On parametric resonance in the pendulum with impulse excitation Belyakov A. O.¹ Seyranian A. P.²

¹Moscow School of Economics, Lomonosov Moscow State University ²Institute of Mechanics, Lomonosov Moscow State University ¹belyakov@mse-msu.ru ²seyran@imec.msu.ru

We consider for example a pendulum with variable length described by the following ordinary differential equations obtained from the law of momentum alteration, see [2],

$$\dot{\varphi} = \frac{s}{(l(t)/l_0)^2}, \quad \dot{s} = -\beta s - (2\pi/T_0)^2 (l(t)/l_0) \sin(\varphi), \tag{1}$$

where s is the specific sector velocity, β is a small damping coefficient, T_0 is the period of small oscillations of the pendulum when its length is constant, $l(t) \equiv l_0$. The relative length of the pendulum can be discontinuous like in Example in [2]:

$$\frac{l(t)}{l_0} = \begin{cases} 1+\varepsilon, & t \in \left[nT, \frac{T}{2}+nT\right), \\ 1-\varepsilon, & t \in \left[\frac{T}{2}+nT, T+nT\right), \end{cases}$$
(2)

where $l_0 > 0$ is the mean lenght of the pendulum, $|\varepsilon| < 1$ is the relative amplitude of excitation, and $n = 0, 1, 2, 3, \ldots$ So, the angular velocity $\dot{\varphi}$ changes abruptly at t = nT/2. Such behavior of the system is also known as *impulse motion*.

In order to find domains of parametric resonance (instability of an equilibrium $\varphi = 0$, s = 0) of the pendulum we write system (1) linearized about the equilibrium, for one period of excitations in the form $\dot{x}(t) = \mathbf{J}(t) x(t)$, where vector x(t) corresponds to $(\varphi(t), s(t))'$ and $\mathbf{J}(t)$ is the Jacobian matrix of the original system at the equilibrium position $(\varphi, s)' = (0, 0)'$. Since $\mathbf{J}(t)$ is piecewise continuous and integrable we can apply Folquet stability analysis, see e.g. [1]. Solution of matrix differential equation $\dot{\mathbf{X}}(t) =$ $\mathbf{J}(t) \mathbf{X}(t)$, where initial value $\mathbf{X}(0) = \mathbf{I}$ is the identity matrix, yields monodromy matrix as $\mathbf{F} = \mathbf{X}(T)$. Due to (2) the linearized system has piecewise constant Jacobian matrix: $\mathbf{J}(t) = \mathbf{J}_+$ if $t \in [0, T/2)$ and $\mathbf{J}(t) = \mathbf{J}_-$ if $t \in [T/2, T)$, where

$$\mathbf{J}_{+} = \begin{pmatrix} 0 & (1+\varepsilon)^{-2} \\ -(1+\varepsilon)(2\pi/T_0)^2 & -\beta \end{pmatrix}, \quad \mathbf{J}_{-} = \begin{pmatrix} 0 & (1-\varepsilon)^{-2} \\ -(1-\varepsilon)(2\pi/T_0)^2 & -\beta \end{pmatrix}.$$
(3)

We have simple expression of the monodromy matrix via matrix exponents

$$\mathbf{F} = \exp\left(\frac{T}{2}\,\mathbf{J}_{-}\right) \cdot \exp\left(\frac{T}{2}\,\mathbf{J}_{+}\right). \tag{4}$$

Floquet multipliers ρ_1 and ρ_2 , eigenvalues of **F**, determine the stability of the solution x = (0, 0)' of the linearized system, and can be obtained from characteristic polynomial:

$$\rho^2 - \operatorname{tr}(\mathbf{F})\,\rho + \det(\mathbf{F}) = 0. \tag{5}$$

Stability conditions $(|\rho_1| \leq 1 \text{ and } |\rho_2| \leq 1)$ written in case of real roots as $\rho \in [-1, 1]$ and in case of complex conjugate roots as $\rho_1 \rho_2 \leq 1$, with the use of (5) and Vieta's formula $\rho_1 \rho_2 = \det(\mathbf{F})$, take the form

$$|\operatorname{tr}(\mathbf{F})| \le 1 + \operatorname{det}(\mathbf{F}) \quad \text{and} \quad \operatorname{det}(\mathbf{F}) \le 1,$$
(6)

where for asymptotic stability all inequalities should be strict. For instability, it is sufficient that at least one of the eigenvalues has absolute value grater than one $(|\rho_1| > 1$ or $|\rho_2| > 1$), so that at least one of the conditions in (6) is violated. Since the determinant of a matrix product equals the product of the determinants, from (4) and (3) we have $\det(\mathbf{F}) = e^{\frac{T}{2}\operatorname{tr}(\mathbf{J}_{-})}e^{\frac{T}{2}\operatorname{tr}(\mathbf{J}_{+})} = e^{-\beta T}$, where we take into account that $\det(\exp(\frac{T}{2}\mathbf{J}_{\pm})) =$ $e^{\frac{T}{2}\operatorname{tr}(\mathbf{J}_{\pm})}$. The same expression, $\det(\mathbf{F}) = e^{-\beta T}$, can be obtained by Liouville's formula for any piecewise continuous integrable *T*-periodic modulation function, see [1]. So with positive damping coefficient, $\beta > 0$, stability can only be lost when the first condition in (6) is violated, i.e. when

$$|\operatorname{tr}(\mathbf{F})| > 1 + e^{-\beta T}.$$
(7)

We calculate exact instability domains in parameter space $(T/T_0, \varepsilon, \beta)$ via (7) using (3)–(4) and compare them with approximations derived in [2].

References

- V. A. Yakubovich and V. M. Starzhinskii, Parametric Resonance in Linear Systems. Nauka, Moscow, 1987.
- [2] A.P. Seyranian, The swing: parametric resonance, Journal of Applied Mathematics and Mechanics 68 (2004) 757–764.