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Abstract—We consider the recursive conveyor schedule optimization problem. To this end, we
introduce the definition of a conveyor described by a connected acyclic graph, in which each
vertex is an operation or a control function associated with the corresponding recursive function
from a certain finite set. Each recursive function defines a precedence relation for a conveyor
operation. The solution of the problem of minimizing the time of order fulfillment by a conveyor
on a finite set of renewable resources is considered. The solution is carried out by reduction to
the constraint satisfaction problem.
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1. INTRODUCTION

Resource-Constrained Project Scheduling Problem (RCPSP) is one of the main problems in
scheduling theory. In RCPSP, a set of orders is specified that must be served on a finite set of
machines (hereinafter referred to as resources). An order is identical to a set of ordered operations
and is characterized by the execution time. It is necessary to minimize the lead time for the
set of resource allocations across operations. This type of problems is also relevant for conveyor
systems [1]; see [2] for a list of publications that addresses assembly line balancing and resource
scheduling techniques during the conveyor design phase. The paper [3] provides a comprehensive
overview and analysis of various methods for designing and planning conveyor systems. Most papers
deal with assembly line balancing (ALB). Methods for finding optimal solutions using linear [4, 5]
and integer [6] programming are proposed for the ALB model. The papers [7–10] are of interest
among contemporary papers on resource scheduling optimization for typical problems of scheduling
theory.

It is important to note two features in the statement of such problems.
The first is that resources are allocated prior to the order fulfillment process and to the entire

fulfillment process. This results in each resource being assigned to a single operation, even if it
could potentially be used by multiple operations. However, it can be shown by example that
transferring a resource from one operation to another can lead to a more efficient schedule. Figure 1a
shows a model of a conveyor of three sequential operations. Potentially used resources from the
set {m1,m2,m3,m4} are indicated in curly braces under the operations. Figure 1b shows the
duration of operations when using different resources. The first index is the operation number,
and the second is the resource number. Figures 1c and 1d show the timing diagrams of operations
for seven orders. The abscissa is the order number, and the ordinate is time. The segment with
index i, j defines the time interval for the ith operation using the jth resource for the kth order.
Figure 1d shows an optimal diagram with resource assignment to an operation for the entire duration
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OPTIMIZATION OF A RECURSIVE CONVEYOR 1893

Fig. 1. Example of two resource allocation methods for an assembly line.

of orders, and Fig. 1c shows a diagram with resource allocation without assignment to operations.
Comparison of the diagrams shows the time advantage of the second method.

The second feature is the use of a limited set of precedence relationships. This is a relation of
precedence between operations and it is defined using the “and” predicate.

The present paper proposes a solution to overcome both of these constraints. The resource
distribution with the possibility of using one resource by several operations and with the expan-
sion of precedence relations using recursive functions is considered. Constraint Satisfaction Prob-
lems (CSPs) and Constraint Programming methods [11–13] are used, among other things, to solve
scheduling problems. In this paper, we consider the solution of the RCPSP by reducing it to a CSP
for conveyors described by recursive functions [14]. The execution time of operation i depends
on the used resource j, i.e., is equal to pij ; see [15] for examples of capabilities and use of such
conveyors.

The paper is organized as follows. Section 2 defines a recursive conveyor and describes recursive
functions in detail. Section 3 provides examples of recursive conveyors. Section 4 describes the
definition of CSP and states the problem of allocating conveyor resources as a CSP. Section 5
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Fig. 2. Graphic notation of operations and trigger functions of a conveyor.

contains conclusions and examines the problem on the complexity of the algorithm for solving the
CSP stated in the paper.

2. DEFINITION OF CONVEYOR

The model and properties of a recursive conveyor are discussed in detail in [14, 16]. However,
they are described under the assumption that each operation has its own resource assigned to it for
the duration of execution of all orders. In this section, the definition of recursive conveyor functions
is given taking into account the resource allocation for each (operation, order) pair.

The conveyor model is a connected acyclic directed graph G = (V,A) with a single terminal
vertex; V is the set of graph vertices and n is the number of vertices, and A is the set of graph
edges—ordered pairs of the form (v, w), where v, w ∈ V . The vertices of the graph are labeled by
numbers from the set I = {1, . . . , n} so that the first n0 (1 � n0 < n) vertices be initial and the
vertex n be terminal. The visual image of the vertices and edges of the graph is presented in Fig. 2.
Here i, j, j1, j2 are the numbers of operations (vertices), k is the order number, pi,j is the time of
execution of the ith operation when using the jth resource, and qi is the multiplication or reduction
coefficient. Each vertex of the graph may have one input edge (see Figs. 2b, 2c, 2d, 2f) or two edges
(see Figs. 2e, 2g) depending on the vertex type. The predecessor functions pred, pred1, pred2 : I → I
are defined on the set of numbers of graph vertices.

The function pred(i) is defined for a vertex that has one predecessor vertex and calculates the
number j of the graph vertex such that (j, i) ∈ A.

The following two functions are defined for vertices that have two predecessor vertices, called
vertex 1 and vertex 2:

pred1(i) calculates the number j1 of the graph vertex 1 such that there exists an edge (j1, i) ∈ A.

pred2(i) calculates the number j2 of the graph vertex 2 such that there exists an edge (j2, i) ∈ A.
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Each graph vertex may correspond to an operation or a trigger function. The operations are
associated with production operations. The trigger functions define the relations of time precedence
of operations. The graph vertices are labeled using the mapping

type : I → E, where E = {bop,op,and,mul, red,get1,get2,put}

to the set of eight elements. Each constant of the set E denotes the type of a graph vertex,
and the vertex has the corresponding graphic notation (Fig. 2). The conveyor uses the set of re-
sources M = {m1, . . . ,mr}. Each operation i may potentially use resources from some set Di ⊆ M .
For each 1 � i � n, we define a variable xik on the set Di. If xik = mj , then the operation i uses
resource mj ∈ Di when executing the kth order. The execution time of the operation is pij and
is a constant. At each time, each resource can be used by only one operation. Interruptions of
operations are forbidden.

Trigger functions do not consume resources, and their execution time is 0.
The operation execution schedule is constructed using recursive functions R : I × K×M → T ,

where K is a finite set of order numbers and T is time.
For example, the recursive function

t(i, k) = r1
(
t(i, k − 1), t(j, k), pil

)
or

t(i, k) = r2
(
t(i, k − 1), t(j1, k), t(j2, k), pil

)
,

where j = pred(i), j1 = pred1(i), j2 = pred2(i) calculates the completion time of processing the
kth order by the ith operation for k ∈ K based on the time when it completes the (k − 1)st order
and on the completion times of the kth order by the preceding operations. The recursive functions
have two arguments: i is the operation number (the number of a graph vertex), and k is the order
number. There is a specific recursive function associated with each type of a vertex, i.e., with each
element of the set E.

The recursive function t(i, k) calculated using formula (1) implements the superposition of the
recursive functions corresponding to graph vertices and calls one of them in accordance with the
vertex type,

t(i, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bop(i, k) if type(i) = bop

op(i, k) if type(i) = op

and(i, k) if type(i) = and

mul(i, k) if type(i) = mul

red(i, k) if type(i) = red

get1(i, k) if type(i) = get1

get2(i, k) if type(i) = get2

put(i, k) if type(i) = put.

(1)

The calculation of the completion time of the kth order by the conveyor is performed by calling the
recursive function t(n, k).

The following describes all types of nodes, including their purpose, type, and the corresponding
recursive function.
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1. The initial production operation (see bop in Fig. 2a) with number 1 � i � n0 is characterized
by the completion time pij of the kth order if the operation uses the resource mj (xik = mj).
The completion time of this operation for the kth order is determined as the completion time
of the (k − 1)st order plus the execution time of the operation pij . If an operation involved
in the execution of the kth and (k− 1)st order uses different resources, then their completion
times are matched. The execution time of the zero order is equal to pij ,

bop(i, k) : bop

=

⎧⎪⎨
⎪⎩
pij if (xik=mj)&(k=0) (a)

bop(i, k−1)+pij if (xik=xi,k−1)&(xik=mj)&(k>0) (b)

bop(i, k−1) + pij−pil if (xik �=xi,k−1)&(xi,k−1=ml)&(xik=mj)&(k>0). (c)

(2)

2. A noninitial production operation (see op in Fig. 2b) with number n0 < i is characterized by
the execution time of pij if resource mj is used. The completion time of the kth order by this
operation is determined as the maximum of the completion times of the (k − 1)st order by
this operation and of the kth order by the preceding operation plus the execution time of the
operation pij . In this case, the beginnings of execution of the kth and (k− 1)st orders by the
ith operation are matched if different resources are used for its execution. The execution time
of the zero order is equal to the execution time of the zero order by the preceding operation
plus pij ,

op(i, k) : op =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
(
pred(i), k

)
+ pij if (xik = mj)&(k = 0) (a)

t
(
pred(i), k

)
+ pij

if
(
t
(
pred(i), k

)
� t(i, k − 1)

)
&(xik = mj)&(k > 0) (b)

t
(
pred(i), k

)
+ pij

if
(
t
(
pred(i), k

)
< t(i, k − 1)

)
&(xik �= xi,k−1)&(xik = mj)&(k > 0) (c)

t(i, k − 1) + pij

if
(
t
(
pred(i), k

)
< t(i, k − 1)

)
&(xik = xi,k−1)&(xik = mj)&(k > 0). (d)

(3)

3. The trigger function and (see and in Fig. 2e) calculates the completion time of the kth order
for two preceding operations,

and(i, k) : and = max
(
t
(
pred1(i), k

)
, t
(
pred2(i), k

))
. (4)

4. The trigger multiplication function (see mul in Fig. 2c) for each completion time by the
preceding operation calculates qi completion times of operation i. This means that for one
execution of the operation preceding to i there are qi (qi � 1) executions of operation i,

mul(i, k) : mul = t
(
pred(i), �k/qi�

)
, (5)

where �x� denotes the integer part of x.
5. The trigger reduction function (see red Fig. 2d) is the inverse function of the multiplication

function and calculates the completion time of the next batch of qi (qi � 1) orders,

red(i, k) : red = t
(
pred(i), (k + 1)qi − 1

)
. (6)
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Fig. 3. Example of conveyor graph (top) and the corresponding graph of superposition of recursive functions
(bottom).

6. The trigger get function (see get in Fig. 2f) simulates splitting conveyor operations into two
threads. For a user it serves as one function, and when realized, it splits into two (conditionally,
upper and lower), see Fig. 2h. For the upper variant, the trigger function get1 calculates the
completion times of even orders; i.e., t(i, 0) = t(p, 0), t(i, 1) = t(p, 2), t(i, 2) = t(p, 4), . . .,

get1(i, k) : get1 = t
(
pred(i), 2k

)
, k � 0. (7)

For the lower one, it calculates the completion times of odd orders; i.e., t(j, 0) = t(p, 1),
t(j, 1) = t(p, 3), t(j, 2) = t(p, 5), . . .,

get2(i, k) : get2 = t
(
pred(i), 2k + 1

)
, k � 0. (8)

7. The trigger put function (see put in Fig. 2g) is the inverse of the get function and simulates
merging two conveyors into one. The easiest way to explain this is by the sequence of values
t(i, k): t(i, 0) = t(p, 0), t(i, 1) = t(q, 0), t(i, 2) = t(p, 1), t(i, 3) = t(q, 1), t(i, 4) = t(p, 2),
t(i, 5) = t(q, 2), . . .,

put(i, k) : put

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
(
pred1(i), k

)
if k = 0

max
(
put(i, k − 1), t

(
pred2(i), k/2

))
if (k mod 2 = 0)&(k > 0)

max
(
put(i, k − 1), t

(
pred1(i), (k − 1)/2

))
if k mod 2 = 1.

(9)

Here x mod y is the remainder of the division of x by y.

Figure 3 shows an example of a conveyor graph and the corresponding superposition of recursive
functions for the case where each operation has one resource allocated for the entire process duration.
In reality, such a graph is not constructed—it results from the process of calculation of the recursive
function t(i, k).

The start time of the conveyor operation is set equal to 0.
In the proposed model, the interpretation of the operations and the trigger function and does not

differ from those in scheduling theory. The remaining set of trigger functions has been developed
in practice based on model construction and is represented by two pairs of direct and inverse
functions (mul − red and get − put). It is possible to construct new functions extending the
precedence relation.

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 11 2021



1898 KUPRIYANOV, LAZAREV

p = 1

p = 1

p = px

p = px

p = px

p = px

p = px

q = pai

q = pai

q = pai

q = pai

q = pai

i = i + 1

i = i + 1

i = i + 1

i = i + 1

i = i + 1

4s = s + q

s = s + q

t

s = s + q

s = s + q

s = s + q

i = 0

i = 0

4

s = a0

s = a0

k

and
and and

Fig. 4. Example of a computational conveyor model and a timing diagram.

3. EXAMPLES OF MODELS

Examples of some conveyor models for various applications are given in [15]. The present paper
provides additional examples of recursive conveyors. Before giving the examples, we note that the
time diagram should be drawn up for each operation separately, but this is unclear and cumbersome,
and so the diagrams will be combined in one. The abscissa will show the order numbers, and the
ordinate will show the time. With such a combination, some time intervals will merge in one
diagram. To prevent this from happening, the segments with the value k on the abscissa axis will
be placed in the interval between divisions k and (k + 1).

Example 1 . Figure 4 presents the model of a conveyor that calculates the polynomial

p = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4

and the corresponding timing diagram under the assumption that each operation is performed by
its own processor. The execution times are equal to 1 for all operations.

Example 2 . Before considering the second example, let us look at an auxiliary one. Figure 5
provides an example of a conveyor and its timing diagram. The conveyor consists of three operations,
a reduction function with factor 2 and a multiplication function with factor 3. The diagram shows
that all operations are performed with different multiplicities, but the process is a conveyor belt.
To understand that such a conveyor can take place in practice, consider an example of a conveyor
assembly of some product that has the structure shown in Fig. 6. The specific feature of the
assembly is that unit 2 and unit 3 are assembled in a place remote from the main unit assembly.
Therefore, a batch of q2 units is assembled on site and then transported to the warehouse of the
main production. Similarly, unit 3 is assembled at another remote location and transported in
batches of q3 units. It is required to draw up a schedule for production of units, their storage in
a warehouse, and transportation and assembly of the main product as a single conveyor process.
An example of a model of such a process is shown in Fig. 7. Its essence is that unit 2 accumulates
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Fig. 5. Example of a simple conveyor with multiplication and reduction functions.

in the warehouse in the amount of q2 pieces as the assembly line progresses, and then this batch is
delivered to the main assembly site. The pipelining of this process makes it possible to describe the
reduction and multiplication functions. For unit 3, we argue in a similar way.

4. STATEMENT OF THE PROBLEM

In this section, we consider a recursive conveyor presented in the form of an acyclic connected
graph for which it is necessary to minimize the execution time of k̂ orders by allocating resources,
where k̂ is some constant. This RCPSP is reduced to minimizing the function t(n, k̂) for a given k̂
on a finite set M of resources. Let us describe the CSP statement for discrete variables with finite
sets of values.

In the theory [11], a CSP is a quadruple (V,D,R,C), where V = {x1, . . . , xn} is the set of
variables, D = {D1, . . . , Dn} is the set of domains of variables, R is the set of relations of different
valency over the domains D, and C = {C1, . . . , Cm} is the set of constraints binding the set of
values of variables from V by means of relations in R.

To solve a CSP is to find the values of all variables in the set V satisfying all the constraints.
There can be one or several CSP solutions.

The CSP can be represented as a network of constraints. For such a network it would be natural
to take the graph of the conveyor model in which some operation corresponds to a vertex. However,
since operation i is performed k times in the presence of k orders and some resource mi can be used
in each case, it follows that there is a certain set of resources associated with the operation. To
avoid this situation, let us generate an expanded graph from the initial model graph for a given k̂
in which each vertex corresponds to a pair (operation number, order number) and the precedence
relations are preserved. Such a graph can be constructed for any conveyor model and is not difficult.
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Fig. 6. Assembly item structure.

Fig. 7. Distributed assembly line model.

Fig. 8. Examples of conveyor graphs for specific values of k̂.

Simple examples of such graphs are shown in Fig. 8. The top is the original graph of the model,
and the bottom is the graph for a specific value of k̂. The vertices of the graphs are labeled with
appropriate recursive functions and are associated with specific operations and orders. If the original
graph has n vertices (operations), then the new graph has nk̂ vertices. It can readily be shown that
the expanded graph is also acyclic. Obviously, in this case each vertex corresponds to one resource
if the vertex corresponds to an operation (vertex type bop or op). In other cases, when the vertex
corresponds to a trigger function, the resource is not used. To reflect this fact in the problem, we
supplement the set of resources with the zero element, M = {m0,m1, . . . ,mr}.
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Let us number the vertices of the expanded graph in some way. Let I ′ = {1, . . . , n′}, n′ = nk̂,
be the set of new numbers. By default we assume that i′ ∈ I ′ denotes the number of a vertex in
the new graph and there exist mappings ψ : I ′ → I and ϕ : I ′ → K. If there is a precedence with
respect to i in the original graph, then in the expanded graph there exists precedence in both i
and k. Let us define these two functions. The function pk : I ′ → I ′ calculates a vertex preceding
in k; i.e., if i′′ = pk(i′), then ψ(i′) = ψ(i′′) and ϕ(i′′) = ϕ(i′)−1. The function pi : I ′ → I ′ calculates
a vertex preceding in i; i.e., if i′′ = pi(i′), then ψ(i′′) = pred(ψ(i′)) and ϕ(i′′) = ϕ(i′). Further, both
numbering systems—consecutive with a prime and two-coordinate (i, k) without the prime—will
be used in expressions to simplify the notation under the assumption that i′ → (i, k), i = ψ(i′),
and k = ϕ(i′).

Let us transfer the above statement of the CSP to the considered domain of scheduling theory.
The quadruple of CSP objects will be defined as follows:

1. V = {x1, . . . xn′} is the set of discrete variables with a range of values defined for each of them.
2. Di′ = Di is the domain of a variable xi′ linked to the corresponding ith vertex of the original

graph; i.e., i′ → (i, k). In this case, one should bear in mind that for each vertex i′ of
the trigger function, the respective variables xi′ will be defined on the domains Di = {m0}
containing only one zero resource. This fact substantially reduces the search space.

3. R ⊆ (D1 ×D2 × · · · ×Dn′).
4. C is the set of constraints, which splits into several groups.

The set of constraints is basically a set of recursive functions derived from recursive operation
functions. The modifications are caused by the transition to the expanded graph and the associated
change of variables. These functions generate constraints due to the admissible schedules for each
conveyor operation for a certain specified resource allocation for (operation, order) pairs. The last
condition checks the admissibility of a schedule from the viewpoint of the fact that the resource is
not used by two operations at some point in time.

The 1st group is the set of unary constraints defined for the initial operations (1 � i � n0) and
constructed based on the function (2),

bop(i, k) =

⎧⎪⎨
⎪⎩
pij if (xi′ = mj)&(k = 0)

bop(i, k − 1) + pij if (xi′ = xpk(i′))&(xi′ = mj)&(0 < k � k̂)

bop(i, k − 1)− pij + pil if (xi′ �= xpk(i′))&(xi′ = ml)&(xpk(i′) = mj)&(0 < k � k̂).

The 2nd group is the set of binary constraints defined for a pair of graph vertices linked by an
edge and constructed based on the functions (3) and (5)–(8),

op(i, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
(
pred(i), k

)
+ pij

if
(
type(i) = op

)
&(xi′ = mj)&(k = 0)

t
(
pred(i), k

)
+ pij

if
(
type(i) = op

)
&
(
t
(
pred(i), k

)
� t(i, k − 1)

)
&(xi′ = mj)&(0 < k � k̂)

t
(
pred(i), k

)
+ pij

if
(
type(i) = op

)
&
(
t
(
pred(i), k

)
< t(i, k − 1)

)
&(xi′ �= xpk(i′))&(xi′ = mj)&(0 < k � k̂)

t(i, k − 1) + pij

if
(
type(i) = op

)
&
(
t
(
pred(i), k

)
< t(i, k − 1)

)
&(xi′ = xpk(i′))&(xi′ = mj)&(0 < k � k̂),
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mul(i, k) = t
(
pred(i), �k/qi�

)
if

(
type(i) = mul

)
&(0 � k � k̂),

red(i, k) = t
(
pred(i), (k + 1)qi − 1

)
if

(
type(i) = red

)
&(0 � k � k̂),

get1(i, k) = t
(
pred(i), 2k

)
if

(
type(i) = get1

)
&(k mod 2 = 0)&(0 � k � k̂),

get2(i, k) = t
(
pred(i), 2k + 1

)
if

(
type(i) = get2

)
&(k mod 2 = 1)&(0 � k � k̂).

The 3rd group is the set of constraints defined for a triple of graph vertices and constructed in
accordance with the functions (4) and (9),

and(i, k) = max
(
t
(
pred1(i), k

)
, t
(
pred2(i), k

))
if

(
type(i) = and

)
,

put(i, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
(
pred1(i), k

)
if

(
type(i) = put

)
&(k = 0)

max
(
put(i, k − 1), t

(
pred2(i), k/2

))
if

(
type(i) = put

)
&(k mod 2 = 0)&(0 < k � k̂)

max
(
put(i, k − 1), t

(
pred1(i), (k − 1)/2

))
if

(
type(i) = put

)
&(k mod 2 = 1)&(0 < k � k̂).

The 4th group of constraints refers to constraints like all-different. It reflects the fact that the
use of a resource at a time is possible by no more than one operation. Let us introduce the
following notation: τi′ = (tbi′ , t

e
i′) denotes the time interval from tbi′ to tei′ (t

b
i′ � tei′) for which

the ith operation executes the kth order (i = ψ(i′), k = ϕ(i′)) with some resource mj used.
The operation ∩ takes the value “True” if the time intervals overlap,

τi′ ∩ τi′′ =

⎧⎨
⎩True if (tbi′ < tei′′ � tei′) or (tbi′ � tbi′′ < tei′)

False otherwise.

With these definitions, the global constraint is as follows:

∀i′∀i′′ (1 � i′, i′′ � n′)&(i′ �= i′′)&(τi′ ∩ τi′′) 

((

type(i′) �= bop
)
&
(
type(i′) �= op

))
∨ (

type(i′′) �= bop
)
&
(
type(i′′) �= op

)) ∨ (xi′ �= xi′′).

The meaning of the condition is that if the intervals of two distinct vertices i′ and i′′ overlap,
then either at least one of them corresponds to a trigger function or they use distinct resources.

To solve the CSP is to find the values of the variables xi′ for which all the listed conditions
are satisfied; it is obvious that in this statement the CSP will always have some solution. One
can compile a schedule for any allowed resource allocation. The present paper requires an optimal
schedule. Let Topt be the execution time of the optimal schedule. We will assume that the solution
is quasioptimal up to some predetermined value Δ if the solution T found is such that T −Topt � Δ.
The calculation of the quasioptimal value of the schedule execution time can be carried out using
the following well-known algorithm.

Algorithm.

Step 1.

Choose some set V = V0 of values.
Calculate the value of Tmax = t(n′, k̂) for V0.
Set Tmin = 0.
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Fig. 9. Example of a linear order on a graph.

Step 2. If Tmax − Tmin � Δ, then the problem has been solved, Tmax is a solution, and the set V
corresponding to this solution is the desired resource distribution.

Step 3. Calculate T = Tmin + (Tmax − Tmin)/2.

Step 4. Introduce the auxiliary constraint t(n′, k̂) � T in the CSP.

Step 5. If the CSP with the auxiliary condition does not have a solution, then set Tmin = T and go
to step 3.

Step 6. If the CSP with the auxiliary condition has a solution, then set Tmax = T and go to step 2.

The value Tmax thus found is quasiminimal, but the quasioptimality of this value needs to be
proved. The essence of the problem is that recursive functions construct an optimal schedule at
the local level (implement a greedy algorithm), and it must be proved that the local optimization
is also global for a fixed resource allocation.

Assertion. For each feasible value V = {x1, . . . , xn′}, the recursive function t(i, k) calculates
one of the optimal values for 1 � i � n and 0 � k � k̂.

Proof. We prove the assertion by induction.
For the presentation to be systematic, we recall the statement of the induction principle. Some

assertion P (i) depending on a positive integer i is considered proven if

The base case. It is established that P (1) holds true.

The induction step. For each 1 � i < n′, the assumption that P (i) holds implies that P (i+1) holds
true as well.

Let us apply this method to the expanded graph. It is well known from graph theory [17] that an
acyclic graph is strictly partially ordered. There are algorithms for the construction of a linear order
on a strictly partially ordered graph. Informally, we speak of a linear order if all the vertices of the
graph are arranged in a row and all edges are directed from left to right. An example of constructing
a linear order from a strictly partial order is shown in Fig. 9, where panel (a) is the original acyclic
graph and panel (b) is one of the possible linear orders. In this paper, any such algorithm will be
suitable provided that the first n0 vertices of the original graph still remain the first, albeit possibly
in a different order, and the vertex n remains the last one. When evaluating a recursive function in
accordance with a linear order, its arguments will have already been calculated.

We apply the induction method as follows.

The base case. Based on the definition of a recursive conveyor and the way of ordering the vertices in
the original graph, it is obvious that all the initial vertices in the original graph are operations
(not functions) and are derivatives for the initial vertices of the expanded graph. If the initial
graph has n0 initial vertices, then in the expanded graph there are also n0 initial vertices, and
for each initial vertex i in the original graph there is a vertex (0, i) in the expanded graph that
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Fig. 10. Variants of fragments of timing diagrams.

is not preceded by any other vertex. If 1 � i � n0 is some initial vertex of the original graph,
then the vertex i′ such that ψ(i′) = i and ϕ(i′) = 0 is the starting vertex of the expanded
graph.

Thus, for each initial vertex i′ → (i, k) of the expanded graph the following assertions hold:

type(i) = bop, 1 � ψ(i′) � n0 and ϕ(i′) = 0, i.e., (1 � i � n0)&(k = 0).

In this case, in accordance with function (1), we have

t(i, 0) = bop(i, 0) = pij if xi′ = mj.

Thus, for a particular value xi′ , the value t(i, 0) is unique and hence optimal. The Assertion
holds true. Since this assertion holds for any of the n0 initial operations, we will not consider
these variants below.

The induction step. Suppose that the Assertion holds for a vertex with any number n0 < i′ < n′.
Let us prove that in this case it also holds for the vertex with number i′′ = i′ +1. Eight cases
are possible in accordance with (1).

Consider cases 1 and 2, when

type(i′′) = bop and type(i′′) = op.

Case 1. The initial operation is performed over a nonzero order; i.e., i′′ → (i, k) and
(1 � i � n0)&(k > 0). If xi′′ = xpk(i′′), then operation i, subject to the completion
of the kth and (k − 1)st orders, uses one resource.

In this case, the completion time is calculated by formula (2(a)) (the diagram in Fig. 10a).
If distinct resources are used, then operation i can be performed simultaneously on
orders (k − 1) and k. The completion time is calculated by formula (2(b)) (the diagram
in Fig. 10(b)). The duration of the operations may not be the same. Considering that
the execution time of the (k− 1)st order by operation i is optimal, the execution time of
the kth order by i is optimal as well. This completes the analysis of this case.

Case 2. A noninitial operation is performed in this case. If k = 0, then the completion time
is calculated by formula (3(a)). If k > 0, then the completion time is calculated based
on cases (3(b))–(3(d)). The corresponding examples of timing diagrams are shown in
Figs. 10c–10e. In all cases, the new schedule with the addition of vertex i′′ will be
optimal if the previous schedule was optimal.
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Cases 3–8. In all these cases, the vertices correspond to trigger functions. Hence the resources
are not allocated and the final schedule is constructed in the only possible way based on
the temporal precedence relation determined by the corresponding recursive function.

This completes the proof of the Assertion. �
The time complexity of the Algorithm is

O

(
log2

(
T0

Δ

) nk∏
i=1

| Di |
)
,

where T0 is the value of the execution time of the schedule for some arbitrary set of values V0, Δ is
some predetermined constant of the precision of the calculation of the result, and | Di |= 1 for
trigger functions.

5. CONCLUSIONS

The present paper gives a theoretical statement of the problem. For the first time, a tool such
as Constraint Programming is used to study the conveyor model. Applying this method in practice
is a further direction of research of the present authors.

There are a large number of commercial and freeware constraint programming systems nowadays.
An overview of such systems can be found in [2].

The study of the computational complexity of solving the CSP seems to be a fundamental prob-
lem. It was shown in [18] that the class of all CSPs is NP-hard, so there are hardly any efficient
(polynomial) general-purpose algorithms for solving all types of CSPs. Classes of easily solvable
CSPs that can be solved in polynomial time are usually described either by trees and tree-like graph
structures [19, 20] or by a certain combination of algebraic operators [21]. The problem considered
in the paper is based on a tree of constraints (the original acyclic graph and the extended graph);
this inspires optimism about the existence of an efficient algorithm for solving the problem. Con-
structing a schedule for a conveyor by calculating the superposition of recursive functions assumes
the backtracking option in various modifications [2] for solving the CSP. It is important to note
that the introduction of trigger functions into the conveyor model does not in any way increase the
algorithmic complexity of solving the problem.

There are two important advantages of this method.
First, the recursive conveyor optimization method discussed in the paper [22] is reduced to an

integer linear programming problem and considers a strictly defined set of recursive functions. The
introduction of new functions requires additional consideration of the correctness of the application
of the method. The approach used in this paper, although it considers a specific set of functions, does
not impose any restrictions on these functions other than computability. This allows introducing
new recursive functions into consideration without discussing the issue of the correctness of the
method application.

Second, the proposed method allows one to distribute resources without assigning them to sepa-
rate operations. This approach increases the dimension of the problem but opens up opportunities
for constructing more efficient schedules.
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