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ABSTRACT 

The recent results of the fixed end beam failure mechanism in the three-point bending tests 

are discussed. The fixed end beam model and laboratory tests were investigated by D.Sodhi 

(1998) as an approach for the breakthrough problem for the floating ice sheet. Full-scale tests 

with floating fixed-ends beams of natural sea ice were carried out in 2016-2020 in Van-Mijen 

fiord on Svalbard in the framework of the projects SAMCOT and AOSEC. Pressure load cells 

were frozen in the beams to measure the clamping force. This method of testing was also 

useful to determine the flexural and compressive strength of the sea ice depending on its 

structure, temperature and salinity. The theoretic analysis on the two key problems was 

provided: a) the crack propagation during bending (elastic behavior), b) post buckling under 

compression (elastoplastic behavior). Clamping forced obtained from the tests were compared 

the clamping forces obtained by the numerical simulations. The performed investigation, with 

the help of rigorous mathematical methods, makes possible to study the formation of cracks in 

the sea ice sheets, to evaluate the breakthrough loads, and to formulate practical 

recommendations important for the organizing of ice roads in ice covered regions of Arctic 

seas. 
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INTRODUCTION  

The development of modern Arctic marine technologies requires new icebreaking and 

transport vessels, fixed drilling rigs and other special technical facilities for operation in ice 

conditions. At the same time, correct calculation of ice loads under different scenarios of 

interaction between ice fields and structures plays the most important role for operational 

safety assessment. Interactions of this kind are unique in a number of parameters. The area of 

direct contact, accompanied by ice destruction, with a supporting structure can be tens of 

square meters, and the speed of ice and structure convergence is also significant (Sanderson, 

1988). In such a situation, obtaining empirical data on the failure process patterns at an 

appropriate spatial and temporal scale becomes time-consuming and expensive. Therefore, the 

development of appropriate mathematical models of fracture (Dempsey, et al., 1988, 

Dempsey, 1991, Goldstein and Osipenko, 1983, 1985) and their verification based on the 

results of field tests and experiments in ice basins is of great importance. 



Investigation of failure and bearing capacity of a beam at 3-point constrained bending 

provides an insight into the processes occurring during punching of ice floe by a concentrated 

load. Characteristic features of the bending process are the development of root and central 

cracks, the occurrence of spacing - transverse compressive forces that constrain the 

deformation process and lead to crack closure, the appearance of areas of compression and ice 

crushing in these compression areas. The effect of crack closure in the study of the bearing 

capacity of floating ice plates has been studied by L,Slepyan (L. Slepyan, L. Dempsey, J., 

1995). 

A CHARACTERISTIC FEATURE OF FAILURE OF BEAM WITH FIXED ENDS. 

The problem of equilibrium of an elastic beam with a notch in cramped three-point bending is 

the key problem in studying the bearing capacity of a material under the action of distributed 

or concentrated forces, in particular, when a helicopter lands on an ice cover or a submarine 

resurfaces in solid ice. Field tests show that, under concentrated loading, the bearing capacity 

of ice is exhausted at loads greater than the appearance of the first cracks. In order to study the 

characteristic feature, (D. Sodhi, 1998) proposed to investigate a floating ice plate of 

considerable size, in which two parallel cuts of equal length are made, forming a beam, the 

width of the beam being approximately equal to the thickness. During tests the beam is loaded 

with a concentrated vertical load in the centre, developed by a hydraulic cylinder at a constant 

stroke rate. In full-scale experiments, multiple failure scenarios were observed.  

 

Figure 1. Natural experiment, plot “load vs deflection”. 

A typical deformation curve of ice beams with fixed ends in full-scale tests on sea ice is 

shown in (Fig. 1). The length of the beam was approximately 6 times its height (h=0.7m) and 

the loading was set by hydraulic cylinder rod stroke at a speed of 2 to 10mm/min. The 

initiation and development of cracks occurred at loads less than 2 tf, and the exhaustion of the 

beam carrying capacity at loads over 8 tf. It is possible to observe on the graphic the sequence 

of the process - linear section of deformation, appearance of central and two cracks at the 

beam root, and then non-linear section of deformation where the material of the beam shows 

plastic properties. Thus, a multi-stage deformation pattern is observed in the beam tests. 

Further balancing of the increasing load is provided by the expansion forces resulting from 

wedging, which cause the beam to be subjected to predominantly compressive stresses, 

relative to which the ice is very strong. The most characteristic feature is the constriction of 

the deformation, resulting in the phenomenon of slowed crack growth followed by the 

stopping and closing of the crack tip. 

In this paper, an attempt is made to describe both deformation stages (both elastic and 

inelastic) from the unified perspective of fracture mechanics. To describe the elastic stage, 

linear fracture mechanics (Irwin-Orovann concept, P. Paris formula) is used. For the nonlinear 



stage of deformation, a theory based on the J-integral relation to the crack opening in the full-

scale fluidity of the material in the singular region is used. 

 

 

THE PROBLEM OF THE 3POINT BENDING UNDER CONSTRAINT (ELASTIC 

STAGE). 
A special feature of Sodi beam loading compared to cantilever beam bending is the 

constriction, the occurrence of longitudinal forces along with bending moment and transverse 

force. The longitudinal force N and the bending moment M arise as a response to kinematic 

connections, so Castigliano's theorem is effective for calculation.  

a) 

 

b) 

 

Figure 2.   Model of elastic beam 

When solving the problem, we assume that the root (x=±l/2) and central (x=0) cracks have the 

same length and are the cracks of normal separation, i.e. we neglect the influence of 

transverse force in the embedment on the crack development. In order to compose the 

kinematic conditions for the coupling of the beam with the singular regions, let us introduce 

the crack opening δ and the rotation of the banks θ. We will follow the method of J. Rice, N. 

Levy (1972) by representing the singular regions as elastic elements, the yielding of which is 

determined from the solution of the strip-cut problem. Then for each section of the beam we 

can write: 
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where [] is the singular discontinuity 
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where dA  is the change in crack area, cU
 is the fraction of body energy changing during crack 

growth when forces remain constant; the fracture toughness is
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is the intensity coefficient at the crack tip, ;E   is the Young's modulus and Poisson's ratio. 

Due to the superposition principle for the intensity coefficient
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 is the reduced stress, ω = c/h is the dimensionless crack length 

parameter, fM(ω), fN(ω) is the known gauge functions represented by Lagrange polynomials 

(formulas 2.11, 2.13; Tada et al, 2000). Due to the assumption of uniformity of crack 

development the problem is statically determinable, it follows from the equilibrium condition 

M=Pl/8. 

Let us use the Castiliano theorem and the formula of P. Paris (App. B; Tada et al, 2000) to 

determine the generalized displacements: 
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where is the ΔM; ΔN - M, N. Since N is a reaction, then  

  / 2 0N cu x    
                                                                                                         

(6) 

The system, due to the symmetry of the problem, will be understood as a 1/4 girder. Let us 

write down the elastic energy of the system U0  
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. We find the generalised displacements of the singular 

regions as:  
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Since the change in the energy of the body due to the change in the crack area occurs when 

the forces are constant, σM; σN we carry the integral beyond the sign of the integral. Let's 

introduce the coefficients of suppleness ,  , which 

are calculated through tare functions. From equation (6) we find the unknown value of the 

reactive force 
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where is the
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dimensionless parameter defining the proportion of the beam. 

Not only does the crack growth occur due to the appearance of cracks in the beam, but it also 

forms the condition for its development itself. If we use the force criterion for crack growth

I ICK K
 , condition (3) closes the problem of determining crack growth conditions: 
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Also, since σN;σM they have different signs, if there are such proportions ζ of the girder and 

such a crack length, when the multiplier before is σM zero. Then at any value of load the 

girder cannot be split apart by cracks. The phenomenon of crack closure arises. The family 

curves σN;σM σM(ωM(ζ), ζ) = min σM(ω, ζ). The stationary value distinguishes two branches of 

the cracked body states: (ω<ωm) the bending branch, where the bending form of equilibrium 

prevails, and the propagation branch (ω>ωm).  

 

a) 

 

b) 

Figure 3. Deformation curves of the strip at different notch lengths 

In Fig. 3b. the deformation curves of the strip at different notch lengths up to the limit state 

are plotted on the plane (M; θ) Mc(ω). The straight line 0B is the asymptote for the states of 

the spacer branch with the yielding λ*, Mmin=min M(ω) - defines the lower boundary of the 

crack instability. 

In order to study the influence of the constraint factor, the bending problem of a beam with an 

antisymmetrical notch system (fig.2a), fixed against longitudinal displacements, was 

considered (ζ, ω) - dimensionless geometric parameters of the problem. 

This problem was modelled and solved by the finite element method. During the solution, the 

intensity coefficient K1 and the yield strength ΔP/P - the ratio of deflection to load - were 

determined.  To determine K1, a numerical J-integral method was used in the ANSYS 

Mechanical APDL package. The mesh on the modelled beam was created with SOLID186 

elements (fig. 4) 



  

a) 

 

b) 

Figure 4. a) Frequency cell for notched beam (ANSYS); b) Plot KI vs ω. 

From the graph KI(ω), it can be deduced that 

1 there is such a ω max at which the KI value is maximum; 

2 there is such a ω* that KI is zero.  

The considered problem of constrained bending of a Sodi beam in the elastic stage has an 

interesting qualitative feature - the danger of deep notches decreases with increasing depth 

until it disappears altogether. There is a limit length beyond which the crack cannot grow, the 

effect of crack closure is due to the occurrence of longitudinal force due to constriction. 

FIXED-ENDS BEAM TEST  

In the course of experimental studies in the Sodi ice basin, he found that the undisturbed zone 

corresponds to at least one third of the beam thickness (h/3). It follows from solution of model 

elastic problem that crack closure condition (K1=0) for beam length k=6, corresponds to 

ω0=0,75; at k=8, ω0=0,78. This means that for relatively long beams, for which the scenario 

of central and root cracks is true, the compression region turns out to be at least h/4.... h/5. 

From this it can be assumed that perhaps not the whole third of the undisturbed material in D. 

Sodhi's experiments is in the compression region, some of the material may be in the tensile 

region adjacent to the crack tip, for which К1<KIC. 
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Figure 5. Zones of compression (after Sodhi,1998). 

Tests with beams with fixed ends are used to calculate the compressive strength of floating 

ice. They are also used to verify the results of numerical modelling. During the field tests in 

Svea in March 2018, a series of bending tests were carried out on a beam with fixed ends 

(Sodi beam). 

 

 

Figure 6. Setup for a field test (frames to apply load and to measure deflection and pressure): 

(a) FEB test (vertical load), and (b) FEB test (horizontal load) with pressure sensors 

GEOKON (2018-03-08). 

The large-scale FEB tests under vertical load were described in previous papers (Karulina, et 

al., 2016; Sakharov, et. al., 2015). The main features of the FEB tests with horizontal load are 

the same as in the FEB tests with vertical load, firstly the central crack appeared and then root 

cracks.  

To determine stress distributions, special Geokon sensors were embedded in the beam at key 

points, based on pressure measurements in the test medium. The sensors consist of two 

circular stainless steel plates welded around the perimeter and separated by a narrow cavity 

filled with deaerated oil.  

The February test (Figure 6b) with GEOKON sensors was conducted on 8 March 2018 on a 

floating ice sheet in a fjord near Svea, Svalbard. Ice thickness 0.6 m, ice temperature -8.40C, 

ice salinity 5.4ppt. The central crack occurred under a load of Nf=32 kN, which allowed the 

bending strength σf=330kPa to be determined. A prerequisite for the use of test results for the 

calculation of compressive strength is the failure of the beam in the Sodi scenario: the 

formation of one vertical central crack and two cracks at the roots of the beam. The ultimate 



load (carrying capacity) in the test was Nc = 144 kN. Using Sodi's formula (1998), we can 

obtain the compressive strength of ice σf=2MPa. 

The main purpose of the test (Fig.7) with the GEOKON sensors was to determine the stress 

distribution during loading. The sensors S1 to S4 have an upper pressure limit of 1 MPa. They 

were positioned near the line of maximum compression on the cracked beam (non-linear 

behaviour). 

 

Figure 7. FEB test with GEOKON sensors (S1…S4). All sizes are in cm. 

The stress-time curve associated with the Sodi scenario is shown in Figure 8 (a, b). The 

voltage-time curve according to FEM simulations at the same locations and orientation as the 

GEOKON sensors is also shown in Fig.8. 

 

 

a) 
 

b) 

Figure 8. The comparing data reading from sensors S4 (a) and S4(b)  and FEM simulation for FEB 

test with cracks.    (Stress kPa vs Time s). 

The ANSYS simulations show significantly lower stresses on S1 than the GEOKON sensor 

measurements. The most reasonable interpretation is that ice exhibits both elastic and inelastic 

(creep or plasticity) behavior, which must also be considered. 
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