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Abstract—Rationally localized solutions (lumps) are obtained for a system of nonlinear equations describing
the optical generation of terahertz radiation and generalizing the Yajima–Oikawa and Kadomtsev–Petviash-
vili equations. Conditions and features of the formation of such coupled optical-terahertz structures are dis-
cussed.
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INTRODUCTION
Over the last decade, the attention of researchers

has been drawn to the generation of terahertz radia-
tion. One reason for this is that terahertz radiation has
numerous applications in, e.g., security systems,
image recovery, communications, astronomy, medi-
cine, and spectroscopy. One of the most efficient ways
of generating such radiation is by optical means [1–3]
based on the optical rectification effect observed in
quadratically nonlinear media.

Theoretical descriptions of the optical generation
of terahertz radiation produce systems of equations
that are important for both practical applications and
studying their mathematical properties. The possibil-
ity of localizing the generated terahertz radiation in
space is of special interest. The aim of this work was
therefore to investigate localized optical terahertz
structures. We consider a case in which the localiza-
tion of terahertz radiation is of a rational (exponential)
character. Such structures are often called lumps.

BASIC EQUATIONS
Let us consider the case where an optical pulse with

a wavefront perpendicular to axis z is fed to the input
of a nonlinear medium. Let electric field  of the
pulse be polarized in the plane of the principal cross
section and have the form

(1)
where  is the complex and slowly varying envelope of
the optical component,  and  are the carrier fre-
quency and the longitudinal component of the wave

vector of the optical component, and  is the tera-
hertz component of the pulse.

Using Maxwell’s equations and writing the polar-
ization response of a quadratically nonlinear medium
as the sum of the optical and terahertz components,
we arrive at the system of equations

(2)

(3)

where  is the speed of light in a vacuum; 
group velocity  of the optical component is
expressed as    is

the optical refractive index; 
is the temporal linear susceptibility of the

medium;  is the group velocity dispersion
(GVD) parameter of the optical component,

 is the terahertz component dis-

persion parameter;  

and  is the nonlinear quadratic susceptibility.
In deriving system (2), (3), we assumed the diffrac-

tion was planar, ignored the nonlocality of the nonlin-
ear part of the polarization response of a medium,
used the unidirectional propagation approximation
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[4], and assumed the dispersion to be weak. In addi-
tion, we assumed the Zakharov–Benney condition
(ZB) [5] to be valid. (In our case, it has the form

 where  is the terahertz refrac-
tive index.) Meeting the ZB condition ensures the
most efficient generation of terahertz radiation. In
addition, the diffraction of the optical component was
ignored when deriving Eq. (2), since its diffraction
length is three–four orders of magnitude greater than
the corresponding length of the terahertz component.

It should be noted that the functions of the pulse
field components in system (2), (3) are different. The
terahertz component cannot generate the optical one
and propagates in the mode described by Eq. (3) (i.e.,
the KP-I equation; see below). The optical compo-
nent in this case generates the terahertz one.

Let us consider particular cases of system (2), (3).
In Eq. (3), we ignore diffraction and set 
After integration, we obtain the equation

(4)

The system of Eqs. (2), (4) is known as the Yajima–
Oikawa (YO) system [6] and is encountered in numer-
ous physical problems (see, e.g., [5]).

If  the dynamics of the optical component is
independent of the terahertz component. Equation (3)
is then the type-I Kadomtsev–Petviashvili equation
(KP-I) [7]. We therefore refer to Eqs. (2), (3) as a
Yajima–Oikawa–Kadomtsev–Petviashvili (YO–KP)
system.

Note that the YO system and the KP equation are
integrable according to the inverse scattering transfor-
mation method [5, 7]. The YO system thus has soliton
solutions, and the KP equation has solutions in the
form of oblique solitons, along with ones in the form
of so-called lumps. Lumps are essentially non-one-
dimensional solutions (in contrast to solitons), which
are localized in a rational (power-low) manner.

Note that if we ignore diffraction in Eq. (3) (i.e., if
the right-hand side of the equation is zero), after inte-
gration we arrive at a system consisting of the linear
Schrödinger and Korteweg‒de Vries equations. This
system contains the only spatial variable and was stud-
ied in detail in [8, 9]. Some of its solutions correspond
to the oblique optical terahertz solitons of YO–KP sys-
tem (2), (3). In the next section, we consider the non-
one-dimensional solutions of the YO‒KP system.

SOLUTIONS IN THE FORM OF LUMPS
Let us first us consider a case where the YO–KP

system (2), (3) is reduced to equation KP-I. We
assume  The solution to Eq. (3) in the form of a
lump is then

(5)
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where

and  , and  are arbitrary real constants. In these
formulas, we can introduce shifts by independent vari-
ables  , and  Without loss of generality, we assume
here and below that these shifts are equal to zero.

Solution (5) is nonsingular if  and  It in
this case rationally (power-low) approaches constant
background  of the terahertz component when the
absolute values of variables  and  grow infinitely.
Constant background  will be zero if we impose the
condition

on the lump parameters.
In the plane of variables  and , the lump moves

without changing its shape with constant velocity. The
velocity projections in the laboratory system of coordi-
nates are

We can see that the direction of the lamp velocity
vector is determined only by free parameter  while
the absolute value of the velocity is determined by two
parameters,  and 

We now consider rationally localized solutions of
YO–KP system (2), (3). To find such solutions, we use
the simplest approach, in which representation (5) is
used for the terahertz component. We can then show
that if the coefficients of YO–KP system (2), (3) are
related as

(6)

it has a solution in the form

(7)
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Fig. 1. Profiles of variable  of a lump with parameters    when 
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Here,    , and  are the real constants. Since
parameter  is considered to be real, condition γ < 0
must be met. Constant  and the sign of  (see (9))
should then ensure the non-negative right-hand side
of Eq. (10). Note that the solution is nonsingular only
when 

Using the expressions for   , and  con-
straint (6) on the parameters of the medium can be writ-
ten in the form  = 

With infinite growth of  and , the absolute
value of the optical component and the terahertz com-
ponent in this solution tend rationally to constant
background  and , respectively. If we assume
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constant background  of the terahertz component
will be zero. Constant background  of the optical
component can be equal to zero only when 
which yields a singular rationally decreasing solution.

Solution (7), (8) can also be called a lump. Figure 1
shows the profile of its terahertz component for the
case when parameter  is determined from Eq. (11)
and the positive sign is chosen in formula (9).

In the plane of variables  and , the terahertz
component and the absolute value of the optical com-
ponent of lump (7), (8) move with constant velocity
without changing their shape. The velocity projections
in the laboratory system of coordinates are

In contrast to the above, the direction of the lump
velocity vector is independent of its parameters and
takes one or two values. The tangent of angle 
between the  axis and the velocity vector is

The absolute value of the velocity is determined
here by parameters  and  The sign in this relation
should be such that the right-hand side of formula (10)
is non-negative. Depending on the value of , we can
accept one or both variants of the sign.

Let us discuss the interplay between the investi-
gated solutions in the form of lumps. In limit
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, lump (7), (8) becomes a special case of
lump (5) when

This is because the expressions for the terahertz com-
ponent of the lumps contain the same number of free
parameters in both cases.

CONCLUSIONS
We obtained rationally localized solutions in the

form of so-called lumps for the system of YO–KP
equations, which describes the generation of terahertz
radiation with allowance for its dispersion and intrin-
sic nonlinearity. It was shown that in this case, tera-
hertz radiation is generated most efficiently in two
selected directions.
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