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Background: Phase-equivalent transformations (PETs) are well known in quantum scattering and inverse-
scattering theory. PETs do not affect scattering phase shifts and bound-state energies of a two-body system but are
conventionally supposed to modify two-body bound-state observables such as the rms radius and electromagnetic
moments.
Purpose: In order to preserve all bound-state observables, we propose a new particular case of PETs, a deuteron-
equivalent transformation (DET-PET), which leaves unchanged not only scattering phase shifts and bound-state
(deuteron) binding energy but also the bound-state wave function.
Methods: The construction of DET-PET is discussed; equations defining the simplest DET-PETs are derived.
We apply these simplest DET-PETs to the JISP16 NN interaction and use the transformed NN interactions
in calculations of 3H and 4He binding energies in the no-core full configuration (NCFC) approach based on
extrapolations of the no-core shell model (NCSM) basis space results to the infinite basis space.
Results: We demonstrate the DET-PET modification of the np scattering wave functions and study the DET-PET
manifestation in the binding energies of 3H and 4He nuclei and their correlation (Tjon line).
Conclusions: It is shown that some DET-PETs generate modifications of the central component while the others
modify the tensor component of the NN interaction. DET-PETs are able to modify significantly the np scattering
wave functions and hence the off-shell properties of the NN interaction. DET-PETs give rise to significant
changes in the binding energies of 3H (in the range of approximately 1.5 MeV) and 4He (in the range of more
than 9 MeV) and are able to modify the correlation patterns of binding energies of these nuclei.
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I. INTRODUCTION

Phase-equivalent transformations (PETs) of two-body in-
teractions are well known in quantum-scattering theory [1].
PETs play an important role in the inverse-scattering theory
giving rise to ambiguities in the derived potentials. Currently,
there is intensive research on supersymmetric transformations
(see reviews [2,3]) which are a particular case of PETs [4]
associated with removing or adding bound states to the system.

More traditional PETs which do not change the on-
shell properties of the two-body interaction, i.e., two-body
scattering phase shifts and the energies of the two-body
discrete spectrum states, but modify the interaction off-shell,
were used to study manifestations of off-shell properties
of two-nucleon interactions in many-nucleon systems. For
example, a correlation between the nuclear matter binding

energy and its equilibrium density (the so-called Coester line)
was studied with phase-equivalent NN interactions in Ref. [5].
PETs were used to modify the nucleon-cluster interaction in
order to obtain a correct description of the nuclear binding
energies in cluster model studies of Refs. [6,7]. Various
versions of the realistic JISP NN interaction (JISP6 [8] and
JISP16 [9,10]) were obtained by means of PETs applied to
the initial ISTP NN interaction [11] obtained in the J -matrix
inverse scattering approach with the aim of improving the
description of binding energies of many-nucleon systems. The
interaction JISP16 [9,10] provides an accurate description of
light nuclei [9,12–21] and was used to predict the binding
energy and spectrum of the exotic 14F nucleus [22] which
were confirmed later in the first experimental observation of
this isotope [23].
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We propose here a new type of PET, a deuteron-equivalent
transformation (DET-PET). Contrary to conventional PETs
resulting in the modification of bound-state and scattering
wave functions [1,4,5,11], DET-PET guarantees that the
transformed interaction generates not only the same scattering
phase shifts and two-body binding energy (or, more generally,
bound state energies) but also the same bound state (deuteron)
wave function as the initial untransformed interaction. The
same method easily generalizes to preserve a set of bound-state
wave functions. DET-PET has the advantage of preserving
the deuteron ground-state observables. On the other hand,
DET-PET, as well as any PET, modifies a two-body interaction
off-shell, and hence manifests itself in many-body systems.

One may naturally inquire whether PETs lead to a better
understanding of the appropriate off-shell behavior for the NN

interaction. We note that what is appropriate depends on the
adopted theoretical framework for the NN interaction. Since
the interaction is not an observable, all approaches (meson
exchange, EFT, lattice gauge, inverse scattering, etc.) build
in-model assumptions (e.g., form factors, regulators, cutoffs,
etc.). Given those model assumptions, there are additional
unexplored off-shell freedoms and we will show below how
to explore those freedoms with constraints tied to NN bound-
state observables.

After introducing the formulas defining DET-PET, we apply
DET-PET to the JISP16 NN interaction and illustrate various
versions of DET-PET by respective modifications of scattering
wave functions at a few values of the DET-PET continuous
parameter. A DET-PET manifestation in many-body systems
is illustrated by the study of binding energies of 3H and
4He binding energies and their correlation (the so-called Tjon
line [24]).

It is known [25] that when any PET, DET-PET in particular,
is applied to NN interaction, the binding energy of a three-
body (or heavier) system can be restored by additional three-
nucleon NNN (or higher-order) interaction(s). Our initial 3H
applications reveal the residual role of the NNN interaction
for the ground state energy and how that role changes with
the DET-PET selected. Similarly, our initial 4He applications
reveal the residual roles for the combined NNN and NNNN

interactions on the ground state energy. Given the numerical
challenges of treating NNN , NNNN , etc., interactions in
many-body applications, it is natural to try to minimize their
effects. In this context, DET-PETs are a potentially useful
tool in future searches for an NN interaction consistent with
many-body data.

II. DET-PET TRANSFORMATION

Two types of PETs are known in scattering theory: local
PETs [1] that transform a local potential into another local
potential and nonlocal PETs [5] which generate nonlocal
potential terms. The local PETs always result in some
modification of bound-state wave functions [1,4]. Therefore
we focus the discussion here on nonlocal PETs.

The Schrödinger equation

H |�E〉 = E |�E〉 (1)

describes a relative motion in two-body quantum system. The
state |�E〉 can be expanded in infinite series of L 2 states |an〉,

|�E〉 =
∞∑

n=0

cn(E) |an〉. (2)

The states |an〉 are supposed to form a complete orthonormal-
ized basis,

〈ai |aj 〉 = δij . (3)

Using expansion (2) we obtain an infinite set of algebraic
equations defining the expansion coefficients cn(E),

∞∑
n′=0

(Hnn′ − δnn′E) cn′ (E) = 0, (4)

where Hnn′ = 〈an|H |an′ 〉 are the Hamiltonian matrix elements.
A Hamiltonian H̃ phase-equivalent to H can be defined

through its matrix [H̃ ] in the basis {|an〉}. This matrix [H̃ ] can
be obtained from [H ], the matrix of the Hamiltonian H in the
basis {|an〉}, by means of a unitary transformation,

[H̃ ] = [U ][H ][U †]. (5)

The infinite unitary matrix [U ] is supposed to be of the form

[U ] = [U 0] ⊕ [I ] =
[

[U 0] 0

0 [I ]

]
, (6)

where [I ] is an infinite unit matrix and [U 0], a nontrivial
submatrix of [U ], is a finite matrix mixing only a few
selected basis functions. It is clear that Hamiltonians H and
H̃ have identical eigenvalue spectra. Their eigenstates |�̃E〉
and |�E〉, differ by a linear combination of a finite number
of L 2 basis states. Any superposition of a finite number of
L 2 functions must decrease at large distances. Therefore at
positive energy E associated with scattering, the oscillating
asymptotics of wave functions 〈�r|�̃E〉 and 〈�r|�E〉 at large
distances are the same. In other words, the scattering phase
shifts defined through asymptotic behavior of functions 〈�r|�̃E〉
and 〈�r|�E〉 are also the same, i.e., the Hamiltonians H and H̃

are phase-equivalent.
The unitary operator U 0 can be written as

U 0 =
∑

i,j�N

|ai〉U 0
ij 〈aj |. (7)

The transformation (5)–(7) leaves the bound state |d〉 un-
changed, i.e., becomes a DET-PET, when each of the L 2

vectors |ai〉 entering the nontrivial submatrix [U 0] of the
infinite unitary matrix [U ] through Eq. (7), is orthogonal to |d〉,

〈ai |d〉 = 0, i � N. (8)

At this stage, we assert that we have obtained our DET-PET
defined through the unitary transformation (5)–(7) with vectors
|ai〉 fitting the conditions (3) and (8). In order to obtain a non-
local interaction Ṽ deuteron-equivalent and phase-equivalent
to the initial interaction V , we add to V the two-body relative
kinetic energy operator T to obtain the Hamiltonian H ,

H = T + V, (9)
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calculate its matrix [H ] in the basis {|an〉}, obtain the matrix
[H̃ ] by means of DET-PET unitary transformation, and obtain
the matrix

[Ṽ ] = [H̃ ] − [T ]. (10)

Here [T ] is the infinite kinetic energy matrix in the basis {|an〉}.
The interaction Ṽ is defined through its matrix [Ṽ ] in the
basis {|an〉}.

The simplest DET-PET is obtained with arbitrary unitary
matrix [U 0] of the rank 2. In this case, [U 0] is associated
either with a rotation by the angle β when det U 0 = +1 or
with a rotation by the angle β combined with reflection when
det U 0 = −1. We also need to define the L 2 vectors |a1〉 and
|a2〉 in Eq. (7).

We define here the vectors |a1〉 and |a2〉 as linear combina-
tions of oscillator states |ϕi〉,

|ai〉 =
∑
i ′�N ′

αi ′
i |ϕi ′ 〉, (11)

which fit the orthonormality condition (3). We expand the
deuteron eigenstate |d〉 in an infinite series of oscillator states,

|d〉 =
∞∑
i=0

di |ϕi〉, (12)

where, generally, all the coefficients di are nonzero,

di �= 0. (13)

Since the vectors |a1〉 and |a2〉 should fit Eq. (8), the expansion
(11) of each of them involves at least two different basis
states |ϕi〉 due to Eqs. (12) and (13). In this simplest case we
have

|a1〉 = an
1 |ϕn〉 + am

1 |ϕm〉, (14a)

|a2〉 = ak
2 |ϕk〉 + al

2 |ϕl〉. (14b)

The normalization of these vectors requires(
an

1

)2 + (
am

1

)2 = 1, (15a)(
ak

2

)2 + (
al

2

)2 = 1, (15b)

while the orthogonality of the vectors |a1〉 and |a2〉,
〈a2|a1〉 = 0, (16)

is guaranteed when these vectors are constructed from different
basis states, i.e., all the basis states |ϕn〉, |ϕm〉, |ϕk〉, |ϕl〉
entering Eqs. (14) are different. Using expansions (11) and
(12) we obtain

an
1 dn + am

1 dm = 0, (17a)

ak
2 dk + al

2 dl = 0. (17b)

The solutions of Eqs. (15), (17) are

an
1 = dm√

d2
n + d2

m

, (18a)

am
1 = − dn√

d2
n + d2

m

, (18b)

ak
2 = dl√

d2
k + d2

l

, (18c)

al
2 = − dk√

d2
k + d2

l

. (18d)

To define completely the simplest DET-PET discussed
above we need to fix the rotation angle β, the sign of det U 0

and the set of four oscillator states used to build the states
|a1〉 and |a2〉. To distinguish various DET-PET types we use
notations like 0s2s1s2d±. In this example, the state |a1〉 is a
linear combination of the oscillator states 0s and 2s, the vector
|a2〉 is a linear combination of the oscillator states 1s and 2d,
and the index ± corresponds to the sign of det U 0 = ±1.

III. DET-PET PROPERTIES AND MANIFESTATION IN
FEW-NUCLEON SYSTEMS

In this section, we study modifications of the JISP16
NN interaction [9] induced by various DET-PETs. The
modifications of a nonlocal interaction can be illustrated
by modifications of its wave functions. The deuteron wave
function is unaffected by DET-PET. Therefore we present
below the DET-PET induced transformation of the JISP16
np scattering wave function in the sd coupled partial wave.

It is interesting to explore a DET-PET which acts only
in a single channel, say, in the s channel, and compare
it with DET-PETs mixing components of the s and d

channels in different ways. Therefore vectors |a1〉 and |a2〉
[see Eqs. (14)] were constructed as various superpositions
of two low-lying oscillator states of the np relative motion
0s, 1s, 2s, 3s, 0d, and 1d with h̄� = 40 MeV. For each
type of the DET-PET we investigate the transformations
associated with both pure rotation and a rotation-reflection
combination.

Plots of the JISP16 np scattering wave functions in the
sd coupled partial wave at laboratory energy Elab = 10 MeV
and plots for their 0s2s1s3s±, 0s1s0d1d±, and 1s0d0s1d±
DET-PET partners are given in Figs. 1, 2, and 3, respectively.
We use the K-matrix formalism (see Ref. [11] for details and
nomenclature adopted here). The advantage of the K-matrix
formalism is that the radial wave functions in the scattering
domain defined according to their standing wave asymptotics
are real contrary to the more conventional S-matrix formalism
with complex radial wave functions which are asymptotically
a superposition of ingoing and outgoing spherical waves.

The DET-PET 0s2s1s3s± mixes various s wave compo-
nents of the wave function that is equivalent to modification of
the central part of the JISP16 interaction in the s wave. This
results in significant changes of the large s wave component
as is seen in Fig. 1. The modification of the small s wave
component is less pronounced. The d wave components, as
expected, are nearly unaffected by 0s2s1s3s±.

The DET-PET 0s1s0d1d± explicitly mixes s and d waves;
the DET-PET 1s0d0s1d± also mixes s and d waves but in a
different manner. This corresponds to an essential modification
of the tensor component of the JISP16 NN interaction.
As a result, we observe an essential modification of small
scattering wave function components which are generated
by the tensor NN interaction as is seen in Figs. 2 and 3.
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FIG. 1. (Color online) Large (a) and small (b) components of the np scattering wave function at the laboratory energy Elab = 10 MeV in
the sd coupled partial wave in the K-matrix formalism (see Ref. [11] for details and nomenclature) generated by JISP16 and NN interactions
obtained from JISP16 by means of DET-PET 0s2s1s3s±. The sign of det U 0 is given in the legends in parenthesis after the value of rotation
angle β.

Modifications of the large wave function components are much
less pronounced.

We see that DET-PET generates essential modifications
of scattering wave functions without any change of scatter-
ing phase shifts and scattering observables (cross sections,
polarization observables, etc.). It is worth noting here that
the deuteron wave function and deuteron observables (rms
radius, quadrupole moment, etc.) are unaffected by DET-PET
due to the nature of this transformation. The alteration of
scattering wave functions is an indicator for the variation
of the off-shell properties of the interaction arising from
DET-PET. The modification of the the NN interaction off-shell
should manifest itself in properties of many-nucleon systems.
Therefore, we investigate the DET-PET-induced changes of
the 3H and 4He binding energies.

We calculate 3H and 4He in the ab initio no-core full
configuration (NCFC) [17] approach. Within the NCFC
approach, we start with the no-core shell model [26,27]

calculations using the code MFDn [28–31] with a few values
of the oscillator frequency h̄� and in a few basis spaces
characterized by the maximum oscillator quanta Nmax allowed
in the many-body basis above the minimal configuration. Next,
we extrapolate the sequence of finite basis space results to the
infinite basis space limit. This makes it possible to obtain
basis space independent results for binding energies and to
evaluate their numerical uncertainties. NCFC suggests two
extrapolation methods: a global extrapolation based on the
calculations in four successive basis spaces and five h̄� values
in a 10 MeV interval (extrapolation A), and extrapolation
B based on the calculations at various fixed h̄� values in
three successive basis spaces and defining the most reliable
h̄� value for the extrapolation. We present here only the
extrapolation A results based on the NCSM calculations with
basis spaces up through Nmax = 16. The extrapolations A and
B usually provide consistent results [17], and we checked this
consistency for our results in a number of cases. The evaluated
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FIG. 2. (Color online) Same as Fig. 1 but for DET-PET 0s1s0d1d±.
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FIG. 3. (Color online) Same as Fig. 1 but for DET-PET 1s0d0s1d±.

uncertainties of results for binding energies presented here are
less then 10 keV in most cases; in a few cases, we performed
the NCSM calculations up to Nmax = 18 to obtain the binding
energies with uncertainty of about 10 keV.

The binding energies of 3H nucleus Et and of 4He nucleus
Eα were calculated with JISP16 interaction modified by DET-
PETs 0s2s1s3s±, 0s1s0d1d±, and 1s0d0s1d± varying angle
β from 0◦ through 360◦ in steps of 60◦. We observe variations
of Et and Eα due to DET-PETs. In some cases, when the
3H and 4He binding energies were close to their maximal or
minimal values for a given DET-PET type, we decreased the
step of β to investigate the behavior of Et and Eα around their
extremal values in more detail.

The ranges of 3H and 4He binding energy variations for each
DET-PET type are shown in Table I. We see that DET-PETs
can cause essential modification of both 3H and 4He binding
energies. For example, in the case of the 4He nucleus, Eα can
be varied by DET-PETs on the interval from 21.25 through
30.41 MeV, i.e., the DET-PET NN interaction can change Eα

by more than 7 MeV from its original value provided by the
original JISP16 interaction. In the case of 3H, the range of the
DET-PET binding energy variation is 7.21 � Et � 8.67 MeV,
i.e., the binding energy can be shifted by more than 1 MeV
from its original JISP16 value.

We study also a correlation of the 3H and 4He binding
energies, the so-called Tjon line [24]. The Tjon line is usually

studied using results obtained with different NN interactions
and different combinations of NN and NNN interactions (see,
e.g., Ref. [32]). We note here also an investigation of Jurgenson
et al. [33] where the 3H and 4He binding energy correlation
was studied with NN interactions SRG evolved to various
values of momentum parameter λ. An interesting observation
mentioned by various authors (see, e.g., Refs. [24,32]) is that
these results obtained with different interaction models form
nearly a straight line on the plot Eα vs Et . Here we study the
Et–Eα correlation using families of NN potentials generated
by various DET-PET types from the JISP16 interaction, i.e.,
all NN interactions provide not only algebraically identical
NN phase shifts but also identical deuteron wave functions
that should give rise to specific np correlations in three- and
four-nucleon systems.

We begin the discussion of the Tjon lines from the results
obtained with the 1s0d0s1d± DET-PET presented in Fig. 4
where we show also the results from Refs. [32,34,35] obtained
with various modern NN and NN + NNN interaction
models. It is seen that the DET-PET Et–Eα correlation
generally follows the trend suggested by other interactions:
our results are concentrated close to the Tjon line connecting
the points extracted from Refs. [32,34,35] and extend it
to larger 3H and 4He bindings. We recall here that the
1s0d0s1d± DET-PET is associated with modification of the
tensor component of NN interaction.

TABLE I. Ranges of 3H and 4He binding energy variations (in MeV) caused by various types of
DET-PET in comparison with the binding energies obtained with JISP16 and their experimental values.

3H 4He 3H 4He

0s2s1s3s+ 0s2s1s3s−

7.21–8.37 21.25–28.49 7.25–8.35 21.46–28.59
0s1s0d1d+ 0s1s0d1d−

7.67–8.41 23.50–28.83 7.68–8.39 23.46–28.91
1s0d0s1d+ 1s0d0s1d−

7.98–8.64 25.79–30.36 8.05–8.67 26.18–30.41
JISP16 Experiment

8.369(1) 28.299(1) 8.482 28.296
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FIG. 4. (Color online) Tjon line obtained with DET-PET
1s0d0s1d± in comparison with results obtained with various NN

and NN + NNN interaction models from Refs. [32,34,35].

Another DET-PET modifying the tensor component of the
JISP16 NN interaction, is the DET-PET 0s1s0d1d±. This
DET-PET results in a very different range of Et and Eα

variations (see Table I). The DET-PET 3H and 4He binding
energies are also correlated along a nearly straight line (see
Fig. 5). However this line has a slope very different from the
slope of the Tjon line obtained with other interaction models.
Around the maximal 3H and 4He binding energies accessible
by this DET-PET, it suggests correlations consistent with
those derived using modern NN + NNN interaction models.
However, for smaller binding energies, this DET-PET suggests
much less bound 4He at the same 3H bindings as provided by
modern purely two-nucleon interactions.

The DET-PET 0s2s1s3s± modifies the central s-wave
component of the NN interaction. It results in the 3H and
4He binding energy correlation shown in Fig. 6. We see that
in this case the results do not concentrate as tightly around
some straight line. That is, they are more spread out on
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FIG. 5. (Color online) Same as Fig. 4 but for DET-PET
0s1s0d1d±.

7.2 7.4 7.6 7.8 8 8.2 8.4
E

t
 (MeV)

22

24

26

28

30

E
α (

M
eV

)

0s2s1s3s
+

0s2s1s3s
-

Experiment
JISP16
NN+NNN interactions
NN interactions

FIG. 6. (Color online) Same as Fig. 4 but for DET-PET 0s2s1s3s±.

the Et–Eα plane. The DET-PET Tjon lines transform into
closed-loop curves surrounding elongated areas. In the case
of the DET-PET 0s2s1s3s−, the Tjon curve surrounds many
points obtained with various NN interactions. The DET-PET
0s2s1s3s+ generates the Tjon curve shifted down from the
Tjon line suggested by other interactions. Both 0s2s1s3s+
and 0s2s1s3s− DET-PETs essentially extend the range of the
3H and 4He binding energy variations to smaller bindings.

IV. CONCLUSIONS

We have introduced a new type of phase-equivalent trans-
formations, DET-PET, preserving the deuteron wave function.
The suggested theory of DET-PET can be easily reformulated
to preserve scattering wave functions at a given energy instead
of the bound state wave function. We investigated transfor-
mations of the JISP16 NN interaction induced by DET-PETs
mixing oscillator components in various combinations. One of
these DET-PETs generates modifications of the central com-
ponent of the NN interaction, the others modify the tensor NN

interaction component. We demonstrated that DET-PETs are
able to modify significantly the np scattering wave functions
and hence the off-shell properties of the NN interaction while
the on-shell interaction properties are preserved.

DET-PETs impact the binding energies of many-nucleon
systems. We found that the 3H and 4He binding energies
can be significantly changed by DET-PETs. The investigated
DET-PETs modifying tensor NN interaction, correlate the
3H and 4He bindings along some lines that may differ in
slope from the Tjon line obtained with modern NN and
NNN interactions. The DET-PET 0s2s1s3s± modifying the
central s wave NN interaction, weakens the Et–Eα correlation
spreading the results on the Et–Eα plane.

It would be interesting to study DET-PET manifestations
in binding energies and other observables of heavier nuclei.
We speculate that DET-PET can be helpful in the further
development of JISP-like NN interactions.

DET-PETs can be also used to design an interesting
approach to effective interactions. In particular, DET-PETs
can be applied to a modern NN realistic interaction to reduce
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their high momentum components (and hence to improve the
convergence of ab initio calculations). At the same time, we are
preserving the deuteron wave function and NN correlations
in other partial waves at some energy by using the extension
of DET-PET to preserve the scattering wave function. Such
an effective interaction can be very interesting for many-body
nuclear applications.

It is also possible to extend the DET-PET concept to NNN

interactions. The corresponding set of transformations would
then involve changing the interior part of the NNN wave
function in such a manner as to preserve the NNN ground
state wave function and to preserve the asymptotic NNN

wave function. This could provide a useful tool to explore
the off-shell freedoms available in NNN interactions without
requiring repeated fits to the NNN bound state properties.
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