On parametric resonance in the pendulum with impulse excitation
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We consider for example a pendulum with variable length described by the following

ordinary differential equations obtained from the law of momentum alteration, see [2],
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where s is the specific sector velocity, 8 is a small damping coefficient, Tj is the period
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of small oscillations of the pendulum when its length is constant, {(¢) = ;. The relative

length of the pendulum can be discontinuous like in Example in [2]:
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where [y > 0 is the mean lenght of the pendulum, || < 1 is the relative amplitude
of excitation, and n = 0,1,2,3,.... So, the angular velocity ¢ changes abruptly at
t = nT/2. Such behavior of the system is also known as impulse motion.

In order to find domains of parametric resonance (instability of an equilibrium ¢ = 0,
s = 0) of the pendulum we write system (1) linearized about the equilibrium, for one
period of excitations in the form #(¢) = J(¢)x(¢), where vector z(t) corresponds to
(p(t),s(t)) and J(t) is the Jacobian matrix of the original system at the equilibrium
position (g, s)’ = (0,0)". Since J(t) is piecewise continuous and integrable we can apply
Folquet stability analysis, see e.g. [1]. Solution of matrix differential equation X(t) =
J(t) X(t), where initial value X(0) = I is the identity matrix, yields monodromy matriz
as F = X(T'). Due to (2) the linearized system has piecewise constant Jacobian matrix:

J(t)=J, ift €[0,T/2) and J(t) = J_if t € [T/2,T), where
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We have simple expression of the monodromy matrix via matrix exponents
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Flogquet multipliers p; and ps, eigenvalues of F, determine the stability of the solution

x = (0,0) of the linearized system, and can be obtained from characteristic polynomial:
p? — tr(F) p + det(F) = 0. (5)

Stability conditions (|p1| < 1 and |py| < 1) written in case of real roots as p € [—1, 1] and
in case of complex conjugate roots as pyps < 1, with the use of (5) and Vieta’s formula

p1p2 = det(F), take the form
[tr(F)| <1+ det(F) and det(F) <1, (6)

where for asymptotic stability all inequalities should be strict. For instability, it is
sufficient that at least one of the eigenvalues has absolute value grater than one (|p;| > 1
or |pa| > 1), so that at least one of the conditions in (6) is violated. Since the determinant
of a matrix product equals the product of the determinants, from (4) and (3) we have
det(F) = ez "0-)ez t0+) — ¢=AT where we take into account that det(exp(% J4)) =
ez *U+) The same expression, det(F) = ¢ #7, can be obtained by Liouville’s formula
for any piecewise continuous integrable T-periodic modulation function, see [1]. So with
positive damping coefficient, 5 > 0, stability can only be lost when the first condition in
(6) is violated, i.e. when

[tr(F)| > 14 e 7T, (7)

We calculate exact instability domains in parameter space (17'/Tp, ¢, ) via (7) using

(3)—(4) and compare them with approximations derived in [2].
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