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Abstract: The first analysis of media with internal structure were done by the Cosserat brothers.
Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water.
In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid
molecules and propose some kind of Navier–Stokes equations for their description. Examples of
such media are water, ozone, carbon dioxide and hydrogen cyanide.

Keywords: Navier–Stokes equations; media with inner structures; plane molecules; water; Levi–
Civita connections

1. Introduction

It was the Cosserat brothers, [1], who first analyzed media formed by “rigid microele-
ments”, and G. Birkhoff [2] who noted that the classical Navier–Stokes equations give us
uncomplete descriptions of water flows (see also [3]). In papers [4,5] the authors gave a
general approach to dynamics of media having some inner structure and proposed some
generalizations of the Euler and Navier–Stokes equations.

In this paper, we consider the dynamics of media formed by chiral, planar and rigid
molecules (we call them CPR-molecules) molecules and propose some kind of Navier–
Stokes equations for their description. Recall that a molecule is called planar if it is formed
by atoms lying in the same plane and it is chiral and rigid if its symmetry group belongs to
SO(3). Hence, we consider a molecule as a rigid body on an oriented plane, the mechanical
properties of which are specified by the tensor of inertia.

2. The Configuration Space of a CPR-Molecule

We will assume that all CPR-molecules under consideration have the trivial point
symmetry group. Then a position of such a CPR-molecule is defined, up to rotations, by an
oriented plane in the three-dimensional space, passing through of the center of mass of
the molecule, or by the unit vector perpendicular to this plane or by a point on the unit
sphere S2.

Such molecules include, for example, molecules of ortho-water, i.e., molecules of water
with different spins of hydrogen atoms [6].

Let a ∈ S2 be a fixed point and let TaS2 be the tangent space to the sphere at the point a.
The position of a CPR molecule on the oriented plane is uniquely determined by a rotation,
and therefore, by a point on the unit circle on the tangent space TaS2.

Thus, the configuration space of a planar molecule with a fixed center of mass is the
circle bundle of the tangent bundle for the unit two-dimensional sphere. For our goal it is
more convenient to use the cotangent bundle T∗a S2 instead of the tangent one. We denote
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the circle bundle of the cotangent bundle by N and it will be the configuration space of
the molecule.

Let us introduce local coordinates on the configuration space. The position of a rigid
body in the space is determined by the position of its center of mass and angular parameters
(the Euler angles) showing its position relative to the center of mass. Let us choose a
Cartesian coordinate system x, y, z in the space R3 so that its axes coincide with the principal
axes of inertia tensor of the molecule. The metric tensor has the form g = dx2 + dy2 + dz2,
and the Lie algebra so(3) can be represented by the triple of vector fields on R3:

X = z
∂

∂y
− y

∂

∂z
, Y = x

∂

∂z
− z

∂

∂z
, Z = y

∂

∂x
− x

∂

∂y
, (1)

corresponding to the rotations around the axes OX, OY, OZ respectively.
In spherical coordinates φ, ψ, r in R3:

x = r cos ψ sin φ, y = r sin ψ sin φ, z = r cos φ,

where
φ = arccos

( z
r

)
, ψ = arctan

( y
x

)
, r =

√
x2 + y2 + z2,

vector fields (1) will take the following form:

RX = sin ψ
∂

∂φ
+ cot φ cos ψ

∂

∂ψ
, RY = − cos ψ

∂

∂φ
+ cot φ sin ψ

∂

∂ψ
, RZ = − ∂

∂ψ

respectively, and the metric tensor takes the form

g = r2
(

dφ2 + sin2 φ dψ2
)

in spherical coordinates. The metric g generates the invariant tensor field (the inverse metric)

g−1 =
1
r2

(
∂2

φ +
1

sin2 φ
∂2

ψ

)
.

which defines the metric on the cotangent bundle T∗a R3. The metric g−1 induces the metric

g−1
1 = ∂2

φ +
1

sin2 φ
∂2

ψ

on the cotangent bundle T∗a S2 of a sphere of unit radius r = 1.
Let q1 = φ, q2 = ψ, p1, p2 be the canonical coordinates on the cotangent bundle

T∗a S2, and
Ω = dq1 ∧ dp1 + dq2 ∧ dp2

be the structure differential 2-form that defines the symplectic structure on T∗a S2.
Then the Hamiltonian, corresponding to the metric g−1

1 , has the form

H = p2
1 +

1
sin2 q1

p2
2.

The Hamiltonians of the vector fields RX , RY, RZ are

HX = p1 sin q2 + p2 cot q1 cos q2, HY = −p1 cos q2 + p2 cot q1 sin q2, HZ = −p2
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respectively, and therefore, corresponding Hamiltonian vector fields are

X1 = sin q2
∂

∂q1
+ cot q1 cos q2

∂

∂q2
+ p2

cos q2

sin2 q1

∂

∂p1
− (p1 cos q2 − p2 cot q1 sin q2)

∂

∂p2
,

X2 =− cos q2
∂

∂q1
+ cot q1 sin q2

∂

∂q2
+ p2

sin q2

sin2 q1

∂

∂p1
− (p1 sin q2 + p2 cot q1 cos q2)

∂

∂p2
,

X3 =− ∂

∂q2
.

Thus, we have the representation of the Lie algebra so(3) by Hamiltonian vector fields
X1, X2, X3 with the commutation relations:

[X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = X1.

It is easy to see these fields are tangential to N: X1(H) = X2(H) = X3(H) = 0.
Thus the motion of a molecule relative to its center of mass corresponds to the motion

of a point on the level surface N. We take q1, q2 and

q3 = arctan
(

p2

p1 sin q1

)
.

as local coordinates on the configuration space N = {H = 1}.

3. Metric and Levi–Civita Connection, Associated with a CPR-Molecule

The restrictions of the vector fields X1, X2, X3 on the level surface N are

E1 = sin q2
∂

∂q1
+ cot q1 cos q2

∂

∂q2
− cos q2

sin q1

∂

∂q3
,

E2 =− cos q2
∂

∂q1
+ cot q1 sin q2

∂

∂q2
− sin q2

sin q1

∂

∂q3
,

E3 =− ∂

∂q2

respectively.
Any motion of a CPR-molecule around the center of mass occurs along the trajectory

of vector fields, which are linear combinations of vector fields E1, E2, E3.
The basis dual to E1, E2, E3 is formed by the differential 1-forms

Ω1 = sin q2dq1 − cos q2 sin q1dq3,

Ω2 =− cos q2dq1 − sin q2 sin q1dq3,

Ω3 =− dq2 − cos q1dq3,

such that the Maurer–Cartan relations hold:

dΩ1 = −Ω2 ∧Ω3, dΩ2 = Ω1 ∧Ω3, dΩ3 = −Ω1 ∧Ω2.

The vector fields E1, E2, E3 and the differential 1-forms Ω1, Ω2, Ω3 give us the base
(over R) in the space of left-invariant vector fields and correspondingly left invariant
differential 1-forms on the configuration space. Moreover, any left invariant tensor on N is
a linear combination of tensor products of these vector fields and differential 1-forms with
constant coefficients.
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Let Λ be the inertial tensor of a molecule. It can be consid ered as a positive self adjoint
operator acting on the Lie algebra so(3). Let positive numbers λ1, λ2, λ3 be eigenvalues of
Λ. The inertia tensor defines the metric tensor on the Lie algebra so(3):

gλ =
1
2

(
λ1Ω2

1 + λ2Ω2
2 + λ3Ω2

3

)
,

where Ω2
i are the symmetric squares of the 1-forms. The inertia tensor has the following

coordinate representation:

gλ =(λ1 sin2 q2 + λ2 cos2 q2)dq2
1 + λ3dq2

2

+ (λ1 sin2 q1 cos2 q2 + λ2 sin2 q1 sin2 q2 + λ3 cos2 q1)dq2
3

+ 2(λ2 − λ1) sin(q2) cos q2 sin q1dq1 · dq3

+ 2λ3 cos q1dq2 · dq3.

Here the dot ·means the operation of symmetric multiplication.
Let ∇λ be the Levi–Civita connection [7] associated with the metric gλ and ∇λ

i be the
covariant derivative along vector field Ei. Then

∇λ
i (Ej) = ∑

k
Γk

ijEk,

where Γk
ij are the Christoffel symbols. Direct calculations show that

Γ3
12 =

λ− λ1

λ3
, Γ3

21 = −λ− λ2

λ3
,

Γ1
23 =

λ− λ2

λ1
, Γ1

32 = −λ− λ3

λ1
,

Γ2
31 =

λ− λ3

λ2
, Γ2

13 = −λ− λ1

λ2
. (2)

where
λ =

λ1 + λ2 + λ3

2
.

All other Christoffel symbols equal to zero.

4. Metric Associated with the Media

Let R3 be the 3-dimensional Euclidian space, endowed with the standard metric
tensor g. Consider a medium, formed by CPR-molecules filling a region D ⊂ R3. The
configuration space for this type of media is the SO(3)-bundle π : Φ −→ D, where
Φ = N × D.

The group SO(3) acts in the natural way on fibers of the projection π and we will
continue to use notation E1, E2, E3 for the induced vertical vector fields on Φ. These fields
form the basis in the module of vertical vector fields on Φ, and accordingly differential
1-forms Ω1, Ω2, Ω3 define the dual basis in the space of differential forms on N.

The medium is also characterized by a SO(3)-connection in the bundle π, (see [4,5]).
We call this connection the media connection and denote it by ∇µ. The media connection
allows us to compare molecules at different points of the region D.

The connection∇µ depends on the properties of the medium and establishes a relation
between the translational motion of the molecule and its motion relative to the center of
mass. Such a relation can be caused, for example, by physical inhomogeneity of space or
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by the presence of effects on the environment. Let us show how it can be defined (see [5]).
The connection form ω we will consider as a matrix

ω =

∥∥∥∥∥∥
0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

∥∥∥∥∥∥
where ω1, ω2, ω3 are differential 1-forms on D. In other words, connection∇µ shows that a
molecule is subject to rotation along vector (ω1(X)E1 + ω2(X)E2 + ω3(X)E3) on the angle

ϕ =
√

ω1(X)2 + ω2(X)2 + ω3(X)2

when we transport it on the vector X in D.
Let (x1, x2, x3) be the standard Euclidian coordinates on D and (∂1, ∂2, ∂3) and (d1, d2, d3)

be the corresponding frame and coframe respectively. Here ∂i =
∂

∂xi
and di = dxi. In these

coordinates we have

ω =

∥∥∥∥∥∥
0 −ω31 ω21

ω31 0 −ω11
−ω21 ω11 0

∥∥∥∥∥∥d1 +

∥∥∥∥∥∥
0 −ω32 ω22

ω32 0 −ω12
−ω22 ω12 0

∥∥∥∥∥∥d2 +

∥∥∥∥∥∥
0 −ω33 ω23

ω33 0 −ω13
−ω23 ω13 0

∥∥∥∥∥∥d3.

This connection allows us to split tangent spaces TbΦ into the direct sum

TbΦ = Vb
⊕

Hb,

where Vb is the vertical part with basis E1,b, E2,b, E3,b, and the horizontal space Hb is gener-
ated by the following vector fields:

∂1 −ω11E1 −ω21E2 −ω31E3,

∂2 −ω12E1 −ω22E2 −ω32E3,

∂3 −ω13E1 −ω23E2 −ω33E3.

The horizontal distribution

H : Φ 3 b −→ Hb ⊂ TbΦ

could be also defined as the kernel of the following system of differential 1-forms on Φ:

θ1 =Ω1 + ω11d1 + ω12d2 + ω13d3,

θ2 =Ω2 + ω21d1 + ω22d2 + ω23d3,

θ3 =Ω3 + ω31d1 + ω32d2 + ω33d3.

Define a metric gµ on the manifold Φ as a direct sum of the metric gλ on the vertical
space V and the standard metric g0 = dx2

1 + dx2
2 + dx2

3 on the horizontal space H:

gµ =
1
2

3

∑
i=1

(
λiΩ2

i + d2
i

)
.

Note that the frame (E1, E2, E3, ∂1 − ω(∂1), ∂2 − ω(∂2), ∂3 − ω(∂3)) and the coframe
(Ω1, Ω2, Ω3, d1, d2, d3) are dual and their elements are pairwise orthogonal with respect to
the metric gµ.

5. Levi–Civita Connection Associated with the Homogeneous Media

A media is said to be homogeneous if components of the connection form ω and the
inertia tensor Λ are constants. Below we consider only homogeneous media.
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Let ∇ be the Levi–Civita connection on the configuration space Φ associated with the
metric gµ.

For basic vector fields Ei and ∂j, where i, j = 1, 2, 3, we have the following commuta-
tion relations:

[∂i, ∂j] = [∂i, Ej] = 0, [E1, E2] = E3, [E1, E3] = −E2, [E2, E3] = E1. (3)

Therefore, the Levi–Civita connection ∇ on the configuration space Φ associated with
the metric gµ and homogeneous media has the form wherein the non trivial Christoffel
symbols are given by Formula (2).

The operator of the covariant differential d∇ associated with the Levi–Civita connec-
tion acts on the basis vectors as follows:

d∇(∂i) = 0 (i = 1, 2, 3),

d∇(E1) =Γ2
31E2 ⊗Ω3 + Γ3

21E3 ⊗Ω2,

d∇(E2) =Γ1
32E1 ⊗Ω3 + Γ3

12E3 ⊗Ω1,

d∇(E3) =Γ1
23E1 ⊗Ω2 + Γ2

13E2 ⊗Ω1,

and on the basic differential 1-forms:

d∇(di) = 0 (i = 1, 2, 3).

d∇(Ω1) =− Γ1
32Ω2 ⊗Ω3 − Γ1

23Ω3 ⊗Ω2;

d∇(Ω2) =− Γ2
31Ω1 ⊗Ω3 − Γ2

13Ω3 ⊗Ω1;

d∇(Ω3) =− Γ3
21Ω1 ⊗Ω2 − Γ3

12Ω2 ⊗Ω1.

6. Thermodynamic State of Media

The motion of the medium will be described by the trajectories of vector fields on the
configuration space, which preserve the bundle π : Φ −→ D,

U =
3

∑
i=1

(Xi(t, x)∂i + Yi(t, x, q)Ei).

The tensor ∆ = d∇U is called the rate of deformation tensor [4]. Following [5,8],
this tensor bears an enormous thermodynamic quantity. Using properties of covariant
derivative we get:

∆ =
3

∑
i,j=1

(
∂j(Xi)∂i ⊗ dj + ∂j(Yi)Ei ⊗ dj + Ej(Yi)Ei ⊗Ωj

)
+

3

∑
i=1

Yid∇(Ei).

The matrix corresponding to the tensor ∆ has the block structure:

∆ =

∥∥∥∥ ∆H 0
∆HV ∆V

∥∥∥∥
where

∆H =

∥∥∥∥∥∥
∂1(X1) ∂2(X1) ∂3(X1)
∂1(X2) ∂2(X2) ∂3(X1)
∂1(X3) ∂2(X3) ∂3(X1)

∥∥∥∥∥∥, ∆HV =

∥∥∥∥∥∥
∂1(Y1) ∂2(Y1) ∂3(Y1)
∂1(Y2) ∂2(Y2) ∂3(Y2)
∂1(Y3) ∂2(Y3) ∂3(Y3)

∥∥∥∥∥∥,

∆V =

∥∥∥∥∥∥
E1(Y1) E2(Y1) + Γ1

23Y3 E3(Y1) + Γ1
32Y2

E1(Y2) + Γ2
13Y3 E2(Y2) E3(Y2) + Γ2

31Y1
E1(Y3) + Γ3

12Y2 E2(Y3) + Γ3
21Y1 E3(Y3)

∥∥∥∥∥∥.
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The metric tensor gµ defines the canonical isomorphism between vector fields and
differential 1-forms on Φ: a vector field X on Φ is associated with the differential 1-form
X[ on Φ and vice versa: with any differential 1-form ω on Φ we can associate the vector
field ω[. We have

E[
i = λiΩi, Ω[

i =
1
λi

Ei, ∂[i = di, d[i = ∂i i = 1, 2, 3.

For fields of endomorphisms we put (X⊗ω)[ = ω[ ⊗ X[. Then we have:

∆[ =
3

∑
i,j=1

(
∂j(Xi)∂j ⊗ di + λi∂j(Yi)∂j ⊗Ωi +

λi
λj

Ej(Yi)Ej ⊗Ωi

)
+

3

∑
i=1

Yid[∇(Ei),

where

d[∇(E1) =
λ2

λ3
Γ2

31E3 ⊗Ω2 +
λ3

λ2
Γ3

21E2 ⊗Ω3,

d[∇(E2) =
λ1

λ3
Γ1

32E3 ⊗Ω1 +
λ3

λ1
Γ3

12E1 ⊗Ω3,

d[∇(E3) =
λ1

λ2
Γ1

23E2 ⊗Ω1 +
λ2

λ1
Γ2

13E1 ⊗Ω2.

Let σ be a stress tensor which can be considered as a field of endomorphisms on the
tangent bundle. Let σ[ be field of endomorphisms on the tangent bundle TΦ dual to σ. The
following differential 1-form

ψ = ds− 1
T
(dε− Tr(σ[d∆)− ξdρ)

defines the contact structure on the thermodynamic phase space of medium

Ψ = R5 × End(T∗Φ)× End(TΦ)

with coordinates s, T, ε, ξ, ρ, σ, ∆. Here ρ, s, ε are the densities of the media, entropy and
inner energy respectively, T and ξ are temperature and chemical potential respectively
(see [4,9]). Since dim End(T∗Φ) = dim End(TΦ) = 9 we get dim Ψ = 23. Legendrian
manifolds L we call thermodynamic states of the media, in given case dim L = 11.

Consider only those thermodynamic states for which T, ρ, ∆ can be selected as coordinates.
Let h = ε− Ts be the density of Helmholtz free energy. Then we have the following

description of the Legendrian manifold:

s = hT , σ = h∆, ξ = hρ.

In this case when the media is Newtonian and satisfies the Hooke law, the Helmholtz
free energy is a quadratic function of ∆ and has the form [4]:

h =
1
2

(
a1Tr(∆2) + a2Tr(∆∆[) + a3(Tr∆)2 + a4(Tr(∆Π))2 + a5Tr(∆[∆Π) + a6Tr(∆∆[Π)

)
+ b1Tr(∆) + b2Tr(∆Π) + c,

where Π is the projector to the vertical component and a1, . . . , a6, b1, b2, c are some functions
of ρ, T.

In this case the stress tensor has the form

σ = a1∆[ + a2∆ + (a3Tr(∆) + b1) + (a4Tr(∆Π) + b2)Π + a5∆Π + a6Π∆.
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7. Divergence of Operator Fields

In order to write the momentum conservation law, we need a notation of the diver-
gence of the endomorphism field on Φ (see [4]). The covariant differential of an endo-
morphism field A ∈ TΦ⊗ T∗Φ is the tensor field d∇A ∈ TΦ⊗ T∗Φ⊗ T∗Φ. Taking the
contraction, the first and third indices of this tensor, we get the differential 1-form which is
called the divergence of the operator field A:

divA = c1,3(d∇A).

For decomposable fields A = X⊗ω, where X is a vector field and ω is a differential
1-form, the divergence operator can be calculated by the following formula:

div(X⊗ω) = (divX)ω +∇X(ω). (4)

Note that
div( f X⊗ω) = f div(X⊗ω) + X( f )ω.

The following formula gives an explicit form of the divergence operator. If the operator
has the form

A =
3

∑
i,j=1

(
aij∂i ⊗ dj + bijEi ⊗Ωj

)
,

then

divA =
3

∑
i,j=1

∂i(aij)dj + ∑
σ∈S3

(
Eσ(2)

(
bσ(2)σ(1)

)
− Γσ(3)

σ(2)σ(1)bσ(2)σ(3)

)
Ωσ(1). (5)

Here aij, bij are functions on Φ.
For endomorphisms that are linear combinations of tensors ∂i ⊗Ωj and Ei ⊗ dj, the

divergence is zero.

8. Conservation Laws
8.1. The Momentum Conservation Law

Let
d
dt

=
∂

∂t
+∇U

be a material derivative; then [4] the momentum conservation law, or Navier–Stocks equa-
tion, takes the form

ρ
dU
dt

= (divσ)[ + F,

or, equivalently,

ρ

(
∂U
∂t

+∇U(U)

)
= (divσ)[ + F. (6)

Here F is a density of exterior volume forces.
Let us calculate the covariant derivative ∇U(U). We have

∇U(U) =
3

∑
j=1

(
Xj∇∂j

(U) + Yj∇Ej(U)
)
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and

∇∂i
(∂j) = ∇∂i

(Ej) = 0,

∇Ei (∂j) = ∇Ei (Ei) = 0,

∇E1(E2) = Γ3
12E3, ∇E1(E3) = Γ2

13E2,

∇E2(E1) = Γ3
21E3, ∇E2(E3) = Γ1

23E1,

∇E3(E1) = Γ2
31E2, ∇E3(E2) = Γ1

32E1.

Therefore,

∇∂j
(U) =

3

∑
i=1

∂j(Xi)∂i + ∂j(Yi)Ei, j = 1, 2, 3;

∇E1(U) =E1(Y1)E1 + (E1(Y2) + Γ2
13Y3)E2 + (E1(Y3) + Γ3

12Y2)E3

∇E2(U) =(E2(Y1) + Γ1
23Y3)E1 + E2(Y2)E2 + (E2(Y3) + Γ3

21Y1)E3,

∇E3(U) =(E3(Y1) + Γ1
32Y2)E1 + (E3(Y2) + Γ2

31Y1)E2 + E3(Y3)E3,

and

∇U(U) =
3

∑
i,j=1

(
Xj∂j(Xi)∂i + (Xj∂j(Yi) + YjEj(Yi))Ei

)
+ (Γ1

23 + Γ1
32)Y2Y3E1 + (Γ2

13 + Γ2
31)Y1Y3E2 + (Γ3

12 + Γ3
21)Y1Y2E3

Moreover, we have

∇∂i
(dj) = ∇∂i

(Ωj) = ∇Ei (dj) = ∇Ei (Ωi) = 0 i, j = 1, 2, 3;

∇E1(Ω2) = −Γ2
13Ω3, ∇E1(Ω3) = −Γ3

12Ω2,

∇E2(Ω1) = −Γ1
23Ω3, ∇E2(Ω3) = −Γ3

21Ω1,

∇E3(Ω1) = −Γ1
32Ω2, ∇E3(Ω2) = −Γ2

31Ω1.

The momentum conservation law takes the form:

ρ

(
∂t(Xi) +

3
∑

j=1
Xj∂j(Xi)

)
= ((divσ)[ + F)di

i = 1, 2, 3;

ρ

(
∂t(Y1) +

3
∑

j=1

(
Xj∂j(Y1) + YjEj(Y1)

)
+ (Γ1

23 + Γ1
32)Y2Y3

)
= ((divσ)[ + F)Ω1 ;

ρ

(
∂t(Y2) +

3
∑

j=1

(
Xj∂j(Y2) + YjEj(Y2)

)
+ (Γ2

13 + Γ2
31)Y1Y3

)
= ((divσ)[ + F)Ω2 ;

ρ

(
∂t(Y3) +

3
∑

j=1

(
Xj∂j(Y3) + YjEj(Y3)

)
+ (Γ3

12 + Γ3
21)Y1Y2

)
= ((divσ)[ + F)Ω3 ;

(7)

where ((divσ)[ + F)ω is the coefficient of the right-hand side of (6) at the differential 1-form
ω. The divergence div can be found by Formula (5). We do not give explicit formulas due
to their cumbersomeness.

Equation (7) is the Navier–Stokes equation for the CPR-molecular medium.
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8.2. The Mass Conservation Law

The mass conservation law has the form

∂ρ

∂t
+ U(ρ) + ρ divU = 0,

where

divU = Tr(d∇U) = Tr ∆ =
3

∑
i=1

(
∂Xi
∂xi

+ Ei(Yi)

)
.

The coordinate representation of this equation is as follows:

∂ρ

∂t
+

3

∑
i=1

(
Xi

∂ρ

∂xi
+ YiEi(ρ)

)
+ ρ

3

∑
i=1

(
∂Xi
∂xi

+ Ei(Yi)

)
= 0. (8)

8.3. The Energy Conservation Law

We suppose that there are no internal energy sources in the media. Then the conserva-
tion law of energy has the form (see [5])

∂ε

∂t
+ εdiv(U)− div(χ grad(T)) + Tr(σ[∆) = 0. (9)

Here χ ∈ EndTΦ is the thermal conductivity of the medium.
Equations (7)–(9), and the equation of thermodynamic states of the media

s = hT , σ = h∆, ξ = hρ

describe the motion and thermodynamics of the CPR-molecular medium.
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