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We address classical and quantum mechanics in a general setting of arbitrary time-
dependent transformations. Classical non-relativistic mechanics is formulated as a par-
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1. Introduction

The technique of symplectic manifolds is well known to provide the adequate Hamil-

tonian formulation of autonomous mechanics [25, 42]. Its realistic example is a

mechanical system whose configuration space is a manifold M and whose phase

space is the cotangent bundle T ∗M of M provided with the canonical symplectic

form ΩM = dpi∧dqi, written with respect to the holonomic coordinates (qi, pi = q̇i)

on T ∗M . Any autonomous Hamiltonian system locally is of this type.

However, this geometric formulation of autonomous mechanics is not extended

to mechanics under time-dependent transformations because the symplectic form

ΩM fails to be invariant under these transformations. As a palliative variant, one

has developed time-dependent mechanics on a configuration space Q = R × M

where R is the time axis [5, 23]. Its phase space R × T ∗M is provided with the

pull-back presymplectic form pr∗2ΩM = dpi ∧dqi. However, this presymplectic form

also is broken by time-dependent transformations.

We address non-relativistic mechanics in a case of arbitrary time-dependent

transformations [20, 22, 26]. Its configuration space is a fiber bundle Q → R
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endowed with bundle coordinates (t, qi), where t is the standard Cartesian coordi-

nate on the time axis R with transition functions t′ = t + const. Its velocity space

is the first-order jet manifold J1Q of sections of Q → R coordinated by (t, qi, qi
t).

A phase space is the vertical cotangent bundle V ∗Q of Q → R [22, 32].

This formulation of non-relativistic mechanics is similar to that of classical field

theory on fiber bundles over a base of dimension > 1 [21, 35]. A difference between

mechanics and field theory however lies in the fact that connections on bundles over

R are flat, and they fail to be dynamic variables, but describe reference frames.

Note that relativistic mechanics is adequately formulated as particular classical

string theory of one-dimensional submanifolds [21, 22, 37, 38].

In Sec. 6, non-autonomous integrable Hamiltonian systems and mechanics with

time-dependent parameters are considered.

2. Non-Autonomous Dynamic Equations

Let us start with the notion of a reference frame in non-relativistic mechanics. A

fiber bundle Q → R is always trivial. By the well known theorem [21, 27], there is

one-to-one correspondence between the connections

Γ = ∂t + Γi∂i, (1)

on Q → R and the atlases of local constant trivializations of Q → R with time-

independent transition functions qi → q′i(qj) so that Γ = ∂t with respect to an

associated atlas. This fact leads to definition of a reference frame in non-relativistic

mechanics as a connection Γ on a configuration space Q → R [22, 31, 32]. The

corresponding covariant differential

DΓ : J1Q � ∂t + qi
t∂i → (qi

t − Γi)∂i ∈ VQ

determines the relative velocity (qi
t − Γi)∂i with respect to a reference frame Γ.

Equations of motion of non-relativistic mechanics usually are first and second-

order dynamic equations [20, 22, 26]. A first-order dynamic equation on a fiber

bundle Q → R is a kernel of the covariant differential DΓ = (qi
t − Γi)∂i of some

connection Γ (1) on Q → R. Second-order dynamic equations

qi
tt = ξi(t, qj , q

j
t ), ξ = ∂t + qi

t∂i + ξi∂t
i , (2)

on Q → R are conventionally defined as holonomic connections ξ on a jet bundle

J1Q → R. These equations also are represented by connections

γ = dqλ ⊗ (∂λ + γi
λ∂t

i ),

on an affine jet bundle J1Q → Q and, due to the canonical imbedding J1Q → TQ,

they are equivalent to geodesic equations on the tangent bundle TQ of Q [22, 28].

One says that the second-order dynamic equation (2) is a free motion equation

if there exists a reference frame (t, qi) on Q such that this equation reads qi
tt = 0.
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Relative to an arbitrary frame (t, qi), a free motion equation takes a form

qi
tt = dtΓ

i + ∂jΓ
i(qj

t − Γj) −
∂qi

∂qm

∂qm

∂qj∂qk
(qj

t − Γj)(qk
t − Γk), Γi = ∂tq

i(t, qj).

Its right-hand side is treated as an inertial force. One can show that a free motion

equation on a fiber bundle Q → R exists if and only if Q is a toroidal cylinder.

To consider a relative acceleration with respect to a reference frame Γ, one

should prolong a connection Γ on a configuration space Q → R to a holonomic

connection ξΓ on a jet bundle J1Q → R. Given a second-order dynamic equation

ξ, one can treat the vertical vector field aΓ = ξ − ξΓ = (ξi − ξi
Γ)∂t

i on J1Q → Q as

a relative acceleration with respect to a frame Γ. Then the second-order dynamic

equation (2) can be written in a covariant form qi
tt − ξi

Γ = aΓ [22].

3. Lagrangian Non-Autonomous Mechanics

Lagrangian mechanics is formulated in the framework of Lagrangian formalism on

fiber bundles [21, 22, 40]. We restrict our consideration to first-order Lagrangian

theory on a fiber bundle Q → R which is the case of non-relativistic mechanics.

A first-order Lagrangian is defined as a density

L = Ldt, L : J1Q → R, (3)

on a velocity space J1Q. There is the decomposition

dL = δL − dHHL, (4)

where we have the second-order Lagrange operator

δL = (∂iL− dt∂
t
iL)dqi ∧ dt (5)

and the Poincaré–Cartan form

HL = ∂t
iLdqi − (qi

t∂
t
iL − L)dt . (6)

A kernel of the Lagrange operator (5) provides a second-order Lagrange equation

(∂i − dt∂
t
i )L = 0. (7)

Every first-order Lagrangian L (3) yields the Legendre map

L̂ : J1Q →
Q

V ∗Q, pi ◦ L̂ = πi = ∂t
iL, (8)

where (t, qi, pi) are holonomic coordinates on the vertical cotangent bundle V ∗Q

of Q → R. A Lagrangian L is called hyperregular if L̂ (8) is a diffeomorphism

and almost regular if a Lagrangian constraint space NL = L̂(J1Q) is a closed

imbedded subbundle of the Legendre bundle πΠ : V ∗Q → Q and the Legendre map

L̂ : J1Q → NL is a fibered manifold with connected fibers.

Besides the Lagrange equation (7), the Cartan equation also is considered in

Lagrangian mechanics. It is readily observed that the Poincaré–Cartan form HL
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(6) also is a Poincaré–Cartan form of a first-order Lagrangian

L̃ = ĥ0(HL) = (L + (qi
(t) − qi

t)πi)dt, ĥ0(dqi) = qi
(t)dt,

on a repeated jet manifold J1J1Y [21, 22]. The Lagrange operator for L̃ reads

δL̃ = [(∂iL − d̂tπi + ∂iπj(q
j
(t) − q

j
t ))dqi + ∂t

iπj(q
j
(t) − q

j
t )dqi

t] ∧ dt.

Its kernel Ker δL ⊂ J1J1Q defines a first-order Cartan equation

∂t
iπj(q

j
(t) − q

j
t ) = 0, ∂iL − d̂tπi + ∂iπj(q

j
(t) − q

j
t ) = 0, (9)

on J1Q. A key point is that the Cartan equation (9), but not the Lagrange one (7)

is associated to a Hamilton equation in Hamiltonian mechanics.

The Poincaré–Cartan form HL (6) yields a homogeneous Legendre map ĤL :

J1Q → T ∗Q. Given holonomic coordinates (t, qi, p0, pi) on T ∗Q, it reads

(p0, pi) ◦ ĤL = (L − qi
tπi, πi).

We have a one-dimensional affine bundle ζ : T ∗Q → V ∗Q over the vertical cotangent

bundle V ∗Q, and the Legendre map L̂ (8) is the composition of morphisms L̂ =

ζ ◦ ĤL. In comparison with a phase space V ∗Q of non-relativistic mechanics, the

cotangent bundle T ∗Q is its homogeneous phase space.

In accordance with the first Noether theorem, Lagrangian conservation laws in

Lagrangian mechanics can be defined [22, 30]. Let u = ut∂t + ui∂i, ut = 0, 1, be a

vector field on a fiber bundle Q → R. The Lie derivative LJ1uL of a Lagrangian L

along the jet prolongation J1u of u onto J1Q fulfils the first variational formula

LJ1uL = uV �δL + dH(u�HL), (10)

which results from the decomposition (4). A vector field u is called a symmetry of a

Lagrangian L if the Lie derivative LJ1uL vanishes. In this case, the first variational

formula (10) leads to a weak conservation law

0 ≈ dtTu, Tu = u�HL = (ui − utqi
t)πi + utL, (11)

of a symmetry current Tu along a vector field u.

For instance, if ut = 1, we have a reference frame u = Γ, and the symmetry

current (11) is an energy function

EΓ = −TΓ = πi(q
i
t − Γi) − L

relative to a reference frame Γ [6, 22, 32].

4. Hamiltonian Non-Autonomous Mechanics

A phase space V ∗Q of Hamiltonian non-autonomous mechanics is provided with

the canonical Poisson structure

{f, g}V = ∂if∂ig − ∂ig∂if, f, g ∈ C∞(V ∗Q), (12)

1350061-4



Fiber Bundle Formulation of Non-Autonomous Mechanics

such that ζ∗{f, g}V = {ζ∗f, ζ∗g}T , where {f, g}T is the Poisson bracket for the

canonical symplectic structure ΩQ on the cotangent bundle T ∗Q of Q.

However, Hamiltonian mechanics is not familiar Poisson Hamiltonian theory on

a Poisson manifold V ∗Q because all Hamiltonian vector fields on V ∗Q are verti-

cal. Hamiltonian mechanics on V ∗Q is formulated as particular (polysymplectic)

Hamiltonian formalism on fiber bundles [11, 21, 22]. Its Hamiltonian is a global

section

h : V ∗Q → T ∗Q, p0 ◦ h = H(t, qj , pj), (13)

of an affine bundle T ∗Q → V ∗Q. The pull-back (−h)∗Ξ of the canonical Liouville

form Ξ = pµdqµ on T ∗Q with respect to this section is a Hamiltonian one-form

H = (−h)∗Ξ = pkdqk −Hdt (14)

on V ∗Q [22, 32]. This is the well-known invariant of Poincaré–Cartan [1].

For instance, any connection Γ (1) on Q → R defines the global section hΓ = piΓ
i

(13) of an affine bundle T ∗Q → V ∗Q and the corresponding Hamiltonian form

HΓ = pkdqk −HΓdt = pkdqk − piΓ
idt. (15)

Furthermore, given a connection Γ, any Hamiltonian form (14) admits a splitting

H = HΓ − EΓdt, EΓ = H−HΓ = H− piΓ
i, (16)

where EΓ is called the Hamiltonian function on V ∗Q relative to a frame Γ.

Given the Hamiltonian form H (14), there exists a unique connection

γH = ∂t + ∂kH∂k − ∂kH∂k,

on V ∗Q → R such that γH�dH = 0. It yields a first-order Hamilton equation

qk
t = ∂kH, ptk = −∂kH (17)

on V ∗Q → R, where (t, qk, pk, qk
t , ptk) are the adapted coordinates on J1V ∗Q.

Herewith, a non-autonomous Hamiltonian system (H, V ∗Q) is associated to the

homogeneous autonomous Hamiltonian system with a Hamiltonian H∗ = p0 +H on

the cotangent bundle T ∗Q so that the Hamilton equation (17) on V ∗Q is equivalent

to an autonomous Hamilton equation on T ∗Q [4, 22, 29].

Moreover, the Hamilton equation (17) on V ∗Q also is equivalent to the Lagrange

equation of a Lagrangian

LH = h0(H) = (piq
i
t −H)dt (18)

on the jet manifold J1V ∗Q of V ∗Q → R [22, 30, 32]. As a consequence, Hamiltonian

conservation laws can be formulated as the Lagrangian ones. In particular, any

integral of motion F of the Hamilton equation (17) is a conserved current of the

Lagrangian (18), and vice versa. It obeys the evolution equation

LγH
F = ∂tF + {H,F}V = 0 (19)
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and, equivalently, the homogeneous evolution equation

ζ∗(LγH
F ) = {H∗, ζ∗F}T = 0. (20)

In particular, let EΓ (16) be a Hamiltonian function relative to a reference frame

Γ. Given bundle coordinates adapted to Γ, its evolution equation (19) takes a form

LγH
EΓ = ∂tEΓ = ∂tH.

It follows that, a Hamiltonian function EΓ relative to a reference frame Γ is an

integral of motion if and only if a Hamiltonian, written with respect to Γ, is time-

independent. One can think of EΓ as being an energy function relative to a reference

frame Γ [6, 22, 30, 32]. Indeed, if EΓ is an integral of motion, it is a conserved

symmetry current of the canonical lift onto V ∗Q of the vector field −Γ (1) on Q.

Lagrangian and Hamiltonian formulations of non-autonomous mechanics fail to

be equivalent. The relations between Lagrangian and Hamiltonian formalisms are

based on the facts that: (i) every first-order Lagrangian L (3) on a velocity space

J1Q induces the Legendre map (8) of this velocity space to a phase space V ∗Q, (ii)

every Hamiltonian form H (14) on a phase space V ∗Q yields a Hamiltonian map

Ĥ : V ∗Q →J1Q, qi
t ◦ Ĥ = ∂iH,

of this phase space to a velocity space J1Q.

Given a Lagrangian L, the Hamiltonian form H (14) is said to be associated

with L if H satisfies the relations

L̂ ◦ Ĥ ◦ L̂ = L̂, Ĥ∗LH = Ĥ∗L, (21)

where LH is the Lagrangian (18).

For instance, let L be a hyperregular Lagrangian. It follows from the relations

(21) that, in this case, Ĥ = L̂−1 and there exists a unique Hamiltonian form

H = pkdqk −Hdt, H = piL̂
−1i − L(t, qj , L̂−1j), (22)

associated with L. Let s be a solution of the Lagrange equation (7) for a Lagrangian

L. A direct computation shows that L̂ ◦ J1s is a solution of the Hamilton equation

(17) for the Hamiltonian form H (22). Conversely, if r is a solution of the Hamilton

equation (17) for the Hamiltonian form H (22), then s = πΠ ◦ r is a solution of the

Lagrange equation (7) for L. It follows that, in the case of hyperregular Lagrangians,

Hamiltonian formalism is equivalent to Lagrangian one.

If a Lagrangian is not hyperregular, an associated Hamiltonian form need not

exist or it is not unique. Comprehensive relations between Lagrangian and Hamilto-

nian systems are established in the case of almost regular Lagrangians [22, 29, 32].

5. Quantum Non-Autonomous Mechanics

Quantum non-autonomous mechanics is phrased in geometric terms of Banach and

Hilbert manifolds and Hilbert and C∗-algebra bundles. Quantization schemes speak-

ing this language are instantwise and geometric quantizations [12, 18, 22].
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A definition of smooth Banach and Hilbert manifolds follows that of the finite-

dimensional ones, but Banach manifolds are not locally compact, and they need

not be paracompact [18, 24, 41]. It is essential that Hilbert manifolds satisfy the

inverse function theorem and, therefore, locally trivial Hilbert bundles are defined.

However, the following fact leads to the non-equivalence of Schrödinger and Heisen-

berg quantization. Let E be a Hilbert space and B some C∗-algebra of bounded

operators in E. There is a topological obstruction to the existence of associated

Hilbert and C∗-algebra bundles E and B with typical fibers E and B, respectively.

First, transition functions of E define those of B, but the latter are not continuous

in general. Second, transition functions of B need not give rise to those of E .

One also meets a problem of the definition of connections on C∗-algebra bundles.

It comes from the fact that a C∗-algebra need not admit non-zero bounded deriva-

tions. An unbounded derivation of a C∗-algebra A obeying certain conditions is an

infinitesimal generator of a strongly (but not uniformly) continuous one-parameter

group of automorphisms of A [3, 18, 22]. Therefore, one must introduce a connec-

tion on a C∗-algebra bundle in terms of parallel transport operators, but not their

infinitesimal generators [2, 18]. Moreover, a representation of A need not imply a

unitary representation of its strongly continuous one-parameter group of automor-

phisms. In contrast, connections on a Hilbert bundle over a smooth manifold can

be defined as first-order differential operators on a module of its sections [18, 22].

In particular, this is the case of instantwise quantization describing evolution of

quantum systems in terms of Hilbert bundles over R [13, 18, 22, 33]. Namely, let

us consider a Hilbert bundle E → R with a typical fiber E and a connection ∇t on

a C∞(R)-module E(R) of smooth sections of E → R. It obeys the Leibniz rule

∇t(fψ) = ∂tfψ + f∇tψ, ψ ∈ E(R), f ∈ C∞(R).

Given a trivialization E = R × E, the connection ∇t reads

∇tψ = (∂t + iH(t))ψ, (23)

where H(t) are bounded self-adjoint operators in E for all t ∈ R. A section ψ of

E → R is an integral section of the connection ∇t (23) if it obeys the equation

∇tψ(t) = (∂t + iH(t))ψ(t) = 0. (24)

One can think of this equation as being the Schrödinger equation.

The most of quantum models come from canonical quantization of classical

mechanical systems by means of replacement of a Poisson bracket {f, f ′} of smooth

functions with a bracket [f̂ , f̂ ′] of Hermitian operators in a Hilbert space in accor-

dance with Dirac’s condition [f̂ , f̂ ′] = −i{̂f, f ′}. Canonical quantization of Hamil-

tonian non-autonomous mechanics on a configuration space Q → R is geometric

quantization [12, 13, 18, 22]. A key point is that, in this case, the evolution equation

(19) is not reduced to the Poisson bracket on a phase space V ∗Q, but is expressed

as (20) in the Poisson bracket on the homogeneous phase space T ∗Q. Therefore, the
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compatible geometric quantization both of the symplectic cotangent bundle T ∗Q

and the Poisson vertical cotangent bundle V ∗Q of Q is required.

Note that geometric quantization of Poisson manifolds is formulated in terms of

contravariant connections [42]. Though there is one-to-one correspondence between

the Poisson structures on a manifold and its symplectic foliations, this quantization

of a Poisson manifold need not imply quantization of its symplectic leaves [43].

Geometric quantization of symplectic foliations disposes of this problem [13, 18,

22, 34]. A quantum algebra of a symplectic foliation also is that of an associated

Poisson manifold whose restriction to each symplectic leaf is its quantum algebra.

Namely, the standard prequantization of the cotangent bundle T ∗Q yields the

compatible prequantization of a Poisson manifold V ∗Q. However, polarization of

T ∗Q need not induce any polarization of V ∗Q, unless it contains the vertical cotan-

gent bundle of a fiber bundle T ∗Q → V ∗Q spanned by vectors ∂0. A unique canoni-

cal real polarization of T ∗Q, satisfying this condition, is the vertical tangent bundle

of T ∗Q → Q. The associated quantum algebra AT consists of functions on T ∗Q

which are affine in momenta pµ. This polarization of T ∗Q yields polarization of a

Poisson manifold V ∗Q such that the corresponding quantum algebra AV consists

of functions on V ∗Q which are affine in momenta pi, i.e. AV is a subalgebra of AT .

After metaplectic correction, we obtain compatible Schrödinger representations

f̂ρ =

(
−iaλ∂λ −

i

2
∂λaλ − b

)
ρ, f = aλ(qµ)pλ + b(qµ) ∈ AT , (25)

f̂ρ =

(
−iak∂k −

i

2
∂kak − b

)
ρ, f = ak(qµ)pk + b(qµ) ∈ AV , (26)

of AT and AV in the space D1/2(Q) of complex half-densities ρ on Q.

The Schrödinger quantization (26) of V ∗Q provides instantwise quantization of

non-autonomous mechanics [22]. Indeed, a glance at the Poisson bracket (12) shows

that the Poisson algebra C∞(V ∗Q) is a Lie algebra over the ring C∞(R) of functions

of time, where algebraic operations in fact are instantwise operations depending on

time as a parameter. One can show that the Schrödinger quantization (26) of a

Poisson manifold V ∗Q yields geometric quantization of its symplectic fibers V ∗

t Q,

t ∈ R, such that the quantum algebra At of V ∗

t Q consists of elements f ∈ AV

restricted to V ∗

t Q. Bearing in mind that ρ ∈ D1/2[Q] are fiberwise half-densities on

Q → R, let us choose a carrier space of the Schrödinger representation (26) of AV

which consists of complex half-densities ρ on Q such that ρ on Qt for any t ∈ R is

of compact support. It is a pre-Hilbert C∞(R)-module ER which also is a carrier

space for the quantum algebra AT , but its action in ER is not instantwise.

Let us turn to quantization of an evolution equation. Since Eq. (19) is not

reduced to a Poisson bracket, quantization of a Poisson manifold V ∗Q fails to

provide quantization of this evolution equation. Therefore, we quantize the equiv-

alent homogeneous evolution equation (20) on a symplectic manifold T ∗Q. The

Schrödinger representation (25) of a Lie algebra AT is extended to its envelop-

ing algebra, and defines the quantization Ĥ∗ of a homogeneous Hamiltonian H∗.
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Moreover, since p̂0 = −i∂t, an operator iĤ∗ obeys the Leibniz rule

iĤ∗(rρ) = ∂trρ + r(iĤ∗ρ), r ∈ C∞(R), ρ ∈ ER.

Thus, it is a connection on a C∞(R)-module ER. Then a quantum constraint

iĤ∗ρ = 0, ρ ∈ ER, (27)

is the Schrödinger equation (24) in quantum non-autonomous mechanics.

This quantization depends on a reference frame as follows. In accordance with

the Schrödinger representation (25), a homogeneous Hamiltonian H∗ = p0 + H is

quantized as a Hamilton operator

Ĥ∗ = p̂0 + Ĥ = −i∂t + Ĥ. (28)

A problem is that the decomposition H∗ = p0 +H and the corresponding splitting

(28) of a Hamilton operator Ĥ∗ are ill defined. At the same time, any reference

frame Γ yields the decomposition

H∗ = (p0 + HΓ) + (H−HΓ) = H∗

Γ + EΓ,

where HΓ is the Hamiltonian (15) and EΓ (16) is an energy function relative to a

reference frame Γ. Accordingly, we obtain the splitting of a Hamilton operator

Ĥ∗ = Ĥ∗

Γ + ÊΓ, Ĥ∗

Γ = −i∂t − iΓk∂k −
i

2
∂kΓk

and ÊΓ is the operator of energy relative to a reference frame Γ [22, 30]. Given a

reference frame Γ, the energy function EΓ is quantized as ÊΓ = Ĥ∗ − Ĥ∗

Γ. As a

consequence, the Schrödinger equation (27) reads

(ĤΓ + ÊΓ)ρ = −i

(
∂t + Γk∂k +

1

2
∂kΓk

)
ρ + ÊΓρ = 0.

6. Outcomes

The Liouville–Arnold theorem for completely integrable systems and the

Mishchenko–Fomenko theorem for the superintegrable ones state the existence of

action-angle coordinates around a compact invariant submanifold of a Hamiltonian

integrable system. These theorems have been generalized to the case of non-compact

invariant submanifolds [8–10, 16, 18, 22, 36]. In particular, this is the case of non-

autonomous completely integrable and superintegrable systems [14, 18, 22, 39].

Geometric quantization of completely integrable and superintegrable Hamiltonian

systems with respect to action-angle variables has been considered [7, 15, 18, 19, 22].

At present, quantum systems with classical parameters attract special attention

in connection with holonomic quantum computation. These parameters can be seen

as sections of some smooth fiber bundle Σ → R. Then a configuration space of a

mechanical system with time-dependent parameters is a composite fiber bundle

Q → Σ → R [13, 18, 22, 33]. The corresponding total velocity and phase spaces
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are the first-order jet manifold J1Q and the vertical cotangent bundle V ∗Q of the

configuration bundle Q → R, respectively. However, since parameters are classical,

a phase space of a quantum system with time-dependent parameters is the vertical

cotangent bundle V ∗

ΣQ of a fiber bundle Q → Σ. We apply to V ∗

ΣQ → Σ the

technique of leafwise geometric quantization [13, 18, 22].

Geometric Berry’s phase factor is a phenomenon peculiar to quantum systems

with classical parameters. It is characterized by a holonomy operator driving a

carrier Hilbert space over a parameter manifold. A problem lies in separation of

a geometric phase factor from an evolution operator without using an adiabatic

assumption. Therefore, we address the Berry phase phenomena in completely inte-

grable systems. A reason is that, being constant under an internal dynamic evo-

lution, action variables of a completely integrable system are driven only by a

perturbation holonomy operator without any adiabatic approximation [17, 18, 22].
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