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Abstract: The main objective of the present paper is to provide a simple analytical solution for
describing the expansion of a two-layer tube under plane-strain conditions for its subsequent use
in the preliminary design of hydroforming processes. Each layer’s constitutive equations are an
arbitrary pressure-independent yield criterion, its associated plastic flow rule, and an arbitrary
hardening law. The elastic portion of strain is neglected. The method of solution is based on two
transformations of space variables. Firstly, a Lagrangian coordinate is introduced instead of the
Eulerian radial coordinate. Then, the Lagrangian coordinate is replaced with the equivalent strain.
The solution reduces to ordinary integrals that, in general, should be evaluated numerically. However,
for two hardening laws of practical importance, these integrals are expressed in terms of special
functions. Three geometric parameters for the initial configuration, a constitutive parameter, and two
arbitrary functions classify the boundary value problem. Therefore, a detailed parametric analysis
of the solution is not feasible. The illustrative example demonstrates the effect of the outer layer’s
thickness on the pressure applied to the inner radius of the tube.

Keywords: tube hydroforming; two-layer tube; rigid plasticity; arbitrary yield criterion; arbitrary
hardening law; analytic solution

1. Introduction

Tube hydroforming is capable of replacing several traditional manufacturing pro-
cesses [1]. The products of tube hydroforming processes are widely used in different
sectors of the industry [2–6], including the production of micro-parts [7,8]. Several compre-
hensive reviews on hydroforming technologies are available [9–12], where the advantages
and disadvantages of these technologies are discussed in detail.

An important direction of research is to design hydroforming processes. Several meth-
ods based on sophisticated numerical modeling have been proposed [1,5,13]. However, it
is known from other branches of the mechanics of metal forming processes that simplified
methods can be very useful for the preliminary design of metal forming processes. In
particular, such methods can provide a reliable initial guess for more sophisticated methods.
An example of such simplified methods is the theory of ideal flows [14–16]. The present
paper provides a simple analytic solution for a two-layer tube hydroforming process. An
advantage of this solution is that it is valid for any pressure-independent yield criterion
and any hardening law. Therefore, the solution can be used for parametric analysis and
preliminary design of the tube hydroforming process for a large class of materials.

Hydroforming of multi-layer materials is a widely used hydroforming process. The
hydroforming technology for producing double-layer spherical vessels was introduced
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in [17]. This paper includes both experimental and theoretical results. The latter are based
on the elastic/plastic finite element method. Paper [18] has applied hydroforming for
developing the discrete layer forming of a multi-layer tube. This paper uses an analytic
method for finding an optimal loading path to prevent defects in the course of forming.
This analytic method has been justified by experiments. The hydraulic bulging test for
multi-layer sheets was proposed in [19]. Its theoretical treatment has been based on the
finite element method. Various technological aspects of the hydroforming process of
multi-layer sheets have been discussed in recent publications [20,21].

The present paper focuses on a new theoretical method for describing two-layer tube
hydroforming under plane-strain conditions. It is assumed that each layer is rigid/plastic.
No restriction is imposed on the isotropic pressure-independent yield criterion and hard-
ening law. The general solution is analytic. A numerical treatment may be needed for
evaluating ordinary integrals.

The success of the method proposed is based on the use of advantageous space
variables. In particular, the original formulation of the boundary value problem in Eulerian
coordinates is first transformed in the formulation in Lagrangian coordinates. Then, the
equivalent strain is used as an independent space variable. In the case of elastic/plastic
problems, this change of independent variables has proved advantageous for a class of
problems [22–24].

A practical aspect of the solution is that simple solutions are essential for estimating
the required forming pressure in tube hydroforming of monometallic and clad tubes [25,26].
Moreover, the solution can be used as a benchmark problem for verifying numerical codes,
which is a necessary step before using such codes [27,28].

2. Statement of the Problem

Consider a two-layer tube of initial outer radius Rb and inner radius Ra, subjected to
uniform pressure P over the inner radius. The outer radius of the inner layer and the inner
radius of the outer layer is Rc (Figure 1a). Each layer is rigid/plastic or hardening. The state
of strain is plane. It is natural to adopt a cylindrical coordinate system (r, θ, z), the z-axis
of which coincides with the tube’s axis of symmetry. Then, the solution is independent of θ.
In particular, after any amount of deformation, the outer and inner radii of the tube are b
and a, respectively. The radius of the contact surface between the layers is c (Figure 1b). Let
σr, σθ , and σz be the normal stresses referred to the cylindrical coordinates. These stresses
are the principal stresses. The circumferential velocity vanishes and the radial velocity is
denoted as u.
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In the case under consideration, any pressure-independent yield criterion reduces to

|σr − σθ | = χσeq. (1)
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Here, σeq is a measure of the equivalent stress and χ is constant. Let ξr and ξθ be
the non-zero normal strain rates referred to the cylindrical coordinates. The flow rule
associated with the yield criterion (1) reduces to the equation of incompressibility

ξr + ξθ = 0 (2)

and the inequality
ξr(σr − σθ) > 0. (3)

It is assumed that σeq is a function of the equivalent strain, εeq. The latter is determined
from the equation:

dεeq

dt
= ξeq. (4)

Here, t is the time, d/dt denotes the convected derivative, and ξeq is the equivalent
strain rate. In the case under consideration,

ξeq = χ|ξr| = χ|ξθ |. (5)

Assuming that σeq is equal to the axial stress in the uniaxial tension test, the von Mises
yield criterion follows from Equation (1) at χ = 2/

√
3 and Tresca’s yield criterion at χ = 1.

It is convenient to represent σeq as σeq = σ0Φ
(
εeq
)
, where σ0 is the value of the

equivalent stress at εeq = 0 and Φ
(
εeq
)

is an arbitrary function of its argument, satisfying
the conditions Φ = 1 at εeq = 0 and dΦ/dεeq ≥ 0 for all εeq. Then, Equation (1) becomes

|σr − σθ | = χσ0Φ
(
εeq
)
. (6)

The stress boundary condition is

σr = 0 (7)

for r = b. The pressure P is determined from the equation

P = −σr (8)

where the radial stress is understood to be calculated at r = a.

3. General Solution

Since ξr = ∂u/∂r and ξθ = u/r, Equation (2) can be immediately integrated to give

u =
Ua
r

. (9)

Here, U is the radial velocity at r = a. Since the material model is rate-independent,
the magnitude of U is immaterial. By definition, ∂r/∂t = u. This equation and Equation (9)
combine to give

∂r
∂a

=
a
r

. (10)

It has been taken into account here that da/dt = U. Equation (10) can be immediately
integrated to give

r =
√

R2 + a2 − R2
a. (11)

Here, R is the Lagrangian coordinate such that r = R at a = Ra. One can solve
Equation (11) for R to obtain

R =
√

r2 − a2 + R2
a. (12)
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It follows from Equation (10) that

ξr =
∂u
∂r

= −Ua
r2 . (13)

One substitutes Equation (13) into Equation (5) to arrive at

ξeq = χ
Ua
r2 . (14)

Equations (9) and (14) combine to give

ξeq = χ
Ua

(R2 + a2 − R2
a)

. (15)

In Lagrangian coordinates, d/dt = ∂/∂t. Therefore, Equation (15) becomes

∂εeq

∂a
= χ

a
(R2 + a2 − R2

a)
. (16)

It has been taken into account here that da/dt = U. One integrates Equation (16)
to obtain

εeq =
χ

2
ln
(

R2 + a2 − R2
a

R2

)
. (17)

This solution satisfies the initial condition that εeq = 0 at a = Ra.
The only stress equilibrium equation that is not identically satisfied in the cylindrical

coordinates is
∂σr

∂r
+

σr − σθ

r
= 0. (18)

It is more convenient to rewrite this equation in the Lagrangian coordinates. It follows
from Equations (11) and (12) that

∂R
∂r

=
r
R

. (19)

Then, Equation (18) becomes

∂σr

∂R
∂R
∂r

+
σr − σθ

r
=

∂σr

∂R
r
R
+

σr − σθ

r
= 0. (20)

Equations (3) and (13) show that σr − σθ < 0. Then, using Equations (6) and (11), one
transforms Equation (20) to

∂σr

σ0∂R
=

χRΦ
(
εeq
)

(R2 + a2 − R2
a)

. (21)

It is seen from the general structure of this equation that it is advantageous to use
the equivalent strain as the independent variable instead of R. Using Equation (17), one
replaces the differentiation with respect to R in Equation (21) with the differentiation with
respect to εeq to attain

∂σr

σ0∂εeq
=

R2Φ
(
εeq
)

(R2
a − a2)

. (22)

Moreover, Equation (17) can be solved for R to result in

R2 =
a2 − R2

a
exp

(
2εeq/χ

)
− 1

. (23)
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Equations (20) and (23) combine to give

∂σr

σ0∂εeq
=

Φ
(
εeq
)

1− exp
(
2εeq/χ

) . (24)

The general solution of this equation is

σr

σ0
=

εeq∫
ε0

Φ(ω)

1− exp(2ω/χ)
dω +

s0

σ0
. (25)

Here, ω is a dummy variable of integration, and s0 is the value of σr at εeq = ε0. The
circumferential stress is determined from Equations (6) and (25) as

σθ

σ0
=

εeq∫
ε0

Φ(ω)

1− exp(2ω/χ)
dω + χΦ

(
εeq
)
+

s0

σ0
. (26)

Since εeq is independent of R at the initial instant, ∂εeq/∂R = 0 at a = Ra. Therefore,
the transformation of Equation (21) into Equation (22) is not justified at the initial instant.
As a result, one cannot put ε0 = 0 in Equation (25) and the following equations that involve
this quantity. The solution at the initial instant is not required in the present paper. If one
requires such a solution, then it is necessary to return to Equation (21). It is then necessary
to put εeq = 0, which is equivalent to putting Φ

(
εeq
)
= 1. The resulting equation can be

immediately integrated in terms of elementary functions to provide the radial distribution
of σr.

4. Expansion of a Two-Layer Tube

Throughout this paper’s remainder, subscript 1 denotes quantities related to the inner
layer and subscript 2 to the outer layer (Figure 1).

Let εa, εb, and εc be the values of the equivalent strain at R = Ra, R = Rb, and R = Rc,
respectively. Then, it follows from Equation (17) that

εa = χ ln
(

a
Ra

)
, εb =

χ

2
ln

(
R2

b + a2 − R2
a

R2
b

)
, and εc =

χ

2
ln
(

R2
c + a2 − R2

a
R2

c

)
. (27)

The solution to Equation (25) satisfies the boundary condition of Equation (7) if s = s0
and ε0 = εb. Then,

σ
(2)
r

σ
(2)
0

=

εeq∫
εb

Φ(2)(ω)

1− exp(2ω/χ)
dω. (28)

Let σc be the value of the radial stress at R = Rc. It follows from Equation (28) that

σc

σ
(2)
0

=

εc∫
εb

Φ(2)(ω)

1− exp(2ω/χ)
dω. (29)

The radial stress must be continuous across the bi-material interface. Therefore,
σ
(1)
r = σc at R = Rc. The solution to Equation (25) satisfying this condition is

σ
(1)
r

σ
(2)
0

= k

εeq∫
εc

Φ(1)(ω)

1− exp(2ω/χ)
dω +

σc

σ
(2)
0

(30)



Metals 2021, 11, 793 6 of 10

where k = σ
(1)
0 /σ

(2)
0 . Equations (29) and (30) combine to give

σ
(1)
r

σ
(2)
0

= k

εeq∫
εc

Φ(1)(ω)

1− exp(2ω/χ)
dω +

εc∫
εb

Φ(2)(ω)

1− exp(2ω/χ)
dω (31)

The pressure of the inner radius is determined from Equations (8) and (31) as

P

σ
(2)
0

= −k

εeq∫
εc

Φ(1)(ω)

1− exp(2ω/χ)
dω−

εc∫
εb

Φ(2)(ω)

1− exp(2ω/χ)
dω (32)

Together with Equations (17) and (26), the solution above supplies the dependence of
the radial and circumferential stresses on the Lagrangian coordinate in parametric form,
with the equivalent strain being the parameter. One can use Equation (12) to find the
distribution of these stresses along the r-axis.

In general, the integral in Equation (25) should be evaluated numerically. However,
two hardening laws of practical importance allow for the evaluation of this integral in
terms of special functions. In the case of linear hardening, Φ

(
εeq
)
= 1 + βεeq. Using this

function, one finds
εeq∫

ε0

Φ(ω)

1− exp(2ω/χ)
dω =

χ

4

 βχLi2
[
exp

(
− 2εeq

χ

)]
− βχLi2

[
exp

(
− 2ε0

χ

)]
−

2
(
1 + βεeq

)
ln
[
1− exp

(
− 2εeq

χ

)]
+ 2(1 + βε0) ln

[
1− exp

(
− 2ε0

χ

)] . (33)

Here, Li2
(
εeq
)

is the dilogarithm function. In the case of Voce’s hardening law,
Φ
(
εeq
)
= 1 + (β− 1)

[
1− exp

(
−nεeq

)]
. Using this function, one finds

εeq∫
ε0

Φ(ω)
1−exp(2ω/χ)

dω = β
(
εeq − ε0

)
− 1

2 βχ ln
[

1−exp(2εeq/χ)
1−exp(2ε0/χ)

]
+ (β−1)

n
[
exp

(
−nεeq

)
Λ
(
εeq
)
− exp(−nε0)Λ(ε0)

]
. (34)

Here, Λ(x) ≡ 2F1[1, −nχ/2, 1− nχ/2, exp(2εeq/χ)] is the hypergeometric function.

5. Experimental Verification and Illustrative Examples

Three geometric parameters for the initial configuration, the value of χ, and two
arbitrary functions classify the boundary value problem. Therefore, a detailed parametric
analysis of the solution is not feasible. However, the solution is very simple for any
given set of initial data. The numerical results below focus on the maximum value of the
internal pressure, Pmax. Simple solutions for this quantity are essential for estimating the
required forming pressure in tube hydroforming of monometallic and clad tubes [25,26].
The solution above certainly belongs to this class of solutions.

Experimental data on hydroforming of clad tubes are presented in [26]. The outer
tube is made of aluminum alloy A1060-O and the inner tube from copper alloy C1020TS-O.
The initial outer radius of the clad tube is 20 mm, and the initial total thickness of the two
layers is 1.5 mm. The experiments have been carried out for several ratios of the outer
tube’s thickness to the inner tube’s thickness. The stress–strain curves of the copper and
aluminum alloys have been represented as

σeq = 518ε0.45
eq and σeq = 144ε0.25

eq , (35)

respectively. Here, the equivalent stress is expressed in MPa. The equations in Equation (35)
are not compatible with the restrictions imposed on the function Φ

(
εeq
)

before Equation (6).
Therefore, Equation (35) is replaced with Ludwik’s hardening law

σeq = 31.3 + 496ε0.507
eq and σeq = 32.2 + 115.7ε0.37

eq . (36)
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Here, the first equation corresponds to the copper alloy and the second to the alu-
minum alloy. The difference between the laws in Equations (35) and (36) is negligible, and
is revealed only at small strains (Figure 2). The solid curves correspond to Equation (35)
and the broken curves to Equation (36). Using Equation (36) and assuming that χ = 2/

√
3,

one can find the function involved in Equation (6) as

Φ(1)(εeq
)
= 1 + 15.85ε0.507

eq and Φ(2)(εeq
)
= 1 + 3.6ε0.37

eq . (37)
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Moreover, σ
(1)
0 = 31.3 MPa and σ

(2)
0 = 32.2 MPa. The volume fraction of the copper

alloy is determined as

λ =

(
R2

c − R2
a

R2
b − R2

a

)
× 100%. (38)

Since Ra and Rb are fixed in [10], λ is controlled by Rc. It is seen from the experimental
data depicted in Figure 10 in [10] that Pmax is practically a linear function of λ. This function
can be interpolated as

Pmax = 6 + 9.5
(

λ

100%

)
. (39)

Here, Pmax is expressed in MPa. One can substitute Equation (37) into Equation (32)
for calculating P as a function of a. A local maximum of this function is found numerically.
A comparison of the experimental data from [26] and the theoretical solution is shown
in Figure 3. The solid line represents Equation (39) and the broken line is the theoretical
solution found using Equation (32). It is seen from this figure that the theoretical solution
is quite accurate.

As another example, a tube made of Al–Li alloy (Material 1 in Figure 1) and 5A06
aluminum alloy (Material 2 in Figure 1) is considered. Paper [20] provides the mechanical
properties of these materials. In our nomenclature, σ

(1)
0 = 77.7 MPa and σ

(2)
0 = 155 MPa.

Moreover,
Φ(1) = 1 + 5.08ε0.28

eq and Φ(1) = 1 + 4.4ε0.3
eq . (40)

The initial configuration is determined by

Rc

Ra
= 1 +

t1

Ra
and

Rb
Ra

= 1 +
t1 + t2

Ra
. (41)



Metals 2021, 11, 793 8 of 10

Here, t1 is the initial thickness of the inner layer and t2 is the initial thickness of the
outer layer. In all calculations, t1 = 1.8 mm, Ra = 100 mm, and χ = 2/

√
3. Figure 4 depicts

the variation of the inner pressure with the inner radius of the tube for three values of t2.
The value of P increases with t2. All three curves attain a local maximum at a certain value
of a. The value of Pmax can be found numerically with no difficulty.
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6. Conclusions

The solution presented describes the plane-strain expansion of a two-layer tube for
tube hydroforming applications. The solution has been reduced to evaluating the integral in
Equation (25). If the maximum value of the pressure is required, then a numerical technique
is necessary. No restriction on the pressure-independent yield criterion and hardening
law has been applied. Therefore, the solution is advantageous for the preliminary design
of the tube hydroforming process. It is of special importance because many parameters
and functions classify the boundary value problem. The solution’s accuracy is verified by
comparing it to the experimental data provided in [26] (Figure 3). As another example,
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the effect of the thickness of the outer layer on the pressure applied over the inner radius
of the tube has been investigated using the data provided in [20] (Figure 4). It is seen
from this figure that its magnitude attains a local maximum at a certain stage of the
process. It is probably because of competition between the change of geometric parameters
and hardening. Simple solutions for P’s maximum value are essential for estimating the
required forming pressure in tube hydroforming of clad tubes [26].

The solution is exact. Therefore, it can be used for validating numerical solutions,
which is a necessary step before their use in applications [27].

The solution in Section 3 is valid for any value of a. Therefore, it can be used to analyze
and design hydroforging processes introduced in [29].

The solution in Section 4 is for two-layer tubes. The line of reasoning in this section
shows that extending this solution to multi-layer tubes requires adding equations similar
to Equation (31) for each interface, which is a relatively simple task.
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Nomenclature

a inner radius of the tube after any amount of deformation
b outer radius of the tube after any amount of deformation
c radius of the interface between the layers after any amount of deformation
k parameter introduced after Equation (30)
P pressure over the inner radius of the tube
Pmax maximum inner pressure in the course of the hydroforming process
R Lagrangian coordinate
Ra Lagrangian coordinate of the inner radius of the tube
Rb Lagrangian coordinate of the outer radius of the tube
Rc Lagrangian coordinate of the interface between the layers
(r, θ, z) cylindrical coordinate system
t Time
t1 initial thickness of the inner layer
t2 initial thickness of the outer layer
U radial velocity at the inner radius of the tube
u radial velocity
εeq equivalent strain
ξeq equivalent strain rate
ξr and ξθ radial and circumferential strain rates, respectively
σeq equivalent stress
σr, σθ and σz radial, circumferential, and axial stresses, respectively
σ0 initial yield stress in tension
φ arbitrary function of the equivalent strain introduced in Equation (6)
χ parameter introduced in Equation (1)
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