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A B S T R A C T

Till now, calculation of the electrostatic potential distribution and other electric properties of a nonlocal polar
medium occupying a restricted spatial region has been carried out within the framework of two different ap-
proaches. One of them (which may be called “unrestricted medium approximation”, UMA) disregards the ex-
istence of “external region” (where dielectric properties are different from those of the medium), i.e. it assumes
that the medium occupies the whole space so that its nonlocal dielectric properties are everywhere identical to
those of the bulk medium while the charges (sources of the electric field) are considered as immersed inside the
medium, without creating cavities or modifying its dielectric properties. Another approach (usually called
“dielectric approximation”, DA) takes into account the difference of dielectric properties between the region
occupied by the medium, V, and an “external” region; as for the nonlocal dielectric function inside region V it is
assumed to be identical to that of the bulk medium, even for its spatial points near the boundary of the region.
The actual study has proposed a novel general procedure (called IDA) for solving the same problem. Similar to
the DA one, it also takes into account the difference of dielectric properties in region V and external region(s).
However, a different background relation (“uniformity ansatz”) is assumed for dielectric properties of the
spatially restricted polar medium: its correlation function of polarization fluctuations has the same form
(identical to that for the unrestricted medium) in all points inside spatial region V, even in the vicinity of its
boundary. The same property is automatically fulfilled for the inverse dielectric function of the medium inside
region V. For several important geometries of the system (e.g. half-space, spherical or cylindrical cavity, etc.)
thus defined “the inverse dielectric approach” (IDA) results in simple analytical expressions for the potential and
electric field distributions for any nonlocal dielectric function of the bulk polar medium as well as for any
distribution of “external charges” (satisfying to the corresponding symmetry conditions). As the first application,
the IDA approach has been used for analysis of the electric field and potential distributions for the spherically
symmetrical system where a cavity (imitating a “solute ion”) is surrounded by a nonlocal dielectric medium
(“polar solvent”). Analytical expressions for these characteristics as well as for the electrostatic contribution to
the solvation energy have been derived for any spherically symmetrical distribution of the ionic charge (which
may be located in the general case both inside the cavity and outside this region) and for any dielectric responses
both inside the cavity and of the polar medium outside the cavity. These results are in perfect agreement with the
general principles that both the potential distribution outside the cavity and the ion solvation energy are de-
termined only by the total ionic charge inside the cavity while they are independent of the particular charge
distribution in this region. Effects due to the ionic charge penetration into the polar medium are also analyzed.
Results for the potential distribution and solvation energy are compared for the novel IDA approach with those
for the UMA and for the DA procedures. Conclusion on substantial advantages of the IDA method has been made.
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1. Introduction

Electric interactions between charged and dipole components of the
system play an important role in many physicochemical and electro-
chemical phenomena because of their high intensity. These forces are
frequently modified essentially owing to the presence of a polar
medium (e.g. solvent). Within the framework of a detailed (“micro-
scopic”) description of such systems this medium has to be considered
on the same level as dissolved species, e.g. with the use of molecular
dynamic methods applied to all these components. Difficulties on the
way to achieve an adequate description of a polar liquid, especially in
the case of such highly complicated object as water (even in the absence
of solute species) originate both from the long-range character of
electric interactions and the lack of a reliable information on interac-
tions between molecules of the liquid since in the condensed state one
cannot reduce these interactions to purely binary forces, i.e. one has to
take into account their many-body components. These features result in
enormous complication for the use of statistical-mechanical theories for
description of electric phenomena in pure polar liquids, speaking
nothing for ionic solutions in such media.

These mathematical difficulties resulted in intermediate-level phe-
nomenological approaches where electric properties of solute species
are modified due to the presence of the polar medium owing to its di-
electric properties. In particular, in the case of ions the solvent polar-
ization affects strongly such ionic characteristics as solvation energies
of individual ions, binary interactions between ions and collective
properties of ionic ensembles. If the relaxation time of the polar
medium is shorter than the characteristic time of displacements of ions
one may consider the problem as an electrostatic one where both
sources of electric fields (ions) and the solvent response to these fields
may be considered as time-independent.

The simplest and widely used variant of this description is based on
consideration of the solvent as a local and uniform dielectric medium
which occupies the whole space outside the solute species and which is
characterized by its (static) dielectric constant, εs. It means that the
electric field, E(r), in a spatial point, r, is proportional to its displace-
ment, D(r), in the same point:

=D r E r( ) ( )s (1)

Such description is quite justified for fields which change weakly at
the molecular scale. However, this condition is often violated in ionic
solutions, e.g. for fields around a small-size ion [1–3], extended mole-
cular objects [4] or in the vicinity of a charged surface of the solvent
(including electrochemical interfaces, metal/electrolyte solution
[5–14]. This problem originates from a complicated nature of the di-
electric response of the medium where its local polarization, P(r), is
determined by both the electronic polarizability of solvent molecules
and field-driven rotation of their dipole molecules while in structured
liquids (first of all in water) orientations of neighboring molecules are
strongly correlated due to short-range interactions, e.g. hydrogen or/
and donor–acceptor bonds. It is the reason why the medium polariza-
tion, P, in a point, r1, is determined by the electric field, E, not only in
the same point, r1, but also in its surrounding, which means that the
relation between the spatial distributions of P and E is nonlocal:

=r r r r rP E( ) ( , ) ( )d1 1 2 2 2 (2)

where χαβ(r1,r2) is nonlocal tensor (dielectric) susceptibility of the
medium which is nonzero only if the distance between its arguments, r1
and r2, does not exceed its (maximal) correlation length, Λ [1–3,18].
Summation over repeating indices, e.g. over β in Eq. (2), from 1 to 3 is
assumed in Eq. (2) and other relations below. Use of the identity, D
(r) = E(r) + 4π P(r), leads to a nonlocal expression for the displace-
ment via the electric field distribution:

=r r r r rD E d( ) ( , ) ( )1 1 2 2 2 (3)

where nonlocal (tensor) dielectric function of the medium, εαβ(r1,r2), is
given by Eq. (4):

= +r r r r r r( , ) ( ) 4 ( , )1 2 1 2 1 2 (4)

Eq. (3) is supplemented by conventional electrostatic equations:

= =D r E r rrdiv ( ) 4 ( ), ( ) grad ( ) (5)

where ρ(r) is density of external (with respect to the medium) charges,
φ(r) is electric potential.

All these distributions are unambiguously determined if both the
charge density distribution, ρ(r), and the dielectric function of the
system, εαβ(r1,r2), are given within the whole space.

If an uniform and isotropic dielectric medium occupies the whole
space while the external charges are distributed inside the medium
without disturbing its properties, in particular without forming inter-
facial boundaries, then the solution for the electric potential and other
electric variables can be written down in an analytical form for any
dielectric function of the medium [1–3,15–21]. Such calculation of the
potential becomes a much more mathematically complicated problem if
the nonlocal polar medium only occupies a certain restricted spatial
region, V, while the dielectric properties outside V, i.e. inside the ex-
ternal region, Vext, are essentially different from those inside V.

Two quite different approximate procedures have been proposed so
far for determination of electric characteristics of such heterogeneous
systems.

The first approach [1–3,15–21] (which may be called “unrestricted
medium approximation”, UMA) disregards the existence of this “ex-
ternal” spatial region, Vext, by assuming that the whole space (V+ Vext)
is occupied by the same polar medium while the electric field is induced
by “external charges” which are distributed inside the medium, without
affecting its nonlocal dielectric properties.

The second approach [18,22–34] (which originates from the elec-
trodynamics of plasma where it was called “dielectric approximation”,
DA) takes into account the essential difference of the dielectric prop-
erties inside these spatial region, V and Vext. Namely, the external re-
gion is described by the local electrostatic relation, Eq. (1) with its own
dielectric constant. It implies automatically the absence of correlations
between polarization fluctuations in regions V and Vext which means
that the nonlocal dielectric function, εαβ(r1,r2) in Eq. (3), is zero if
spatial points, r1 and r2, belong to different regions. As a result, integral
relation (3) between D(r) and E(r) only takes place inside the region, V,
occupied by the nonlocal medium, i.e. both r1 and r2 belong to region V
while the nonlocal dielectric function, εαβ(r1,r2), in this relation char-
acterizes dielectric properties of the polar medium inside this restricted
region, i.e. it is generally different from those of this medium in the
unrestricted space.

Principal basis of the DA approach is the assumption that the di-
electric function of the medium occupied region V, εαβ(r1,r2), is equal to
its bulk medium form for all points, r1 and r2, inside region V, even in
the vicinity of its boundary with the external region, Vext, see Eq.
(12DA) below. Then, the electric potential distribution may be ex-
pressed via the inverse dielectric function of the medium in region V, ε-

1
αβ(r1,r2). However, the latter can only be found via complicated so-

lution of an integral equation, see below.
Our actual study is aimed to propose the third approach (which may

be called “inverse dielectric approximation”, IDA) based on a different
phenomenological assumption, namely that the inverse dielectric
function of the medium in region V, ε-1

αβ(r1,r2), is equal to its form for
this medium in the unrestricted space, see Eq. (12) and discussion
below for more detail. As a result, the potential distribution for systems
of several important types can be expressed immediately via the di-
electric function of the bulk medium, with no need of solving integral or
differential-integral equations. Therefore, the IDA procedure allows one
to carry out easily such calculations for any form of the bulk-medium
dielectric function, contrary to the case of the DA procedure.

One should emphasize that the DA and IDA approaches are based on
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different assumptions. Thus, their solutions for the same system are
different. At the same time we demonstrate below they may be close to
one another numerically. These features of the novel IDA procedure
represent its obvious important merit, compared to the UMA and DA
ones.

All the results based on the nonlocal dielectric function of the
medium around ion require the validity of the theory of the linear re-
sponse to the field of the ion. One should expect that this restriction
excludes its application for description of ion solvation of small-size
multi-charge ions. As for the single-charge ions, the available conclu-
sions on this point (see e.g. [35]) are based on molecular-level modeling
of the ion–solvent system, which is sensitive to the particular choice of
system's parameters.

Alternative method for calculation of the solvation energies with
taking into account the existence of the solvent-free cavity has been
proposed in recent publications [36,37]. Contributions due to the
electrostatic energy described by the Born theory and the dispersion
interactions related to dynamic polarizabilities have been combined in
order to calculate the energies of the ion solvation as well as of the
ion–solvent boundary and ion-ion interactions. In particular, theoretical
predictions for ion solvation energies turned out to be in agreement
with experimental data. The dielectric response of the medium around
the ion was described with the use of the local model. Since the direct
molecular-model calculations for water demonstrate pronounced non-
local effects in its dielectric response it will be of interest to combine the
model of Refs [36,37] with this factor in the future.

It has been shown in Ref. [38] that nonlinear response effects may
be integrated into the continuum model of the ion hydration, but these
effects for monovalent ions being less than 2% of their hydration en-
ergies. This result justifies the use of nonlocal-electrostatics theory to
calculate the solvation energy of such single-charge ions.

One should keep in mind that the nonlocal dielectric-response
theory only deals with the electrostatic contribution to the ion solvation
energy while there are also other contributions, e.g. due to the energy
of the cavity creation inside the solvent [3] as well as due to a pre-
ferential orientation of the first coordination sphere solvent molecules
around ions resulting in the charge hydration asymmetry [39,40].

Nonlocal electrostatics approach requires significantly less compu-
tation time, compared to methods of molecular dynamics, so it is useful
for primary estimations of e.g. electrostatic potentials for proteins in
water [28–30,41]. In particular, it was shown that the use of the non-
local electrostatics for calculation of the solvation energy for an ion
located inside a water-filled ion channel allowed one to explain ob-
servations of the ion penetration into such channels [31,33].

The principal goal of this paper is to propose a novel approximate
(IDA) approach towards calculation of electric fields in systems con-
taining a spatially restricted nonlocal polar medium (which is assumed
to be uniform inside its region, V). This procedure may be applied for
any functional form of the nonlocal dielectric function of the bulk
medium, ε(k), as well as for various distributions of the ionic charge,
ρ(r) (including its penetration into the adjacent layer of the polar
medium in contact with the “external region”). In particular, such
calculations may be performed in a numerical form.

Application of the IDA approach for determination of the potential
and electric field distributions is illustrated below for the spherically
symmetrical system where an ion occupying a cavity is surrounded by a
nonlocal polar medium. It is demonstrated that simple analytical ex-
pressions for them as well as for the ion solvation energy can be derived
via ε(k) and ρ(r) for any functional form of these characteristics.

Comparison of these results with those provided by two alternative
approaches (UMA and DA) is given on the basis of the analytical and
graphical analyses with the use of two simple model approximations for
the dielectric function of the bulk polar medium (single- and three-
mode functions). Since in real systems the ionic charge is generally
distributed both inside the ion cavity and (partially) outside of it while
the induced potential represents a superposition of contributions of all

these charges, we have considered in detail the generalization of the
Born model (uniform charge distribution over a sphere) for three po-
sitions of these sphere: inside or outside the cavity or at its surface, in
order to compare predictions of all approaches (UMA, DA and IDA) for
the induced potential as well as for the solvation energy. As it is shown
there this comparison has demonstrated advantageous features of the
newly IDA procedure compared to both competitive approaches. These
results open the prospect of its application for calculations electric
properties of real systems with the use of more substantiated expres-
sions for ε(k) and ρ(r).

2. General relations

Relation (3) may be considered as an integral equation for the
electric field distribution, E(r). Its solution is given by the formula:

=r r r r rE D( ) ( , ) ( )d1
1

1 2 2 2 (6)

where the tensor inverse dielectric function, ε-1
αβ(r1,r2), satisfies to

the relation:

=r r r r r r r( , ) ( , )d ( )1
1 2 2 3 2 1 3 (7)

Since P(r) = [D(r) − E(r)]/4π Eq. (6) provides an expression for the
polarization via the displacement distribution:

=r r r r rP D( ) ( , ) ( )dD
1

( )
1 2 2 2 (8)

where

=r r r r r r( , ) (4 ) [ ( , ) ( , )]D( )
1 2

1
1 2

1
1 2 (9)

3. Novel approximate (IDA) procedure for calculation of potential
distribution

Under certain conditions established in Ref. [42] (see also Appendix
2 in book [18]) the displacement distribution, D(r), is identical to that
of the field, G(r), induced by the same system of external charges, ρ(r),
in vacuum: D(r) ≡ G(r), in particular:

1. If the medium represents a uniform local dielectric phase the
surfaces of all non-conducting cavities must be equipotential surfaces of
the vacuum field, G;

2. If the system consists of one or several non-uniform local di-
electric phases, i = 1,2…n (each of them occupies its own spatial re-
gion, Vi) and ε(r) changes stepwise at each border of two neighboring
phases, then the condition in point 1 is to be satisfied (surfaces of all
non-conducting boundaries are to be equipotential surface of the va-
cuum field, G) and G(r) ‖ grad ε(r) inside each region, V;.

3. If the system includes a nonlocal dielectric phase, then both
εαβ(r,r׳) and the interfaces must possess the same symmetry as the va-
cuum field, G, i.e. the external charge distribution, ρ(r).

In particular, the latter variant takes place in the systems: 1) uni-
form and isotropic nonlocal medium occupying the whole space; 2)
plane interface, z= 0, separating two media possessing either local
response(s), Eq. (1), or nonlocal dielectric function(s) which are uni-
form and isotropic along the interface; 3) spherically symmetrical
boundary (or several spherically symmetrical boundaries having the
same center), r= a, separating two media possessing either local re-
sponse(s), Eq. (1), or nonlocal dielectric function(s) possessing the same
spherical symmetry, where the external charge density is also spheri-
cally symmetrical, i.e. it only depends on r; 4) analogous system pos-
sessing a cylindrical symmetry.

For the systems described in points 2, 3 and 4 it is usually assumed
that there is no correlation between the polarization fluctuations in any
pair of spatial points belonging to different spatial regions. It means
that for such values of the coordinates, r1 and r2, the dielectric function
in Eq. (3) is equal to zero, and the same property is valid for Eqs. (2), (6)
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and (8).
Ultimate solution for the electric field distribution inside the region,

V, occupied by the medium possessing the inverse dielectric function, ε-

1
αβ(r1,r2), is given by Eq. (10):

=r r r r rE G( ) ( , ) ( )d1 V
1

1 2 2 2 (10)

where the vacuum field, G(r), for such systems can be written down in
the analytical form as integral of the external charge one, ρ(r), and it
does not depend on either the parameters of the interface or the di-
electric properties of the media in contact. Then, the electric potential,
φ(r), is related to the field via Eq. (5), i.e. it can be found by its in-
tegration.

Analogous Eq. (8) may be used to derive an expression for the po-
larization distribution inside the same spatial region, V:

=r r r r rP G( ) ( , ) ( )dD
1 V

( )
1 2 2 2 (11)

One may note that for any functional form of the G(r) distribution
(for the system satisfying to the symmetry conditions) there exists a
corresponding distribution of the external charge: ρ(r) = - (4π)-1 ΔG(r).
Therefore, Eq. (11) may be considered as the linear response of the
dielectric medium to the arbitrary external field. Then, the fluctua-
tion–dissipation theorem expresses the kernel in Eq. (11), χ(D)

αβ (r1,r2).
via the correlator of polarization fluctuations in the absence of external
fields, < Pα(r1,t1) Pβ(r2,t2) > , which reflects the spatial–temporal
structure of the polar medium [18,43].

If the structure of the bulk medium and its fluctuation properties
remain unmodified up to its boundary, then its susceptibility,
χ(D)

αβ (r1,r2), which is uniform and isotropic far from the boundary retains
its form inside the whole spatial region, V, occupied by the medium, i.e.
it only depends of the distance between the spatial arguments of this
function: χ(D)

αβ (|r1 - r2|). According to Eq. (9) the inverse dielectric
function, ε-1

αβ(r1,r2), possesses the same property inside region V while
this function for the bulk medium, i.e. for the medium occupying the
whole space, δαβ ε-1(|r1 - r2|), is directly related to the Fourier transform
of its dielectric function, ε(k) [2,18]. As a result, the inverse dielectric
function, ε-1

αβ(r1,r2), in Eq. (10) is expressed immediately via the bulk-
medium dielectric function, i.e. for all points, r1 and r2, inside region V:

=
= =
=

r r r r r r
k r r k

r r r r
k i

k k k k

( , ) [ ( , )] (| |)
(2 ) [ ( )] exp [ ( )]d
(2 | |) [ ( )] sin ( | |)d

1
1 2

1
1 2 IDA

1
1 2

3 1
1 2

2
1 2

1
0

1
1 2 (12)

Thus, the distribution of the electric field in the presence of a di-
electric medium, E(r), may be found with the use of Eqs. (10) and (12)
on the basis of known properties of the system: its geometry (in parti-
cular, spatial region, V, occupied by the polar medium); dielectric
function of the unrestricted medium in the k-space, ε(k); electric field
induced by external charges in vacuum, G(r).

This calculation procedure is applicable to systems composed of two
or more spatial regions possessing different dielectric properties. Any of
these regions, or all regions, may possess nonlocal dielectric properties.
Calculations of the field inside regions where the medium may be de-
scribed by the local relation, Eq. (1), are routine. Distributions of the
electric potential in neighboring regions should be matched to ensure
the continuity condition. Potential value at the infinite distance is
usually taken as zero.

One should keep in mind that the so-called “dielectric approxima-
tion” (DA) [18,22–34] is based on a similar approximation for the
nonlocal dielectric function of the same spatially restricted medium,
εαβ(r1,r2), in Eq. (3), i.e. for all points, r1 and r2, inside region V:

=
= =
=

r r r r r r
k r r k

r r r r
k i

k k k k

( , ) [ ( , )] (| |)
(2 ) ( ) exp [ ( )]d
(2 | |) ( ) sin [ | |]d

1 2 1 2 DA 1 2
3

1 2
2

1 2
1

0 1 2 (12DA)

The DA and IDA approaches are not equivalent mathematically.
Namely, if the dielectric function of the restricted polar medium,
εαβ(r1,r2), within the DA approach is given by Eq. (12DA), i.e. it only
depends on the difference of its arguments, r1 - r2, then the corre-
sponding inverse dielectric function of the medium, ε-1

αβ(r1,r2), does
depend on both spatial arguments, r1 and r2, separately. On the con-
trary, within the framework of the novel IDA procedure, i.e. on the
basis of Eq. (12) for the inverse dielectric function of the medium, ε-

1
αβ(r1,r2), dependent on r1 - r2, its dielectric function within region V,

εαβ(r1,r2), must be determined from integral Eq. (7) and it depends on
both spatial arguments, r1 and r2, separately. In other words, the di-
electric function, [εαβ(r1,r2)]DA, and the inverse dielectric function, [ε-

1
αβ(r1,r2)]IDA, of the same restricted polar medium defined by Eq.

(12DA) and Eq. (12), respectively, do not satisfy relation (7) since the
integration in Eq. (7) is carried out over a spatially restricted region, V.
Because of this non-equivalence of the DA and IDA procedures the re-
sults for any electric characteristic provided by them for the same
system must be different. This point is specially discussed in section
“Effect of various ionic charge localization” below.

In practical terms, for the above listed systems where the dis-
placement, D(r), is identical to the field in vacuum, G(r), in the whole
space, the solution within the framework of the IDA procedure is re-
duced to single integration over the corresponding variable. Therefore,
this calculation can easily be performed numerically for any functional
form of the nonlocal dielectric function, i.e. for any ε(k). This peculiar
feature of the IDA approach provides it with enormous advantages,
compared to the widely used alternative DA method [18,22–34] since
the latter leads to necessity of solving integral equation (7) for de-
termination of the inverse dielectric function, ε-1

αβ(r1,r2), inside a spa-
tially restricted region, V, with the use of the dielectric function,
εαβ(r1,r2), defined by Eq. (12DA), while its expression (12) is in-
applicable within the framework of the DA approach.

The proposed IDA approach also possesses obvious advantages with
respect to the UMA theory which assumes that the polar medium oc-
cupies the whole space while the “external charges”, ρ(r), are dis-
tributed inside the medium without forming cavities [1–3,15–21].
Within the framework of the IDA procedure based on Eqs. (10) and (12)
the presence of the polar medium only within a spatially restricted
region, V, is taken into account automatically, owing to integration in
Eq. (10) over the V region only. Thus, one can take into account the
presence of the medium inside a semi-space (if it forms a plane
boundary with another phase, e.g. with metal or local dielectric), or the
existence of a cavity (or cavities) inside the V region, e.g. a spherical
(occupied by ion) or cylindrical (occupied by a solute molecule) one,
etc.

One should pay attention to an importance consequence of this
difference between the models. Within the framework of both the DA
and novel IDA approaches, the electric field distribution, E(r), inside
the region, V, occupied by the medium, depends of the form of the G(r)
function only inside this region whereas for the UMA model of “the
spatially unrestricted polar medium” [1–3,15–21] the field, E(r), in all
spatial points, r, depends on the form of G(r) within the whole space.
Therefore, within the DA and IDA approaches the same property is also
valid for the work of the test charge transfer between any points located
with the V region if it is calculated with the use of the Guntelberg
charging procedure, i.e. this work does not depend on the particular
distribution of the external charge density outside the V region if it does
not affect the form of the G(r) field inside the V region. This distinction
between the models results in an essential difference in their predic-
tions, see below.

4. Charged spherical cavity inside nonlocal dielectric medium.
Electric field and potential distributions

Applicability of the newly proposed procedure is illustrated for the
model of the system: ion inside polar solvent where a spherical cavity
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of a radius, ri, is surrounded by a nonlocal uniform and isotropic di-
electric medium occupying the V region, r > ri, its dielectric properties
satisfying to conditions of Eq. (12). The charge density distribution of
the ion, ρ (which is “external” for the medium), depends on the radial
coordinate, r, but not on the angular ones: ρ(r).

Then, in view of the spherical symmetry of the system all vector
variables, G, D and E, in any spatial point, r, are oriented along the
radius-vector, r, their absolute values (G, d and E) and the scalar vari-
ables (in particular, electric potential, φ) are functions of r.

According to Eq. (5) the identical G and D distributions are given by
the expression:

= = =D r G r q r r q r r r dr( ) ( ) ( )/ , ( ) 4 ( ) ( )
r2

0
2

(13a)

where q(r) is the ionic charge which is located inside the sphere of the
radius, r. Outside the region where this charge density, ρ(r), is nonzero
the charge, q(r), tends to the total charge of the ion, e. This expression
for G(r) may be inserted into Eq. (10) for the distribution of the electric
field, E(r), inside the polar medium (for r > ri) where the integration is
carried out outside the cavity.

This result for the electric field may be further simplified depending
on the form of the ionic charge density distribution, ρ(r).

Its simplest form is given by the Born model [1–3,18–19,44] where
the total ionic charge, e, is uniformly distributed over the surface of the
cavity:

= = = >r e r r r q r G r e r r r( ) ( /4 ) ( ), so that ( ) e, ( ) / fori
2

i
2

i

(13b)

i.e. within the whole region occupied by the polar medium while q
(r) and G(r) are equal to 0 at r < ri.

More recently [19–21] “Smeared Born model” has been proposed
where the ionic charge is distributed along the radius, r. One may
distinguish two different cases.

First, the whole charge is located inside the cavity or at its surface
[20,21] (in this context the Born model represents a particular example
of such a distribution):

= >r r r( )  0 for all values of the radius outside the cavity, i (13c)

Then, expressions (13b) for q(r) and G(r) are valid again for the
whole region occupied by the polar medium. On the contrary. their
form inside the cavity depends on the particular distribution of the ionic
charge density, ρ(r), inside the cavity, in conformity with Eq. (13a).

In a more complicated situation the ionic charge density, ρ(r), can
penetrate into the region occupied by the solvent, r > ri, so that a
spherical layer is formed around the cavity where ρ(r) is still nonzero
while the dielectric properties are already determined by the nonlocal
medium [19–21].

Then, inside the whole region, r > ri, occupied by the medium Eq.
(13a) gives expressions for the q(r) and G(r) distributions:

= + = + >q r q q r G r q q r r r r( ) ( ), ( ) [ ( )]/ forcav ext cav ext
2

i (13d)

where qcav is the total ionic charge inside the cavity (including its
external boundary) while qext(r) is only related to ionic charge density
outside the cavity:

= = >q r r dr q r r r dr r r4 ( ) , ( ) 4 ( ) ( ) for
r

r

r
cav 0

2
ext

2
i

i

i

(14)

Total charge if the ion, e, is generally composed of these two con-
tributions: e= qcav + qext(∞).

In the particular case where the ionic charge density vanishes out-
side the cavity, r > ri, qext(r) is equal to zero, qcav = e, Eq. (13d) is
reduced to Eq. (13b).

Amplitude of the electric field, E(r), inside the spatial region occu-
pied by the nonlocal dielectric medium, r > ri, is given by Eq. (10)
(where the integration is performed over the external region, r > ri)

after insertion of expression (13b) or (13d) for the vacuum field, G(r),
for any form of the inverse dielectric function of the medium, ε-1

αβ(r1,r2).
Then, the distribution of the electric potential, φ(r), in the outer region,
r > ri, may be found immediately by single integration of the electric
field profile.

In conformity with the general result for spherically symmetrical
systems without correlations of fluctuations between the cavity and the
external region [23,26,27,34] both functions, E(r) and φ(r), at r > ri do
not depend on the particular form of the ionic charge density dis-
tribution inside the cavity (including its boundary with the solvent), i.e.
only the total charge in this region, qcav, Eq. (14), affects E(r) and φ(r)
at r > ri according to Eq. (13d).

This important general property is not fulfilled for the UMA model
where the nonlocal dielectric medium occupies the whole space in-
cluding the region where the ionic charge is distributed [1–3,15–21].
As a result the E(r) and φ(r) distributions at r > ri are modified de-
pending on the form of ρ(r) in the internal region, r≤ ri.

As for the E(r) distribution inside the cavity, r < ri, within the
framework of the newly proposed procedure it is only dependent on the
ionic charge density, ρ(r), at r < ri and the dielectric properties inside
the cavity while it is independent of the dielectric properties of the
polar medium located outside the cavity. It means that both E(r) and its
potential (with respect to the potential of the boundary), φ(r) − φ(ri),
remain unchanged if the medium is replaced e.g. by vacuum (assuming
that the ionic charge density, ρ(r), is not modified).

Owing to the spherical symmetry of the system Eq. (10) can be
simplified with the use of transformations proposed in Ref [23]. In view
of the uniform and isotropic properties of the inverse dielectric function
of the medium outside the cavity it can be represented in the form of an
expansion over products of spherical harmonics:

=
= =

r r r r r r Y Y(| |) ( ) ( , ) ( ) ( )
l m

l

l lm r lm r
1

1 2 1 2
1

0 1

1
1 2 1 2

(15)

where the expansion coefficients may be found via integration of the
dielectric function, ε-1(|r1 - r2|):

=
= r r

r r
r r Y Y

( , )
( ) ( ) (| |)d d

l

l r l r

1
1 2

1 2 0 0
1

1 2 r r1 2 1 2 (16)

Since Eα(r) = E(r) rα/r and Gβ(r) =G(r) rβ/r, substitution of ex-
pansion (15) into Eq. (10) results in expression (17) for the electric field
and its potential inside the polar medium, i.e. outside the cavity:

=

= >
=E r r r r G r r r

r E r r r r

( ) ( , ) ( ) d ,

( ) ( )d for
r l

r i

1 1
1

1
1

1 2 2 2 2

1 1 · (17)

Thus, for calculation of the electric field and then of its potential
outside the cavity it is sufficient to find the component of expansion
(15) for l= 1 with the use of Eq. (16) for the inverse dielectric function
of the medium, ε-1(|r1 − r2|).

If the dielectric function of the medium is known in the form of its
Fourier transform, ε(k), one can use it first for determination of the
inverse dielectric function via Eq. (12), to insert it then into Eq. (16),
with the further use of Eq. (17). However, it is possible to derive much
simpler expressions for both expansion coefficients (15) and the electric
field via the dielectric function, ε(k). For its derivation one should apply
Eq. (34.3) of monograph [45]:

=

=
= =

+

kri i j kr Y Y

j x x J x

exp ( ) 4 ( ) * ( ) ( ),

( ) /2 ( )
l m l

l
l

l lm k lm r

l l

0

1/2 (18)

After substitution of this expression for exp(ikr1) and exp
(−ikr1) = [exp(ikr2)]* into Eq. (12) and integration over Ωk, with
taking into account the orthogonality property of spherical functions:
∫ Ylm*(Ωk) Yl'm'(Ωk) dΩk = δll' δmm', one arrives at an expression for the
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inverse dielectric function, ε-1(|r1 − r2|), over spherical functions ex-
pressed via ε(k):

=

= =

r r k k

j kr Y j kr Y dk

(| |) (2/ ) [ ( )] {

( ) * ( ) ( ) ( )}
l m l

l

l lm r l lm r

1
1 2 0

1 2

0
1 21 2

(19)

Comparison of Eqs. (19) and (15) gives an expression for expansion
coefficients (15) for any integer value of l:

=

= + +

r r r r k j kr j kr k k

r r k J kr J kr k

( , ) (2/ ) [ ( )] ( ) ( ) d

( ) [ ( )] ( ) ( )d

l l l

l l

1
1 2 1 2 0

1
1 2

2

1 2
1/2

0
1

1/2 1 1/2 2 (20)

All spherical Bessel functions, jl(x), in this formula can be written
down via elementary functions, in particular j1(x) = x−1

(cos x− x−1 sin x) for l= 1 so that

=
=

= r r
k kr kr kr kr k

( , )
(2/ ) [ ( )] [cos( )][cos( ) sin( )/ ]d

l 1
1

1 2

0
1

1 2 2 2 (21)

Expression under the integral sign in Eqs. (20) and (21) does not
have singularities at k= 0 and it is an even function of k. Therefore, it is
equal to a half of the integral over the whole real axis, e.g.:

=

= + +

r r r r k j kr j kr k k

r r k J kr J kr k

( , ) (1/ ) [ ( )] ( ) ( ) d

(1/2)( ) [ ( )] ( ) ( )d

l l

l l

1
1 2 1 2 0

1
1 2

2

1 2
1/2 1

1/2 1 1/2 2 (22)

Such a presentation enables one to calculate this integral analyti-
cally if ε(k) is a rational function, i.e. a ratio of two polynomials, see
examples below.

The further analysis is different depending on whether the ionic
charge density, ρ(r), is localized only inside the cavity, Eq. (13c), or it is
extended outside the cavity, Eq. (14).

If ρ(r) is nonzero only inside the cavity including its boundary (Born
model is a particular case), r≤ ri, Eq (13c), then the vacuum field, G(r),
inside the external region is given by Eq. (13b).

Combining Eqs. (17) and (21) with the relation:

=j kr dr k r k r( ) ( ) sin( )
r 1

2
i

1
i

i

one can derive expressions for the electric field and potential dis-
tributions inside the polar medium [46]:

= >E r e r k kr j kr k r r( ) (2 / ) [ ( )] sin( ) ( )d fori 0
1

i 1 i (23a)

= >r e r r k k kr kr k r r( ) (2 / ) [ ( )] sin( ) sin( )d fori 0
1 2

i i

(24a)

The derived distribution of the electric potential inside the region
occupied by the polar medium, r > ri, coincides for any dielectric
function, ε(k), with the solution for the “unrestricted medium approx-
imation” (UMA) [1–3,18] where the medium occupies the whole space
without a cavity while the ionic charges are distributed uniformly over
the Born sphere surface, r= ri.

At the same time the electric potential and field distributions are
quite different in these approaches inside the ion region, r < ri. Novel
IDA calculation procedure takes into account specific dielectric prop-
erties inside this cavity, e.g. if the local dielectric response is assumed
there, then E(r) =G(r)/εcav where εcav is the dielectric constant of the
space inside the cavity. On the contrary the “unrestricted medium ap-
proximation” (UMA) [1–3,18] assumes the dielectric response inside
the ion as being identical to that of the polar medium so that the field
and potential distributions cannot reflect dielectric properties inside the
ionic cavity.

This difference leads to important consequences.
As for the external region occupied by the solvent, r > ri, in con-

formity with the general result [23,26,34] the electric field and

potential profiles given by Eqs. (23a) and (24a) do not depend on the
particular form of the ionic charge distribution inside the cavity, ρ(r)
at r≤ ri (they are only dependent on the total charge in this region, e).

In the UMA model which does not take into account the existence of
the cavity [1–3,18,19] the E(r) and φ(r) distributions are given by a
universal expression for any ionic charge distribution, ρ(r) [19]:

=r k k kr kr dk( ) (2/ ) [ ( )/ ( )][sin / ]
0 (24UMA)

where ρ(k) is the Fourier-transform of ρ(r):

= k r rk r i d( ) ( )exp( )

Let us assume again (similar to Eqs. (23a) and (24a)) that the ionic
distribution, ρ(r), is nonzero only inside the internal region, i.e. at
r≤ ri, Eq. (13c). Then, both ρ(k) and φ(r) in Eq. (24UMA) depend on
the particular form of the ionic charge distribution inside this region,
in particular φ(r) inside the polar medium, i.e. at r > ri. This result is at
variance with the general conclusion [34] that this form cannot affect
this potential distribution. The above conclusion on the identity of
predictions by Eqs. (24a) and (24UMA) is only valid for the Born model
for the ionic charge distribution, Eq. (13b), where ρ(k) = e sin kri/kri.

The predictions are also quite different for the internal region,
r≤ ri. Both the electric field, E(r), and the difference, φ(r) − φ(ri), are
independent of the external dielectric properties (owing to the sphe-
rical symmetry of the system and the absence of correlations between
fluctuations across the boundary). In particular, they are unaffected by
the ion transfer between vacuum and polar solvent surroundings. On
the contrary, according to the UMA model [1–3,18] such a change of
the surrounding medium results in a radical modification of the electric
field and potential distributions inside the cavity which is again in
disagreement with general principles.

It is shown below that these distinct features of the models manifest
themselves seriously also in their predictions for the ionic solvation
energy.

Let us analyze now the electric field and potential profiles in the
more general case where the ionic charge distribution, ρ(r), is extended
partially outside the cavity, Eq. (14). The difference compared to the
previous case is in a more complicated expression for the vacuum field,
G(r), given by Eq. (13d). As a result, one has to transform the integral
over r:

= +q r j kr dr k q r kr r r kr r( ) ( ) sin 4 ( ) sin d
r 1

2
cav i

1
i ri i

Here, qcav is the total ionic charge in the cavity and its boundary,
r≤ a, Eq. (14) while the integral contains the ionic charge density, ρ(r),
outside the cavity, r > a. As a result, Eqs. (23a) and (24a) are modified
to Eqs. (23b) and (24b):

=

+ >

E r k j kr dk q r kr

r r kr dr r r

( ) (2/ ) [ ( )] ( ) [ sin

4 ( ) sin ] for
cav

r

0
1

1 i
1

i

ii (23b)

=

+ >

r r k k kr k q r kr

r r kr dr r r

( ) (2/ ) [ ( )] sin d [ sin

4 ( ) sin ] for
i

r

0
1 2

cav i
1

ii (24b)

The first term in the brackets reflects the contribution of the ionic
charges in the internal region (cavity and its boundary) while the
second one is related to ionic charges penetrating into the polar
medium. In conformity with the general principle (see e.g. Eqs. (3–13)
in [23] and Eq. (14) in [34]) the former one only depends on the total
internal charge, qcav, while the latter is influenced by a particular form
of the ρ(r) distribution outside the cavity. If the ionic charge density,
ρ(r), is zero in the external region, r > ri, the integral terms in Eqs.
(23b) and (24b) vanishes, qcav = e, and these expressions are reduced to
Eqs. (23a) and (24a).

Potential distribution, φ(r), within the framework of the UMA
model (where no cavity is excluded from the region occupied by the
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polar solvent) [1–3,18], Eq. (24UMA), gives different predictions,
compared to Eq. (24b), if the ionic charge density is nonzero (at least
somewhere) inside the cavity region, ρ(r) ≠ 0 at r < ri.

On the contrary, if ρ(r) ≡ 0 at r < ri while the ionic charge density
is distributed generally at the cavity surface (total charge, qcav, at r= ri)
and outside the cavity (at r > ri), then the UMA potential profile, φ(r),
Eq (24UMA), inside the polar medium coincides with predictions of the
novel IDA approach, Eq. (24b). At the same time, even for this ionic
charge distribution the UMA result for φ(r), Eq. (24UMA), inside the
cavity (at r < ri) is different from the one given by the IDA approach
where it is determined by the dielectric properties inside the cavity.

The above general expression for the potential distribution within
the framework of the IDA approach, Eq. (24b), may be simplified for
two particular forms of the ionic charge distribution outside the cavity.

First, the whole ionic charge is located at the sphere, r= re, outside
the cavity: re > ri:

=
= = <
= = >

r e r r r
q r G r r r
q r e G r e r r r

( ) ( /4 ) ( ),
( ) 0, ( ) 0 for ,
( ) , ( ) / for

e e

e

e

2

2 (25a)

then

= >r e r r k k kr kr dk r r( ) (2 / ) [ ( )] sin sin fore e0
1 2

i (24c)

This expression has got the same functional form as Eq. (24a) for the
Born model of the ionic charge distribution, with substitution of the
cavity radius, ri, by the radius of the charge localization, re.

If the ionic charge density outside the cavity may be approximated
by an exponential function (see e.g. [19]):

= >
= + +

r r r r r
q r r

( ) (4 ) exp [ ( )/ ] for
( 2 2 )

o i i

o i i

1

ext
2 2 1 (25b)

then

= +r r k k k r dk q r F k( ) (2/ ) [ ( )] sin [ sin k r ( )]
0

1 2
cav i

1
i

(24d)

= + + +

+ + +

F k k k r r k kr

r r k k kr

( ) (1 ) [ ( 2 ) cos

( ) sin ].
o i i i

i i i

2 2 2 2 2

2 2 2 3

5. Electrostatic contribution to the ion solvation energy

According to the Born procedure for calculation of the electrostatic
contribution to the ionic solvation energy, W, one should calculate the
difference in the energies of transfer of the total ionic charge, e, from
the infinity into the ion either in vacuum or via the dielectric sur-
rounding of the ion. It is assumed that both the ionic charge distribu-
tion, ρ(r), and the dielectric properties inside the cavity are the same for
both configurations of the system. Then, the electric field, E(r), and the
difference, φ(r) − φ(ri), are not affected by the change of the dielectric
properties outside the cavity. It means that the work to transfer a charge
between the boundary of the cavity and any point inside the cavity is
identical for the vacuum and dielectric surroundings. As a result, this
contribution to the solvation energy is cancelled, and it is sufficient to
calculate the work of transfer of ionic charges between the infinity and
the cavity surface, r= ri, or ri point outside the cavity (if the ionic
charge is extended beyond this boundary).

Thus, the electrostatic contribution, W, is given by the formula
based on the Guntelberg charging procedure:

= +

+

W r r q ri q x r x

r r r q x r x dr dx

( ; { ( )}) [ ( ; , { ( ) })

4 ( ) ( ; , { ( ) }) ]r

i 0
1

cav cav
2

cavi (26)

r q x r x r r( ; , { ( ) }) ( ) ( )cav vac

for the specified values of ionic charges where x is the fraction of the
already transferred total ionic charge, e dx is the small charge under
transfer which is to be distributed proportionally between the total
charge in the internal region, qcav dx, and the fractions of the ionic
charge outside this region located near the r point, 4πr2ρ(r)drdx. The
difference between the potential distributions for the vacuum and di-
electric surroundings, δφ(r; qcav x, {ρ(r') x}), may be obtained im-
mediately from Eq. (24b) since ε(k) ≡ 1 for vacuum in the outside
region:

=
= +

+

r q x r x
x r k k kr q r kr

r r kr r k

( ; , { ( ) })
(2 / ) {1 [ ( )] } sin [ sin

4 ( ) sin d ]d
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0
1 2

i
1

i

i (24e)

Since the potential values in both points, ri and r, are proportional
to x , Eq. (24e), the whole function under the integral sign is propor-
tional to x and its integration gives the expression for W :

= +
+

W r q r q r
r r r q r dr

( ; { (r)}) (1/2) ( ; , { ( )})
2 ( ) ( ; , { ( )})

i

r

i cav cav
2

cavi (27a)

where expression (24f) for the potential difference, δφ(r; qcav,
{ρ(r')}), should be inserted:

=
= +

+

r q r
r k k kr q r kr

r r kr dr dk

( ; , { ( )})
(2/ ) {1 [ ( )] } sin [ sin
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0
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1

i

i (24f)

If the ionic charge is located entirely inside the internal region,
r≤ ri, Eq. (13c), then the integral terms in Eqs. (24b), (24f) and (27a)
are absent. Then, one may use Eq. (24a) for the potential distribution
inside the outer region, r≥ ri, and Eq. (27b) for W:

= =
=

W r e e r r
e r k k kr dk

( ; { (r)}) ( /2)[ / ( )]
( / ) {1 [ ( )] } sin

i i i
2

i
2

0
1 2 2

i (27b)

In conformity with the general principle (see e.g. Eq. (25) in [34])
the value of W does not depend on the particular distribution of the
ionic charge density inside the cavity and its dielectric properties, it is
only determined by the cavity radius, a, and the total charge inside the
cavity (including its surface), Eqs. (27a) and (27b).

Therefore, for any distribution of the total ionic charge, e, inside or
on the surface (but without penetration into the polar medium, Eq.
(13c)) the electrostatic contribution to the solvation energy, W(ri; ρ(r))
is identical to that for the Born model of the ion where the whole ionic
charge is located at the external surface of the cavity, WB(ri) [34]:

=W r r W r( ; { ( )}) ( )i
B

i (28)

As it has already been indicated above, within the framework of the
Born model for the ionic charge distribution the electric potential
profile outside the cavity, Eq. (24a), coincides with the result of the
UMA model where the polar medium occupies the whole space, with
embedded ionic charges [1–3,18] for any form of its dielectric function,
ε(k). In view of Eq. (27b) these two procedures also result in identical
predictions for the contribution to the solvation energy, WB(ri).

At the same time their results are different for other ionic charge
distributions, e.g. if ρ(r) is smeared inside the ion. There are two dif-
ferent origins of this difference. First, as it has been discussed above the
distributions of the electric field and its potential inside the cavity in the
novel procedure are determined not only by the form of ρ(r) but also by
particular dielectric properties inside the cavity. The existence of such
region is completely disregarded in the UMA model [1–3,18] so that the
potential distribution changes automatically compared to that for the
Born model automatically while such a change is at variance with the
result of the most general theory. Second, the novel IDA approach as-
sumes that the work for the charge transfer from its outer boundary,
r= ri, to a point inside the ion is not affected by dielectric properties of
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the external medium, on whether it is vacuum or polar solvent. As a
result, these terms are cancelled in the course of the solvation energy
calculation. On the contrary, the “continuous model” has to change the
dielectric properties of vacuum to those of the medium everywhere, i.e.
not only outside the ion but also inside its internal region.

6. Effect of various ionic charge localization

As the illustrative example of applications of the novel IDA proce-
dure it is used below to show the effect of various positions of the ionic
charge on the solvation energy, W, both inside and outside the cavity.
To retain the spherical symmetry of the system the total ionic charge, e,
is uniformly distribution over a sphere of the radius, re, Eq. (25a), where
it may be equal to the cavity radius (Born model), re = ri, or less than it
(charge inside the cavity) , re < ri, or larger than it (ion charge outside
the cavity), re > ri.

In the former two cases the potential outside the cavity is given by
Eq. (24a) while the energy contribution, W, corresponds to Eqs (27b),
(28) for the Born model for the ion charge, Eq. (13b), since the redis-
tribution of the ionic charge inside the cavity (including its external
surface) does not change these characteristics, in conformity with the
most general theory (see e.g. Eqs. (14) and (25) in [34]).

If the charged sphere, r= re, Eq. (25a), is located outside the cavity,
re > ri, then Eqs. (27a) and (24f) should be used:

=W r r r k k k r k( , ) (e / ) {1 [ ( )] } sin di e
2

e
2

0
1 2 2

e (27c)

The derived expression has got the same functional form as that in
Eq. (27b), in particular the one for the Born model of the ionic charge
distribution.

If the predictions of the IDA calculation procedure, Eqs. (27b) and
(27c), are compared with the corresponding results of the unrestricted
medium approximation (UMA) [1–3,18] for the same charge distribu-
tions one can see that they are identical if the charged sphere, r= re,
coincides with the surface of the cavity (Born model), re = ri, or located
outside the cavity, re > ri. At the same time predictions of these ap-
proaches are different from one another for the ionic charges located
inside the cavity.

For graphical illustration of these results let us employ two ap-
proximations for the nonlocal dielectric response of the polar medium.
One of them proposed for the first time by Dogonadze and Kornyshev
[1,3,18,19,25] may be called “three mode dielectric function”:

= +
=

k c k[ ( )] 1 [1 ( ) ]
i

i i3M
1

1

3
2 1

(29a)

where the three terms reflect contributions of the electronic, vibrational
and (orientational) long-range structure components of the polar sol-
vent, λi are the corresponding correlation lengths: λ1 ≅ 0.5 Å for the
electronic mode, λ2 ≅ 1 Å for the vibrational mode, λ3 ≡ Λ ≅ 3 Å for the
orientational mode. Coefficients, Ci, can be expressed via effective di-
electric constants of this medium: C1 = 1–1/ε1 = 0.444, C2 = 1/
ε1 − 1/ε2 = 0.352, C3 = 1/ε2 − 1/ε3 = 0.191; ε1 = 1.8, ε2 = 4.9,
ε3 ≡ εS = 78.5 (εS is the static dielectric constant of water)
[1,3,18,19,25].

Integration over k in Eqs. (27b) and (27c) of the IDA approach may
be carried out in the analytical form for this dielectric function, Eq.
(29a) (similar to UMA formulas in [1,3]). It results in explicit expres-
sions for W:

= +
+ +
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C f r C f r r r r
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where f(y) = 1 − y−1 [1 − exp (−y)], and the lower index, 3 M, shows
that Eqs. (30a) and (30b) are based on the “three mode dielectric

function”, Eq. (29a).
These results may be compared with those given by the UMA ap-

proach [1–3,18] which assumes that the dielectric properties of the
polar medium are valid for the whole space, i.e. it disregards the ex-
istence of a cavity occupied by the ion and having different dielectric
properties. Then, the expression for W within this model (denoted
below as W3M

UMA for the “three mode dielectric function”, Eq. (29a))
for the ionic charge distribution over the sphere, r= re, Eq. (25a) is
only dependent on its radius, re, independent of whether this charged
sphere is located inside or outside the ionic cavity:

= +
+ +

W r e r C f r
C f r f r r

( ) ( /2 )[ (2 / )
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e e e3M
DK 2

1 1

2 e 2 3 e e (30UMA)

For a particular case of the Born model for the ionic charge dis-
tribution, Eq. (13b), this formula, Eq. (30UMA), was derived in [1,3]
with the use of the UMA procedure.

Comparison of Eqs. (30a,30b) with Eq. (30UMA) shows the identity
of these predictions by two approaches if the ionic charge is located at
the boundary of the cavity (Born model) or outside the cavity, re ≥ ri.
At the same time, if the ionic charge is located inside the cavity,
re < ri, Eq. (30a) predicts that W is independent of the particular po-
sition of the ionic charge, i.e. of re, in conformity with the general
principle [23,26,34]. On the contrary, Eq. (30UMA) demonstrates an
explicit dependence of W3M

UMA on re, see Fig. 1, at variance with the
general principle.

The situation is illustrated in Fig. 1 where the graphs for these ap-
proaches are overlapping for re ≥ ri while “the continuous model”
(squares 2) deviates strongly from the behavior proven by the most
general theory: independence of W from the position of the charged
sphere inside the cavity, while the latter is correctly reproduced by the
novel IDA approach (line 1).

Another useful illustration is provided by the “single-mode” di-
electric function which has been used in numerous publications
[2,4–18,22–28,31–34] based on either UMA or DA approximations:

= +k k[ ( )] 1/ (1/ 1/ )[1 ( ) ]s
1

min min
2 1 (29b)

Fig. 1. Dependence of the ion solvation energy W(ri, re) (divided by
kT= 0.025 eV) on the radius of the charged sphere, r= re, for the three mode
dielectric function of the polar medium, Eq. (29a) (values of its parameters are
given in the text). Comparison of results of the novel IDA approach, Eqs.
(30a,30b) (line 1), with those for the unrestricted medium approximation
(UMA), W3M

DK in Eq. (30UMA) (squares 2); ri = 1.17 Å.
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It represents particular cases of the more general “three mode ap-
proximation”, Eq. (29a), if λ1 = λ 2 = 0, εmin = ε2. or if λ1 = 0,
λ2 = Λ, εmin = ε1, etc. Special notation, εmin , is used in this expression
to cover all these variants.

Expressions for W for various radii, re, for the novel approach may
be deduced from Eqs. (30a) and (30b), or directly from Eqs. (27b) and
(27c):

=W r r e r
r r r r

( , ) ( /2 ){1 ( )[1
exp ( 2 )] /(2 )} for

e s min s1M i
2

i
1 1 1

i
1

i e i (31a)

=W r r e r
r r r r

( , ) ( /2 ){1 ( )[1
exp ( 2 )] /(2 )} for

e e s s

e e

1M i
2 1

min
1 1

1
e i (31b)

As previously, the unrestricted medium approximation (UMA)
[1–3,18] results in a universal functional form of W for any position of
the charged sphere, inside or outside the cavity (since the existence of
the cavity is neglected by this model)

=W r e r
r r r

( ) ( /2 ){1 ( )[1
exp ( 2 )] /2 } for any

e e s s

e e

1M
DK 2 1

min
1 1

1
e (31UMA)

This formula was derived in [2] for the case where the ionic charge
is located over the surface of the ion, re = ri (Born model). Similar to
the above observation for the 3 M dielectric function of the medium, Eq.
(29a), Eq. (31UMA) coincides with the result of the novel IDA approach
for re ≥ ri, Eq. (31b), while it gives incorrect predictions if the ionic
charge is located inside the cavity, see Eq. (31a), as one can see from
Fig. 2a,b (square points 2).

Besides the approaches discussed above, expression for W for the
“single-mode dielectric function” was also derived [26,34] within the
framework of the “dielectric approximation” (DA) [18,23] based on an
assumption concerning the form of the nonlocal dielectric function in
Eq. (3). This third approach gives for any distribution of the ionic
charge density inside the cavity (including its external boundary):

=W r r e r B r r r( , ) [ /(2 )]{1 ( ) ( )} fore i s s i e ii
2 1

min
1 1 (31c)

= + + =B r r r r( ) {[ coth( ) 1] / / 1} , / si i i s min i
1 1

min

Result for the same DA approach for the charged sphere located
outside the cavity may be derived from the combination of Eqs. (22)
and (20) in Ref [34]:

=
>

W r r e r
B r r r r r

( , ) ( /2 ){1
( ) ( ) exp [ ( )/ ]} for

e e s

s e e i e

i
2 1

min
1 1

i (31d)

Results of calculations with the use of the expressions for all three
approaches are compared in Fig. 2a,b for two different values of the
smaller dielectric constant: εmin = ε1 = 1.8 and εmin = ε2 = 4.9.

Even though the functional forms of the dependence, W vs. re, are
different for the novel IDA procedure and the one based on “the di-
electric approximation” (DA), Eqs. (31a) vs. Eq. (31c) or Eqs. (31b) vs.
(31d), quantitatively they are very close to one another (Fig. 2a and b).
Moreover, for the case where the charged sphere is located on the
surface of the cavity (Born model) or outside the cavity, all three ap-
proaches provide practically identical predictions. Therefore, one may
expect that they all might be considered as trustful under these con-
ditions.

At the same time one can observe again a drastic deviation of the
result for the unrestricted medium approximation (UMA) (a strong in-
crease of W for lower values of re, squares 2 in Fig. 2a and b) from
predictions of two approaches (IDA and DA) which take in account the
absence of the polar medium inside the cavity (lines 1 and empty tri-
angles 3, respectively). Since the latter are in a perfect conformity with
the most general principle (no dependence of W on the particular ionic
charge distribution inside the cavity) the result of the UMA approach
has to be considered as non-justified for systems where the ionic charge
is present inside the cavity, at r < ri.

7. Conclusions

This paper proposes a novel IDA method for calculation of electro-
static field and its potential distributions in systems where the polar
medium possessing a nonlocal dielectric response occupies a part of the
whole space while the dielectric properties inside the rest of the space
are quite different (they may be local or even nonlocal). For certain
geometries of the system (in particular, having a plane, or a spherical,
or a cylindrical symmetry) the result for these characteristics may be
written down in the form of integrals, with no need to solve integral or
integral–differential equations, as one has to do with the use of the
procedure based on the “dielectric approximation” (DA) [22,23]. Un-
like the well-known unrestricted medium approximation (UMA)
[1–3,15–21] where the dielectric response of the polar medium is for-
mally extended for the whole space, i.e. without taking into account the

Fig. 2. See Fig. 1. Single-mode dielectric function of the polar medium, Eq. (29b). Comparison of results of the IDA approach, Eqs. (31a,31b) (line 1), with those for
the UMA one, W1M

DK in Eq. (31UMA) (squares 2) and with those for the “dielectric approximation” (DA) [23,34], Eqs. (31c,31d) (empty triangles 3). εmin = 1.8 (a) or
4.9 (b), other parameters are given for the 3 M dielectric function, Eq. (29a); ri = 1.17 Å.
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existence of spatial regions having quite different dielectric properties,
the proposed IDA approach describes these properties of both spatial
regions in a substantiated manner.

Important advantages of the IDA calculation procedure have been
illustrated for the system simulating a spherical ion inside a polar sol-
vent possessing nonlocal dielectric properties. It has been demonstrated
that for any distribution of the ionic charge density, ρ(r), the expres-
sions for the electric field and its potential inside the polar solvent, i.e.
outside the spherical cavity, are given by single integrals over k variable
containing the inverse dielectric function of the medium, ε(k). If the
ionic charge density, ρ(r), is nonzero only inside the cavity (including
its external surface), then both the electric potential distribution out-
side the cavity, φ(r), and the electrostatic contribution to the ion sol-
vation energy, W, are independent of the particular form of ρ(r) , i.e.
they are determined by the total ionic charge and may be found with
the use of the Born model for the ionic charge distribution (the whole
charge is located on the spherical boundary of the cavity).

It turns out that for the Born model of the ionic charge distribution
these characteristics, φ(r) outside the cavity and W, coincides with
predictions of the unrestricted medium approximation (UMA).

At the same time the latter gives obviously incorrect expressions for
the potential distribution, φ(r), inside the cavity region while the IDA
approach relates it to local dielectric properties inside the cavity. This
difference in predictions results in a drastic deviation of results for W
within the framework of the UMA approach from that for the most
general treatment (with no use of any model assumptions) where the
value of W must be independent of the form of ρ(r), the latter being in
conformity with predictions of the IDA approach.

If comparing expressions for the potential, φ(r), and solvation en-
ergy, W, provided by two approaches which take into account parti-
cular dielectric properties inside the ionic cavity, i.e. the IDA and DA
procedures, their functional forms are quite different, in formity with
the general prediction in section “Novel approximate (IDA) proce-
dure…”: However, numerical estimations for the single-mode dielectric
function of the polar medium (Fig. 2a,b) show their close proximity
within the whole range of parameters of the system.

This result (in combination with the identity of the electric char-
acteristics outside the cavity for the IDA method and for the unrest-
ricted medium approximation, UMA) may be considered as a strong
evidence in favor of at least semi-quantitative validity of the newly
proposed IDA calculation procedure. Besides, the IDA method may be
applied easily for calculations of various electric properties for any
form of the nonlocal dielectric function of the medium (given either
analytically or numerically), with no need to perform a complicated
task of solving an integral equation, as it is necessary in most case for
the approach based on the “dielectric approximation” (DA).
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