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Abstract. One of the key problems of mechanics of composite materials is an estimation of 

effective properties of composite materials. This article describes the algorithms for numerical 

evaluation of the effective thermal conductivity and thermal expansion of composites. An 

algorithm of effective thermal conductivity evaluation is based on sequential solution of 

boundary problems of thermal conductivity with different boundary conditions (in the form of 

the temperature on the boundary) on representative volume element (RVE) of composite with 

subsequent averaging of the resulting vector field of heat flux. An algorithm of effective 

thermal expansion evaluation is based on the solution of the boundary problem of elasticity 

(considering the thermal expansion) on a RVE of composite material with subsequent 

averaging of a resulting strain tensor field. Numerical calculations were performed with the 

help of Fidesys Composite software module of CAE Fidesys using the finite element method. 

The article presents the results of numerical calculations of the effective coefficients of thermal 

conductivity and thermoelasticity for two types of composites (single-layer fiber and 

particulate materials) in comparison with the analytical estimates. The comparison leads to the 

conclusion about the correctness of algorithms and program developed. 

1. Introduction 

At present, in many areas of technology various composite materials (composites) are widely used - 

artificially created heterogeneous solid materials consisting of two or more components with a clear 

boundary between them. The composites feature high strength and stiffness combined with lightness 

and resistance to mechanical, thermal and chemical influence. When combining several components of 

the composite a material is formed with a set of characteristics that reflect not only the properties of 

the components, but sometimes some new properties which the components do not possess 

individually. 

When working with composite materials, there is a problem of averaging of their mechanical or 

physical properties. With the known geometry of the composite and the known properties of the 

components it is necessary to calculate the effective (i.e. averaged) properties of the composite 

material [1, 2, 3]. There are different solutions of this problem - both analytic, using formulas, and 

numerical, using modern computational tools. 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012094 doi:10.1088/1757-899X/158/1/012094

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

This article discusses the method of numerical evaluation of effective thermal properties of 

composites based on the numerical solution of boundary problems on a representative volume element 

(RVE) of composite material. Calculations on a RVE were performed using the finite element analysis 

method [4, 5] with the help of CAE Fidesys [6]. 

2. Method of the effective properties calculating 

Since we are talking about calculations on a RVE, one should give a definition of this concept first. 

The representative volume element (RVE) of composite material is the minimal volume of the 

material, which can be used for some experiments and measurements, on the basis of which it is 

possible to draw conclusions about the behavior of the material as a whole. If the composite material 

features an irregular structure, its RVE should contain a sufficient volume of each component to in 

order to havbe a possibility to average the properties of the entire material. if a composite features a 

periodic structure - then a cell of periodicity is an RVE. 

2.1. Estimation of effective coefficients of thermal conductivity 

We begin with the definition of the effective thermal conductivity. Let's call the homogeneous 

materialas the effective (averaged) material (from the point of view of thermal conductivity), if it 

meets the following condition: if we consider a RVE of the initial composite material and fill the exact 

same volume of with this homogeneous material, then the average (averaged by volume) vectors of the 

heat flow in these two volumes will be equal at the same temperatures at the boundaries of the 

volumes. Let's call the thermal conductivity of this material as the effective thermal conductivity. 

Let's describe a methodology for estimation of the effective thermal conductivity of the composite 

material using this definition. For a RVE V in the form of a rectangular parallelepiped sized 

2Ax2Bx2C we will solve a certain number of boundary problems of thermal conductivity [7] (for 

steady thermal state with no internal heat sources): 

 0 q  (1) 

with nonperiodic boundary conditions in a form of predetermined temperature on the boundary 

 rTT e 


 (2) 

or with periodic boundary conditions in the form of bonds to temperatures of corresponding to each 

other points on the opposite faces of a RVE 
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where   is gradient operator, q is heat flux vector, T is temperature, r is radius vector of a point on 

the boundary. For periodic boundary conditions (i, -i), (j, -j), (k, -k) are pairs of points corresponding 

to each other on opposite sides of the RVE. 

Here 
eT  is a kind of effective temperature gradient on a RVE, which we are setting up. Each 

boundary thermal conductivity problem corresponds to separate effective temperature gradient. For 

periodic boundary conditions
1

)( eT ,
2

)( eT , 
3

)( eT  are components of the gradient. 

As a result of each task solution, we will get a vector distribution of the heat flux q over the RVE. 

Let's average it by the volume according to the formula 

 
V

e qdV
V

q
1

 (4) 
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and we will obtain an efficient vector of heat flux qe. The effective thermal conductivity of the 

composite will be evaluated in the form of relation of qe, obtained by us as a result of the calculation, 

to the effective temperature gradient 
eT , which we have defined as an input - in a form of Fourier 

law for thermal conductivity: 

  
j

e

ij

e

i
Tq    (5) 

In order to calculate the effective thermal conductivity coefficients, which we are interested in, we 

will solve three boundary thermal conductivity problems corresponding to the following temperature 

gradients: 

1)   3,2,1,0;0;
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Thus, by solving these three problems, we calculate all the effective thermal conductivity 

coefficients of the composite material. 

2.2. Estimation of the effective coefficients of thermal expansion 

First, let's define the effective thermal expansion. Let's call the effective (as averaging) material (in 

terms of thermal expansion) such a homogeneous material which meets the following condition: if we 

consider a RVE of the initial composite material and fill the exact same volume with this 

homogeneous material, then the average (averaged by volume) thermal strain of these volumes will be 

equal at the same temperature distribution over the volumes. The coefficients of thermal expansion of 

the material will be called as effective coefficients of thermal expansion. 

Let's describe a methodology for estimation of the effective thermal conductivity of the composite 

material using this definition. For a RVE V0 in the form of a rectangular parallelepiped sized 

2Ax2Bx2C wewill solve a certain number of elastic boundary value problems [8] considering the 

thermal expansion: 
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el
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 0
 (6) 

In (6) σ is total stress tensor, σ
el
 is mechanic (elastic) stress tensor, σ

th
 is thermal stress tensor. 

At the same time nonperiodic or periodic boundary conditions are applied to the RVE, and the 

entire volume is heated to T . Under the influence of temperature the volume deforms (freely 

expands). By averaging the strain tensor over the volume (in the final state after deformation) we will 

obtain an effective strain tensor: 

 
V

e dV
V


1

 (7) 

Let's find the effective thermal expansion  

 T
ij

th

ij
  (8) 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012094 doi:10.1088/1757-899X/158/1/012094

3



 

 

 

 

 

 

where ε
th
 is thermal strains tensor. A value of T , to which a RVE was heated, was set up by us; and 

the effective strain tensor resulting from this heating was calculated. Effective thermal expansion 

coefficients are calculated according to the formula: 

 
T

e

ij

ij





  (9) 

Boundary conditions applied to the RVE, should be discussed separately. Nonperiodic boundary 

conditions in this problem are zero pressure on the border of the volume, which allows it to expand 

freely as the temperature increases. Periodic boundary conditions also allow the volume to expand 

freely, with only one restriction: the RVE which was the periodicitycell prior to the deformation of the 

composite, should remain to be the periodicity cell after deformation. 

For this purpose a pair of points (1, 2) is fixed, the first point lies on the edge x = A, the second 

point lies on the edge x = -A, and their projections match each other (these could be the corner points). 

And for the displacement of each pair of points (i, -i), the first of which lies on the edge x = A, the 

second one lies on the edge x = -A a relationship is put on: 

 ii uuuu  21  (10) 

where u is the displacement vector of a point. Once again, we note that pairs of points (i, -i) in (10) are 

varied, passing across the surface of edges x = A and x = -A; and a pair of points (1, 2) - is a fixed one 

and the same for all relationships (10). 

Relationships similar to (10) are put on points of edges y = B and y = -B and edges z = C and z = -

C. These boundary conditions allow the model to change its volume freely while remaining the 

periodicity cell of the composite material by the form. 

3. Examples of calculations 

The described methods of numerical evaluation of the effective thermal conductivity and thermal 

expansion coefficients are implemented in a Fidesys Composite software module of CAE Fidesys. 

Boundary problems of elasticity and thermal conductivity are solved with the help of computational 

kernels CAE Fidesys using the finite element analysis method. For example, let's give the numerical 

solution of the problem of effective evaluation of thermal conductivity and thermal elasticity 

coefficients for the two types of composites as compared with analytical solutions. 

3.1. Single-layer fiber composite 

A single-layer fiber composite material is a two component composite material, wherein each layer of 

matrix is reinforced by unidirectional continuous fibers of the same thickness and the same spacing 

(Fig. 1). Effective thermal conductivity coefficients of such composite material can be estimated using 

the analytical formulas [9] (in which it is assumed that the fibers are directed along the axis X): 
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 (11) 

where λf and λm are thermal conductivity coefficients of the matrix and fibers, respectively, γf and γm - 

volumetric concentration of the fibers and the matrix, respectively. 
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Fiqure 1. Single-layer fiber composite material 

 

Effective coefficients of thermal expansion for such composite material can be estimated using 

formulas [9]: 
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 (12) 

where  12  dts
f

. 

In the formula (12) αf and αm are coefficients of thermal expansion of the fibers and the matrix, 

respectively, γf and γm are volumetric concentration of the fibers and the matrix, respectively, Ef and 

Em are Young's modulus fibers and the matrix, respectively; νf and νm are Poisson's ratios of the fibers 

and the matrix, respectively; d is fiber diameter, tf is fibers spacing (distance between adjacent fibers). 

A single-layer fiber composite material with fibers concentration of 10% was considered. Fiber 

properties: Young's modulus of 2,000 MPa, Poisson's ratio of 0.2, the thermal expansion coefficient of 

0.1 K
-1

, the thermal conductivity of 10 W/(m·K). Matrix properties: Young's modulus of 2 MPa, the 

Poisson's ratio of 0.3, the thermal expansion coefficient of 0.001 K
-1

, thermal conductivity coefficient 

of 2 W/(m·K). Analytical and numerical values of thermal conductivity are listed in Table 1. 

Table 1. Coefficients of thermal conductivity of single-layer fiber composite material. 

 Analytical, W/(m·K) Numerical, W/(m·K) 

λx 2.8 2.78952 

λy 2.28571 2.27496 

λz 2.28571 2.27484 

Analytical and numerical values of the thermal expansion coefficients are listed in Table 2. 
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Table 2. Coefficients of thermal expansion of single-layer fiber composite. 

 Analytical, K
-1

  Numerical, K
-1

  

αx 0.099117 0.099097 

αy 0.005296 0.005087 

αz 0.005296 0.005086 

As one can see in the Table 1, the thermal conductivity coefficients for the fiber composite 

obtained numerically are equal to analytical values with very good accuracy (the error is less than 

1%). Table 2 shows that the numerical values of the coefficients of thermal expansion match the 

analytical with error of not more than 4%, which is also a good accuracy. 

3.2. The particulate composite reinforced by spherical inclusions 

The particulate composite is a matrix reinforced by individual filler particles. For simplicity, let's 

consider the numerical calculation model of such a composite in which the filler particles have the 

same spherical shape, the same size and are arranged in a periodic manner in the martix, and the bulk 

concentration of filler in the composite is small. Effective coefficient of thermal conductivity of such 

composite can be estimated by the analytical formula [9]: 
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where λi and λm are thermal conductivity coefficient of filler inclusions and the the matrix, 

respectively, γi and γm - volumetric concentration of filler inclusions and the matrix, respectively. 

Effective coefficient of thermal expansion of such composite can be estimated by the formula [9]: 
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In the formula (14) αi and αm are coefficients of thermal expansion of inclusions and the matrix, 

respectively; γi and γm are volumetric concentration of inclusions and the matrix, respectively; Ki and 

Km are volumetric compression modules of inclusions and the matrix, respectively; νi and νm are 

Poisson's ratios of inclusions and the matrix, respectively. 

A particulate composite with concentration of spherical inclusions of 5% was considered. Fiber 

properties: Young's modulus of 10 MPa, Poisson's ratio of 0.25, the thermal expansion coefficient of 

0.1 K
-1

, thermal conductivity coefficient of 10 W/(m·K). Matrix properties: Young's modulus of 

1 MPa, the Poisson's ratio of 0.4, the thermal expansion coefficient of 0.001 K
-1

, thermal conductivity 

coefficient of 2 W/(m·K). Analytical and numerical values of the thermal conductivity coefficient are 

shown in Table 3. 

Table 3. Coefficient of thermal conductivity of particulate composite material. 

 Analytical, W/(m·K) Numerical, W/(m·K) 

λ 2.17642 2.17519 

Analytical and numerical values of the thermal expansion coefficient are listed in Table 4. 

Table 4. Coefficient of thermal expansion of particulate composite material. 

 Analytical, K
-1

 Numerical, K
-1

 

α 0.006879 0.007077 
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As one can see in the Table 3, the thermal conductivity coefficient of the particulate composite 

material obtained numerically match the analytical value with very good accuracy (error is less than 

1%). The numerical values of thermal expansion coefficients match the analytical values with the 

accuracy of no more than 3%, which also shows good accuracy of numerical solution. 

4. Conclusion 

The article presents the developed algorithm of calculation of effective thermal properties of 

composite materials on the basis of solving of boundary value problems of thermal conductivity and 

elastic boundary value problem for a RVE with the subsequent averaging of the results. The algorithm 

is implemented in a Fidesys Composite software module of CAE Fidesys. The comparison with the 

known analytical solutions was conducted, which allowed to draw a conclusion about the correctness 

of algorithms and the program developed. In the future we plan to generalize the approach to the case 

of nonlinear thermal conductivity and thermo-elasticity models. 
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