Mn=O
fragments. A catalytic cycle shown in Figure 20 is in good agreement with all experimental
data and allowed authors to explain all features of the reaction. In the first step of the
process carboxylic acid protonates one of the oxygen bridges between two manganese
(IV) centers, resulting in the formation of a vacant site at one Mn (IV). The generated
complex [MnIV(µ-O)2MnIV(OH)]3+ then adds one hydrogen peroxide molecule and the
formed hydroperoxo derivative [(HOO)MnIV(µ-O)2MnIV(OH)]2+ eliminates hydroperoxyl
radical to afford the catalytically active Mn(III)Mn(IV) species [MnIII(µ-O) 2MnIV (OH)]2+

shown in Figure 20. The interaction with a second H2O2 molecule leads to the formation
of the dihydroperoxo complex of Mn(III)Mn(IV). The protonation of the MnOOH ligand
and subsequent evolution of the water molecule gives the high-valent oxomanganese
species which abstracts a hydrogen atom from the alkane R′R′′R′′′C–H to produce an
alkyl radical. The recombination in the solvent cage of this radical and either HO– or
HOO– ligand (oxygen rebound or hydroperoxyl rebound) produces either alkanol or alkyl
hydroperoxide, respectively.

R′R′′R′′′C• + HO–Mn→ R′R′′R′′′C–OH + Mn (Route 2).
R′R′′R′′′C• + HOO–Mn→ R′R′′R′′′C–OOH + Mn• (Route 3)
where Mn is a fragment of the binuclear intermediate species. Reactions of the

manganyl fragment formation and hydrogen atom abstraction are rate-limiting stages.
Thus, this mechanism is a crypto-radical one but not a radical-chain process.
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24 h (TON = 1400). The binuclear complex 26 catalyzes the reaction with approximately 
the same activity, but the behavior of complex 27 containing strongly complexing che-
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almost pure cyclohexyl hydroperoxide. 

Figure 20. A catalytic cycle proposed for the alkane hydroperoxidation in the presence of 18O2 (in an atmosphere 16O2 +
18O2). AH is a carboxylic acid where A is its anion. Adapted from [120], Copyright (2017) with permission of Elsevier.

2.4. Oxidation Catalyzed by Polyvanadate Ions

Vanadium ions play an important role in biological systems and are effective cat-
alysts for the oxidation of organic compounds with peroxides (See recent papers and
reviews Refs. [5,121–155]). Monovanadate anion forms polyvanadate ions under the ac-
tion of strong proton acids. Such polyvanadates are capable of catalyzing the oxidation
of organic compounds with peroxides [121–157]. Examples of such compounds the di-
and tetra-nuclear complexes of vanadium are described in paper Ref. [156]. The catalytic
properties of mono-(25), di-(26) and tetranucleovanadium (27) complexes Figure 21 have
been studied [156]. Interestingly, the three complexes exhibit catalytic activity only in
the presence of pyrazine-2-carboxylic acid (PCA). The vanadium complexes differ sig-
nificantly in their catalytic behavior, the most efficient catalyst being complex 25. This
compound catalyzes oxidation of cyclohexane with high initial rate and high TON after
24 h (TON = 1400). The binuclear complex 26 catalyzes the reaction with approximately
the same activity, but the behavior of complex 27 containing strongly complexing chelating
and voluminous ligands is remarkable because it gives rise to the formation of almost pure
cyclohexyl hydroperoxide.
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The formation of oligovanadates in the presence of protons from strong acids was
described in Ref. [158]. In reactions with hydrogen peroxide catalyzed by oligovanadate,
the adjacent vanadate fragment is the carrier of H+ to the vanadate ion. Similarly to
how PCA works in reactions catalyzed by monovanadates, the scheme for generating
catalytically active species is shown below. The possible catalytic cycles for generating
radicals HOO• and HO• with the participation of model divanadate (Figure 22A) and
monovanadate (Figure 22B) have been analyzed. The activity of the polyvanadate ion, in
contrast to monovanadate, can be explained by the fact that, in the presence of an adjacent
V=O fragment in polyvanadate, the formation of a hydroperoxyl complex form a complex
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with coordinated H2O2 molecule with the participation of a six-membered transition state
is facilitated (Figure 23) [158].
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Figure 22. Catalytic cycles of radical generation involving divanadate (A) and monovanadate (B).
Adapted from [158], Copyright (2011) with permission of American Chemical Society.
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parison with the nonreduced sample. In the case of the catalysis by complex 30 the 
maximum yield of all products after the reduction of PPh3 attained 39% based on initial 
amount of cyclohexane. In this work, a reaction mechanism was proposed. The authors 
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Copyright (2011) with permission of American Chemical Society.

The paper Ref. [159] (Figure 24) describes in detail the preparation of mono-, di-,
tri-nuclear complexes of vanadium (28–30) (Figure 25). Compounds 28, 29, and 30 were
tested as homogeneous catalysts for microwave oxidation of cyclohexane with hydrogen
peroxide to produce cyclohexyl hydroperoxide (CyOOH), cyclohexanol, and cyclohexanone
(see Figure 25). Advantages of these catalytic systems are mildness and environmental
friendliness. The formation of CyOOH was shown by the Shulpin method. GC analysis
of the products showed a noticeable increase in the amount of cyclohexanol (after the
reduction of CyOOH by PPh3) and a decrease of cyclohexanone amount in comparison
with the nonreduced sample. In the case of the catalysis by complex 30 the maximum
yield of all products after the reduction of PPh3 attained 39% based on initial amount of
cyclohexane. In this work, a reaction mechanism was proposed. The authors proposed the
mechanism which is a bit different from those usually accepted for the oxidizing systems
containing H2O2 and an metal ion. The mechanism proposed in Ref. [159] includes at the
first step coordination of H2O2 to the catalyst molecule, proton transfer from ligated H2O2
to the methoxy ligand and elimination of the formed methanol molecule and coordination
of the second H2O2 molecule followed by HO–OH bond cleavage to give HO•. The
activation of the H2O2 towards this cleavage is associated with the redox active nature of
the ligand in the catalyst molecule, which acts (instead of the metal) as the reducing agent
of the H2O2 ligand. Generated hydroxyl radicals attack the substrate molecules.

Theoretical DFT calculations were in agreement with previous works on oxidation
involving vanadium complexes (Ref. [145]), and led to the conclusion that the global radical
type mechanism involves the formation of RO• radicals (or HO • if H2O2 is used as an
oxidizing agent). Then this radical oxidizes the alkane, a hydrogen atom is removed from
the R–H molecule to form the corresponding alkyl radical R•. The latter species react with
molecular oxygen from the atmosphere, ultimately forming the alkyl hydroperoxide ROOH.
The trinuclear vanadium complexes shown in Figure 26 were investigated as catalysts
for the oxidation of dopamine by hydrogen peroxide [160]. Kinetic studies showed that
the reaction follows a Michaelis-Menten like kinetics. The conversion of dopamine to
aminochrome with different catalysts showing high activity under mild conditions with
good conversions (Figure 27).
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Abstract: The review describes articles that provide data on the synthesis and study of the proper-
ties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear 
complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for 
example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where 
HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex 
[(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; 
(2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane 
[(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes 
[{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = 
bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = 
tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 
1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing cata-
lysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or 
mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity 
compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the 
oxidation of linear alkanes. The review contains a description of some of the mechanisms of cata-
lytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and 
substrates under oxidizing conditions for various catalyst structures, which allows researchers to 
conclude about the nature of the oxidizing species. This review is focused on recent works, as well 
as review articles and own original studies of the authors. 
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Figure 26. Structural formulae of the VIVO-complexes prepared in this work. Adapted from Ref. [160], Copyright (2020)
with permission of Royal Socaity of Chemistry.
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Figure 27. Scheme of oxidation of dopamine.

Figure 28 shows the structure of binuclear vanadium complex 31. Although the
molecule of the complex-31 contains two fragments inclusive vanadium, these fragments
are separated by a large bridge and are located at a long distance from each other. Therefore,
it is more reasonable to attribute compound 31 to mononuclear complexes. In the work
Ref. [150] was studied in details the oxidation of cyclic, linear and branched alkanes
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with the 31/PCA/H2O2 system in acetonitrile solution (typical temperature of 50 ◦C).
Oxidation of cyclohexane is shown in Figure 29. The accumulation of oxygenates at
different concentrations of complex 31 is shown in the presence of and in the absence
of PCA.

Catalysts 2021, 11, x FOR PEER REVIEW 26 of 39 
 

 

 
Figure 27. Scheme of oxidation of dopamine. 

Figure 28 shows the structure of binuclear vanadium complex 31. Although the 
molecule of the complex-31 contains two fragments inclusive vanadium, these fragments 
are separated by a large bridge and are located at a long distance from each other. 
Therefore, it is more reasonable to attribute compound 31 to mononuclear complexes. In 
the work Ref. [150] was studied in details the oxidation of cyclic, linear and branched 
alkanes with the 31/PCA/H2O2 system in acetonitrile solution (typical temperature of 50 
°C). Oxidation of cyclohexane is shown in Figure 29. The accumulation of oxygenates at 
different concentrations of complex 31 is shown in the presence of and in the absence of 
PCA. 

 
Figure 28. Structure of complex 31 (C30H36N4O10V2) Adapted from Ref. [150], Copyright (2013) with 
permission of Royal Society of Chemistry. 

Figure 28. Structure of complex 31 (C30H36N4O10V2) Adapted from Ref. [150], Copyright (2013) with
permission of Royal Society of Chemistry.

Catalysts 2021, 11, x FOR PEER REVIEW 27 of 39 
 

 

0
2

2

0 4

0.08

0.14

1

0.04

0.12

C
on

ce
nt

ra
tio

n 
(M

)

Time (h)
31

Complex 1 + PCA

Complex 1

1a

2a

A

0
800

3

0 1600

0.02

0.04

0.01

0.03

C
on

ce
nt

ra
tio

n 
(M

)

Time (min)
1200400

4a

B

4

3a

 
Figure 29. Oxidation of cyclohexane with the H2O2/31/PCA/CH3CN–H2O (curve 1). Curve of accumulation of oxygenates 
(predominantly cyclohexyl hydroperoxide) in the absence of PCA (curve 2) are shown. For Graph A: [catalyst 31]0 = 2.0 × 
10–5 M; [PCA]0 = 0.005 M; [H2O2]0 = 2.2 M (50% aqueous), [H2O]total = 4.2 M; [cyclohexane]0 = 0.46 M; MeCN; 50 °C. For 
Graph B: [catalyst 31]0 = 1.0 × 10–6 M (curve 3) or 5.0 × 10–7 M (curve 4); [PCA]0 = 6 × 10–4 M; [H2O2]0 = 0.4 M (50% aqueous), 
[cyclohexane]0 = 0.4 M; MeCN; 50 °C. Maximum initial rates W0 were determined from the slopes of tangents (two ex-
amples are depicted with straight dotted lines 1a, 2a, 3a and 4a) to the kinetic curves in the intervals where the rate attains 
maximum (in these cases in the beginning of the oxidation reaction). Adapted from Ref. [150] Copyright (2013) with 
permission of Royal Society of Chemistry. 
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cocatalyst is a very efficient catalytic system if H2O2 is used as an oxidant. The addition 
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This phenomenon is due to the formation of polyvanadate species. (see Section 2.4). The 
kinetic study of alkane oxidation by the 31/PCA/H2O2 CH3CN–H2O system the de-
pendences of the initial rate of oxygenate accumulation W0. Examples are presented by 
the dotted straight lines in Figure 29. The follow kinetic scheme was proposed for the 
oxidation reaction catalyzed by vanadium complexes: 

31 + PCA  31 (PCA) (1)

31 (PCA) + PCA  31 (PCA)2 (2)

31 (PCA) + H2O2 → Z (3)

Reactions (1) and (2) are the equilibria stages of adduct formation between com-
pound 31 and one or two PCA molecules, respectively. A rate-limiting stage is reaction 
(3) in the sequence of transformations which are induced by the interaction of 31. (PCA) 
and H2O2. These transformations lead to the generation of species Z (in many cases Z = 
HO•) and regeneration of the catalyst active form. The rate WZ of the Z generation in 
reaction (3) is equal to 

WZ = k3[31.(PCA)][H2O2] (4)

 

Figure 29. Oxidation of cyclohexane with the H2O2/31/PCA/CH3CN–H2O (curve 1). Curve of
accumulation of oxygenates (predominantly cyclohexyl hydroperoxide) in the absence of PCA
(curve 2) are shown. For Graph (A): [catalyst 31]0 = 2.0 × 10–5 M; [PCA]0 = 0.005 M; [H2O2]0 = 2.2 M
(50% aqueous), [H2O]total = 4.2 M; [cyclohexane]0 = 0.46 M; MeCN; 50 ◦C. For Graph (B): [catalyst
31]0 = 1.0 × 10–6 M (curve 3) or 5.0 × 10–7 M (curve 4); [PCA]0 = 6 × 10–4 M; [H2O2]0 = 0.4 M (50%
aqueous), [cyclohexane]0 = 0.4 M; MeCN; 50 ◦C. Maximum initial rates W0 were determined from
the slopes of tangents (two examples are depicted with straight dotted lines 1a, 2a, 3a and 4a) to the
kinetic curves in the intervals where the rate attains maximum (in these cases in the beginning of
the oxidation reaction). Adapted from Ref. [150] Copyright (2013) with permission of Royal Society
of Chemistry.
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It has been shown earlier [6–11] that a vanadium complex as catalysts and PCA as a
cocatalyst is a very efficient catalytic system if H2O2 is used as an oxidant. The addition of
strong acids to the monovanadate ion solution leads to an increase the catalyst activity. This
phenomenon is due to the formation of polyvanadate species. (see Section 2.4). The kinetic
study of alkane oxidation by the 31/PCA/H2O2 CH3CN–H2O system the dependences
of the initial rate of oxygenate accumulation W0. Examples are presented by the dotted
straight lines in Figure 29. The follow kinetic scheme was proposed for the oxidation
reaction catalyzed by vanadium complexes:

31 + PCA ←−−−−−−−−→ 31 (PCA) (K1) (1)

31 (PCA) + PCA ←−−−−−−−−→ 31 (PCA)2 (K2) (2)

31 (PCA) + H2O2 → Z (k3) (3)

Reactions (1) and (2) are the equilibria stages of adduct formation between com-
pound 31 and one or two PCA molecules, respectively. A rate-limiting stage is reaction (3)
in the sequence of transformations which are induced by the interaction of 31. (PCA) and
H2O2. These transformations lead to the generation of species Z (in many cases Z = HO•)
and regeneration of the catalyst active form. The rate WZ of the Z generation in reaction (3)
is equal to

WZ = k3[31.(PCA)][H2O2] (4)

The data on the kinetics of cyclohexane oxidation and further calculations based on
confirmed the assumption about the participation of hydroxyl radicals as key species Z in
the oxidation catalyzed by compound 31.

Basing on the results of all studies of vanadium complexes, both mononuclear and
polynuclear, we can conclude that they all have approximately the same activity in the
oxidation of organic compounds by peroxides. Of particular note is the simplest and
cheapest system VO3

−/PCA/H2O2. The system was discovered in 1993. This reaction
takes place at low temperatures in a solution of acetonitrile [122–124]. Later, this system
was studied in detail. As substrates were used: alkanes, olefins, arenes, and alcohols and
as oxidants: hydrogen peroxide, tert-butyl hydroperoxide, and other peroxides [125–149].

2.5. Oxidation Catalyzed by Other Metal Complexes

Complexes of other metals have been reported as catalysts in oxidations by peroxides.
Some of these catalysts are demonstrated in Figures 30–33. Nickel complexes were used in
the oxidation of alkanes most often with the use of m-chloroperoxybenzoic acid–(m-CPBA)
turned out to be a good oxidant [161–166]. An example of oxidation catalyzed by the
nickel complex was described in Ref. [161] Complex oxidized cyclohexane with m-CPBA at
room temperature in a mixture of methylene chloride and acetonitrile. The reaction gave
cyclohexanol and cyclohexanone in ratio 8:1 with total TON = 612.

Another example of nickel catalyst is presented by compound 32 (Figure 30, Ref. [164]).
Complex 32 catalyzes the oxidation of cyclohexane m-CPBA to afford cyclohexanol and

cyclohexanone. The ketone/alcohol ratio is not changed in the chromatograms made before
and after reduction of samples with triphenylphosphine. This indicates that cyclohexyl
hydroperoxide is not formed in the course of the oxidation. The yield of oxygenates
was 24%. The oxidation of n-octane (0.12 M) with (0.13 M) m-CPBA in the presence of
compound 32 (5 × 10−4 M) and co-catalyst HNO3 (0.05 M) at 60 ◦C during 3 h gave
rise to the formation of a mixture of 2-, 3-, and 4-octanones (0.009, 0.009, and 0.008 M,
respectively; yield 22%). The oxidation of methylcyclohexane under similar conditions
gave predominantly isomeric ketones and tert-alcohol. Alkyl hydroperoxides have not
been formed in this reaction.
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Complexes containing cobalt and zinc MOF [166] can also exhibit catalytic activity in 
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Figure 30. Molecular structure of compound 32 ((A)—side view, (B)—top view). Solvating ligands
and counter ion Na+ are omitted for clarity. Adapted from Ref. [164], Copyright (2016) from Molecules
MDPI (Open Access).

Complexes containing cobalt and zinc MOF [166] can also exhibit catalytic activ-
ity in the oxidation of alcohols and alkanes. A pentanuclear “cylinder”-like cobalt(II)
phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)] [165] (33) (see Figure 31) exhibits a
high catalytic activity and stereoselectivity in the oxidation of alkanes and alcohols.
Complex 33 efficiently (yield 62%) catalyzes stereoselective (trans/cis ratio = 0.04) cis-
1,2-dimethylcyclohexane oxidation with meta-chloroperoxybenzoic acid (m-CPBA) and
1-phenylethanol’s oxidation (yield 99%) with TBHP.
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The heterogeneous catalytic activity of compounds 34 and 35 (Figure 32), under eco-
friendly conditions, was assessed in benzyl alcohol oxidation [166]. Complex 34 has good
activity in the solvent-free microwave-assisted oxidation of benzyl alcohol to benzaldehyde
using tert-butyl hydroperoxide (t-BuOOH, TBHP) as oxidizing agent (yields up to 89%).
Although with a lower activity, MOF 35 with a redox inactive Zn(II) site, also catalyzes
such alcohol oxidation (yields up 27%).
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Figure 32. Structures complexes cobalt and zinc used as catalyst in oxidation with peroxides, adapted
from Ref. [166], Copyright (2020) with permission from Elsevier.

Three Os (0)—carbonyl complexes [167–170] (see Figure 33) are active in the oxidation
of alkanes and alcohols by peroxides in acetonitrile. Thus, oxidation, for example, upon
catalysis of alkanes by triosmium dodecacarbonyl, Os3(CO)12 with hydrogen peroxide,
gave product yields above 60% and TON above 60,000 [167]. In this review, other complexes
of osmium, cobalt, and nickel are not described in detail.
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3. Conclusions

In many cases polynuclear complexes of transition metals exhibit higher catalytic
activity in oxidations of organic compounds by peroxides in comparison with simple
mononuclear derivatives. Moreover, such complexes oxidize long-chain and branched sat-
urated hydrocarbons with non-conventional selectivity. These features can be successfully
use in fine chemical technology. Examination of the oxidation reactions with peroxides
shows that both mono and polynuclear complexes of transition metals are often active
catalysts in these reactions. However, they all require either the presence of a redox-active
ligand in the molecule or amine-containing organic compounds added to the solution,
which changes the mechanism of the reaction of hydrogen peroxide with a metal (in the
absence of such ligands or additives, only the reaction of hydrogen peroxide decomposition
with the formation of oxygen and water takes place).

Author Contributions: G.B.S. and L.S.S. wrote the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (Grant Nos. 19-03-
00142), the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X-
0007), as well as by the Initiative Program in the frames of the State Task 0082-2014-0007, “Fun-
damental regularities of heterogeneous and homogeneous catalysis.” and also by the Program of
Fundamental Research of the Russian Academy of Sciences for 2013–2020 on the research issue of
IChP RAS No. 47.16. State registration number of Center of Information Technologies and Systems for
Executive Power Authorities (CITIS): AAAA-A17-117040610283-3; A.N. Nesmeyanov Institute RAS.

Data Availability Statement: All links are given to publications that are in the open press and are
easily available.

Acknowledgments: Authors thank for support RFBR according to Research Projects Grant No. 19-03-
00142; the Min-istry of Education and Science of the Russian Federation (project code RFMEFI61917X-



Catalysts 2021, 11, 186 30 of 37

0007), as well as by the Initiative Program in the frames of the State Tasks 0082-2014-0004 and 0082-
2014-0007 “Fundamental regularities of heterogeneous and homogeneous catalysis”; the Program of
Fundamental Research of the Russian Academy of Sciences for 2013–2020 on the re-search issue of
IChP RAS No. 47.16. Access to electronic scientific resources was provided by INEOS RAS with the
support of Ministry of Science and Higher Education of the Russian Federa-tion.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Denisov, E.T.; Afanas’ev, I.B. Oxidation and Antioxidants in Organic Chemistry and Biology; Taylor & Francis Group: Abingdon, UK,

2005; ISBN 0-8247-5356-9.
2. Shilov, A.E.; Shul’pin, G.B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes; Kluwer

Academic Publishers: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002;
p. 548. ISBN 978-0-306-46945-9.

3. Ma, Z.; Mahmudov, K.T.; Aliyeva, V.A.; Gurbanov, A.V.; Pombeiro, A.J.L. TEMPO in metal complex catalysis. Coord. Chem. Rev.
2020, 423, 213482. [CrossRef]

4. Beller, M.; Bolm, C. (Eds.) Transition Metals for Organic Synthesis, 2nd ed.; Wiley–VCH: Weinheim, Germany; New York, NY, USA,
2004; ISBN 3-527-30613-7.

5. Shul’pin, G.B. Selectivity in C–H functionalizations. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K.,
Casella, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 6.04; Volume 6, pp. 79–104. [CrossRef]

6. Pombeiro, A.J.L. (Ed.) Advances in Organometallic Chemistry and Catalysis; Wiley: Hoboken, NJ, USA, 2014; Chapter 1; pp. 3–14.
ISBN 978-1-118-51014-8. [CrossRef]

7. Pombeiro, A.J.L.; Guedes da Silva, F.C. (Eds.) Alkane Functionalization; Wiley: Hoboken, NJ, USA, 2018; ISBN 978-1-119-37924-9.
8. Bryliakov, K. (Ed.) Frontiers of Green Catalytic Selective Oxidations; Springer-Nature: Berlin/Heidelberg, Germany, 2019. [CrossRef]
9. Shilov, A.E.; Shul’pin, G.B. Activation of C–H Bonds by Metal Complexes. Chem. Rev. 1997, 97, 2879–2932. [CrossRef] [PubMed]
10. Shul’pin, G.B. Metal-catalysed hydrocarbon oxygenations in solutions: The dramatic role of additives: A review. J. Mol. Catal. A

Chem. 2002, 189, 39–66. [CrossRef]
11. Shul’pin, G.B. Metal-catalysed hydrocarbon oxidations. Comptes Rendus Chim. 2003, 6, 163–178. [CrossRef]
12. Shul’pin, G.B. Hydrocarbon Oxygenations with Peroxides Catalyzed by Metal Compounds. Mini-Rev. Org. Chem. 2009, 6, 95–104.

[CrossRef]
13. Shul’pin, G.B. New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts 2016, 6, 50. [CrossRef]
14. Shul’pin, G.B.; Kozlov, Y.N.; Shul’pina, L.S. Metal Complexes Containing Redox-active Ligands in Oxidation of Hydrocarbons

and Alcohols: A Review. Catalysts 2019, 9, 1046. [CrossRef]
15. Levitsky, M.M.; Bilyachenko, A.N.; Shul’pin, G.B. Oxidation of C-H compounds with peroxides catalyzed by polynuclear

transition metal complexes in Si- or Ge-sesquioxane frameworks: A review. J. Organomet. Chem. 2017, 849–850, 201–218.
[CrossRef]

16. Shul’pin, G.B. Selectivity enhancement in functionalization of C–H bonds: A review. Org. Biomol. Chem. 2010, 8, 4217–4228.
[CrossRef]

17. Shul’pin, G.B. C–H functionalization: Thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst’s activity
and selectivity, Perspective. Dalton Trans. 2013, 42, 12794–12818. [CrossRef]

18. Kozlov, Y.N.; Nadezhdin, A.D.; Purmal, A.P. Mechanism of initiation in the Fe(3+) + H2O2 system. Kinet. Catal. 1973, 14, 141–148.
19. Shul’pin, G.B.; Nizova, G.V.; Kozlov, Y.N.; Gonzalez Cuervo, L.; Süss-Fink, G. Hydrogen peroxide oxygenation of alkanes

including methane and ethane catalyzed by iron complexes in acetonitrile. Adv. Synth. Catal. 2004, 346, 317–332. [CrossRef]
20. Nizova, G.V.; Krebs, B.; Süss-Fink, G.; Schindler, S.; Westerheide, L.; Gonzalez Cuervo, L.; Shul’pin, G.B. Hydroperoxidation of

methane and other alkanes with H2O2 catalysed by a dinuclear iron complex and an amino acid. Tetrahedron 2002, 58, 9231–9237.
[CrossRef]

21. Parrilha, G.L.; Ferreira, S.S.; Fernandes, C.; Silva, G.C.; Carvalho, N.M.F.; Antunes, O.A.C.; Drago, V.; Bortoluzzid, A.J.; Horn, A.,
Jr. Properties of (m-Oxo)di-iron Complexes and Catalytic Activity Toward Cyclohexane Oxidation. J. Braz. Chem. Soc. 2010, 21,
603–613. [CrossRef]

22. Mayilmurugan, R.; Stoeckli-Evans, H.; Suresh, E.; Palaniandavar, M. Chemoselective and biomimetic hydroxylation of hydrocar-
bons by non-heme l-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Dalton Trans. 2009, 5101–5114. [CrossRef]

23. Sorokin, A.B.; Kudrik, E.V.; Bouchub, D. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine
complex. Chem. Commun. 2008, 2562–2564. [CrossRef]

24. Kudrik, E.V.; Afanasiev, P.; Alvarez, L.X.; Dubourdeaux, P.; Cle’mancey, M.; Latour, J.-M.; Blondin, G.; Bouchu, D.; Albrieux, F.;
Nefedov, S.E.; et al. An N-bridged high-valent diiron–oxo species on a porphyrin platform that can oxidize methane. Nat. Chem.
2012, 4, 1024–1029. [CrossRef]

25. Groves, J.T.; Haushalter, R.C.; Nakamura, M.; Nemo, T.E.; Evans, B.J. High-valent iron-porphyrin complexes related to peroxidase
and cytochrome P-450. J. Am. Chem. Soc. 1981, 103, 2884–2886. [CrossRef]

http://doi.org/10.1016/j.ccr.2020.213482
http://doi.org/10.1016/B978-0-08-097774-4.00605-7
http://doi.org/10.1002/9781118742952
http://doi.org/10.1007/978-981-32-9751-7
http://doi.org/10.1021/cr9411886
http://www.ncbi.nlm.nih.gov/pubmed/11851481
http://doi.org/10.1016/S1381-1169(02)00196-6
http://doi.org/10.1016/S1631-0748(03)00021-3
http://doi.org/10.2174/157019309788167738
http://doi.org/10.3390/catal6040050
http://doi.org/10.3390/catal9121046
http://doi.org/10.1016/j.jorganchem.2017.05.007
http://doi.org/10.1039/c004223d
http://doi.org/10.1039/c3dt51004b
http://doi.org/10.1002/adsc.200303147
http://doi.org/10.1016/S0040-4020(02)01182-1
http://doi.org/10.1590/S0103-50532010000400004
http://doi.org/10.1039/b820771b
http://doi.org/10.1039/b804405h
http://doi.org/10.1038/nchem.1471
http://doi.org/10.1021/ja00400a075


Catalysts 2021, 11, 186 31 of 37

26. Seo, M.S.; Kim, N.H.; Cho, K.-B.; So, J.E.; Park, S.K.; Clémancey, M.; Garcia-Serres, R.; Latour, J.-M.; Shaik, S.; Nam, W. A
mononuclear non-heme iron(IV)-oxo complex which is more reactive than cytochrome P450 model compound I. Chem. Sci. 2011,
2, 1039–1045. [CrossRef]

27. Karslyan, E.E.; Shul’pina, L.S.; Kozlov, Y.N.; Pombeiro, A.J.L.; Shul’pin, G.B. Oxygenation of saturated and aromatic hydrocarbons
with H2O2 catalyzed by the carbonyl thiophenolate iron complex (OC)3Fe(PhS)2Fe(CO)3. Catal. Today 2013, 218–219, 93–98.
[CrossRef]

28. Rabe, V.; Frey, W.; Baro, A.; Laschat, S.; Bauer, M.; Bertagnolli, H.; Rajagopalan, S.; Asthalter, T.; Roduner, E.; Dilger, H.; et al.
Syntheses, Crystal Structures, Spectroscopic Properties, and Catalytic Aerobic Oxidations of Novel Trinuclear Non-Heme Iron
Complexes. Eur. J. Inorg. Chem. 2009, 4660–4674. [CrossRef]

29. Romakh, V.B.; Therrien, B.; Süss-Fink, G.; Shul’pin, G.B. Synthesis, molecular structure and catalytic potential of the tetrairon
complex [Fe4(N3O2-L)4(µ-O)2]4+ (L = 1-carboxymethyl-4,7-dimethyl-1,4,7-triazacyclononane). Inorg. Chem. 2007, 46, 3166–3175.
[CrossRef] [PubMed]

30. Jarenmark, M.; Turitsyna, E.A.; Haukka, M.; Shteinman, A.A.; Nordlander, E. A monocarboxylate-bridged diiron(III) l-oxido
complex that catalyzes alkane oxidation by hydrogen peroxide. New J. Chem. 2010, 34, 2118–2121. [CrossRef]
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