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There has been active development of numerical pore-network simulation of two-phase immiscible flows in
porous media in recent years. These models allow for generation of capillary pressure and relative permeability
curves. However, percolation models provide an efficient alternative, with reduced reliance on numerical
techniques. Implementation of effective medium or critical path theory along with the percolation model allows
for evaluation of the relative permeability curves. Both approximations failed to match the irreducible water
saturation for water relative permeability. While the effective medium approximation poorly matches the pore
network simulator, the critical path approximation is shown to match the result of the oil relative permeability.
Despite the difference in end points, there is qualitative agreement between critical path approximation and
the pore network simulator. Moreover, observed differences are not necessarily a drawback due to important
boundary effects as discussed in the paper. Our results indicate that percolation-theory based predictions have
the potential to become an efficient tool for upscaling by computing two-phase flow properties for numerous
porosity subdomains.
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I. INTRODUCTION

Prediction of the porous media flow properties is important
in numerous disciplines, notable examples include hydrocar-
bon extraction [1,2] and the design of fluid injection programs
for underground reservoirs [3,4]. While primary drainage oc-
curs during geological secondary migration of hydrocarbons
and CO2 sequestration injection into aquifers, primary imbi-
bition is important for water flooding of oilfields. The relative
permeability curves play essential roles in parameterizing
continuum media models and simulating large scale flow and
transport phenomena.

In reservoirs which exhibit large changes in permeability
or capillary pressure, the forms of the capillary pressure and
relative permeability curves will have a strong impact on the
performance of the extraction or injection program. Close to
the wellbore, there can be a large reduction in capillary pres-
sure. The saturation and pressure profiles close to the wellbore
can be highly affected by the aforementioned curves.

Such curves will be influenced by the physical character-
istics of the pore network, the surface of the solid walls and
the interfacial properties of the two phases. To appropriately
model the influence of interfacial tension reduction or con-
tact angle alteration, so-called pore-scale modeling techniques
are invaluable as, unlike laboratory measurement, they allow
one to perform numerous experiments using the same digital
pore structure model. The latter can be obtained using x-ray
computed tomography (XCT) [5], stochastic reconstructions
[6–11] or their superposition [12,13].

*Corresponding author: kg@ifz.ru

A variety of computational methods exist to simulate single
and multiphase fluid flow within heterogeneous pore spaces.
Among the most popular are the Lattice Boltzmann method
[14,15]; (2) finite element, finite volume, and volume of fluid
methods [16,17]; (3) smoothed particle hydrodynamics [18];
(4) finite-difference Stokes equation solvers [19,20]; (5) level
set [17,21]; (6) phase-field [22,23] and density functional the-
ory based [24] methods. While debates about the advantages
and downsides of each approach are far from settling down,
even with modern parallelized computations and hardware,
all these methods are extremely computationally intensive.
This limits the size of the simulation domain that can be
evaluated to a limited volume of usually 3003–7003 voxels,
while the time needed with high performance computing
(HPC) resources easily reaches several weeks. For complex
and hierarchical porous media, the problem is exacerbated due
to the need to work on as large as possible three-dimensional
(3D) pore geometries to capture the representative elementary
volume (REV) of a porous medium or to work on fused
3D structure models resulting from a number of multiscale
images for samples such as shales [25,26], carbonates [27] or
soils [28]. We confidently conclude that such direct pore-scale
modeling techniques are too computationally expensive to
routinely process REVs of real rock samples.

To make pore-scale simulations for complex hierarchi-
cal porous media practical one can utilize indirect modeling
methods such as pore-network models (PNMs) [29–33].
There have been classical pore-network simulation models
developed in Refs. [34,35] which can calculate the rela-
tive permeability and capillary pressure curves accounting
for wettability and interfacial tension effects in the qua-
sistatic regime. While significantly reducing the complexity
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of the simulations, PNMs can suffer minimal accuracy reduc-
tions if parameterized using abovementioned direct pore-scale
simulations [36,37]. Although PNMs allow a very efficient
computational framework to simulate single-, two- and even
three-phase [38–40] flows, if one fuses macro and micro
XCT scans with stochastic reconstructions [41,42] based on
scanning electron microscopy (SEM) or focused ion beam
(FIB)-SEM images it is easy to hit more than 1010 pore-
network elements where even PNM simulations can get
prohibitive.

Another alternative to simulate flow properties even faster
than PNM would be percolation models. The critical param-
eters which are required to analytically evaluate the network
properties in percolation models only depend on the lattice
type and the dimension of the network. Given that we have
a reasonable estimate of a lattice which represents natural
porous media and that the critical parameters have already
been evaluated, properties such as the percolation threshold,
and infinite cluster strength can be evaluated analytically. This
allows for an analytical evaluation of the capillary pressure
curve, as shown in Refs. [43,44].

However, the calculation of relative permeability is more
challenging. While there are analytical expressions for net-
work conductance, they are for Bethe lattices [45], which
are not representative of natural porous media. Reference
[46] provided an analytical expression for relative perme-
ability, assuming saturation as equal to site occupancy and
applying the percolation expression for conductance. The
analytical expressions for relative permeability of periodical
lattices are based on the network approximation by so-called
r chains [47–49]. However, the conductance calculated using
the percolation expression does not account for variability and
disorder in the bond conductance distribution. Natural porous
media have a variety of pore throat sizes, and consequently
a variety of values for conductance. A more complicated ap-
proach is required when bond conductance is disordered.

One approach for disordered media is effective medium
theory (EMT). Reference [50] presents the numerical valida-
tion of the EMT and shows that it accurately describes the
conductance of the bond percolation problem, except close to
the percolation threshold. There have been numerous publi-
cations on the application of EMT theory for calculation of
relative permeability. However, the application of effective
medium theory has had varying degrees of success.

The authors of Ref. [51] apply EMT but replace bond
occupation directly with saturation. Close to threshold they
use the percolation expression instead of EMT to calculate rel-
ative permeability. They find percolation exponents by fitting
to capillary pressure data. Under this approach, they achieve
good results for 14 out of 21 of the laboratory samples.
They discuss that the deviation can occur from neglecting
corner and film flow. Reference [52] improved on this work
by incorporating pore-solid interface roughness effects in the
hydraulic conductance of bonds.

The aim of this paper is to build upon previous knowledge
and improve percolation models to determine the efficacy of
EMT for the calculation of the two-phase relative perme-
ability curves. Bond percolation models previously developed
have required some correction to the relationship bond ra-
dius shared with volume and conductance by some empirical

term [43,45] in order to achieve realistic relative permeability
curves. In order to properly account for the difference in pore
body and pore throat distributions a more sophisticated perco-
lation model is developed. Our potential long-term aim is to
establish a framework based on percolation theory for model-
ing multiphase flow which will be compatible to pore-network
models in terms of speed (and even faster) and accuracy. This
paper, thus, serves as a proof of concept which shows that
our model is close to the PNM model in both accuracy and
computational efficacy.

A site-bond percolation model which can utilize the ef-
fective medium or critical path approximations is derived to
describe two-phase immiscible flow. This allows us to account
for variability in pore body and throat sizes, without creating
empirical parameters. The SEM or FIB-SEM techniques can
be used to generate pore network models and create distribu-
tions for pore bodies and pore throats. To mimic irregular pore
throat with corner flow, the percolation model uses a triangular
prism for the pore throat and a cube for the pore body. A
similar approach has been applied in Ref. [53], but using
only bond percolation. They found dissimilar results between
network simulator models and percolation EMT models. Ref-
erence [54] suggests that critical path theory (CPT) may be
superior for calculation of networks with highly disordered
conductance distributions. For this reason CPT is included in
this paper. An EMT-percolation and CPT-percolation model is
compared against a sophisticated pore network simulator with
identical pore network topology for verification of the EMT
and CPT during drainage of water by oil.

This paper presents a fast and robust percolation theory-
based model to simulate single and two-phase flow within
porous media with known pore size distributions. The model
is presented in Sec. II. The generation of the input functions
for the percolation model is described in Sec. III. A pore
network simulator is compared to the percolation effective
medium approach and the percolation critical path approach.
The network simulator is described in Sec. IV. The results of
the comparison are presented in Sec. V. The discussion of the
results is provided in Sec. VI. Finally, the conclusions of the
paper are presented in Sec. VII.

II. PERCOLATION MODEL FOR OIL-WATER DRAINAGE

In this work two types of lattices have been used to repre-
sent the porous media; a simple cubic lattice with coordination
number Z = 6 and a simple cubic lattice with half the bonds
turned off, resulting in an average coordination number of
Z = 3. The network is composed of sites. Each site center is
separated by a distance l to the next adjacent site in each of
the three dimensions of the Cartesian coordinate system. Each
site is connected to the Z nearest sites by a bond. Each site
represents a pore body and each bond represents a pore throat.
The pore bodies are modeled as cubes and the pore throats as
triangular capillaries. The porous medium is initially filled by
water and is further submitted to primary drainage by oil. A
visual representation of the network is given in Fig. 1.

The drainage process is capillary dominated. This means
that for oil to enter a pore body or throat the capillary pressure
must exceed the entry pressure for that body or throat. The
calculation of the entry pressure is covered in Appendix A 1–
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FIG. 1. Schematic of the percolation model.

A 3. The conductance of each bond or site to oil or water will
also depend on the capillary pressure and how the oil or water
phase distributes itself in the pore space. The calculation of
conductance is covered in Appendix A 4. It is important to
understand that capillary pressure alone is not the only factor
which determines if a pore body or throat is penetrated by
oil. In this paper, the bonds or sites where capillary entry
pressure is exceeded will be referred to as “allowed” to be
accessed by oil. The oil phase will enter through one face of
the network. Any continuous chain of allowed sites and bonds
which connect to this face of the network will become “oc-
cupied” by oil. The calculation of the proportion of occupied
to allowed bonds and sites is covered in Sec. II A. Finally,
given some proportion of the network is occupied by oil, the
relative permeability to oil and water can be calculated. The
technique using EMT is covered in Sec. II B and the technique
using CPT is covered in Sec. II C.

A. Pore filling during drainage

The percolation model assumes that the inscribed radii of
the sites are completely uncorrelated to the adjacent bonds.
The frequency of bonds of inscribed radius rin is defined
by the function fb. This means that the probability that any
bond has inscribed radius greater than some r1 and less than
some r2 is equal to the integral of fb from r1 to r2. Similarly,
the frequency of sites of inscribed radius rin is defined by
function fs.

During drainage, the proportion of bonds available to be
filled by oil pbo can be calculated by

pbo =
∫ rb max

rb

fb(rin )drin, (1)

where rb is the inscribed radius of the smallest bond available
to oil and rbmax is the inscribed radius of the largest bond. The
inscribed radius is defined by

rb = σow

PcDr
, (2)

where Pc is capillary pressure, σow is the interfacial tension
between oil and water and Dr is a constant derived using
Mayer-Stowe-Princep (MSP) theory. The derivation of this
constant is covered in Appendix A. The proportion of sites

available to be filled by oil pso can be found from

pso =
∫ rs max

rs

fs(rin )drin, (3)

where rs is the inscribed radius of the smallest site available
to oil. It is defined by

rs = 2σow

Pc
. (4)

The pore volume made up of sites φs is calculated by

φs =
∫ rs max

rs min

fs(rins)8rins
3drins, (5)

where rs max is the inscribed radius of the largest site. The
volume of oil in the site Vso is approximated by

Vso(rin, rd ) = 8rin
3 − 24rinAwc(θ, rd , β ), (6)

where rd is the radius of curvature, Awc is the cross-sectional
area for corner water and β is the half angle of the corner. The
calculation of Awc is covered in Appendix A. This equation
does not properly account for the water volumes in the cor-
ner. However, the same equation is used in the pore network
simulator, which allows for the percolation model results to
be compared with the pore network simulator.

The oil saturation in the sites sso is calculated by

Sso = ps∞(pso, pbo)

psoφs

∫ rs max

rs

fs(rin )Vso(rin, rd )drin, (7)

where ps∞ is the proportion of sites occupied by oil. The pore
volume made up of bonds φb is calculated by

φb = Z

2

∫ rs max

rs min

∫ rs max

rs min

∫ rb max

rb min

fb(rinb) fs(rins1) fs(rins2)

× Ab(rinb)lb(rins1, rins2)drinbdrins1drins2, (8)

where Z is the coordination number of the network, Ab is the
cross-sectional area for the bond and lb is the length of the
bond. The oil saturation from bonds Sbo is calculated by

Sbo = pb∞(pso, pbo)

pso
2 pboφb

∫ rs max

rs min

∫ rs max

rs min

∫ rb max

rb

fb(rinb) fs(rins1)

× fb(rins2)Abo(rin, rd , θ )lb(rins1, rins2)drinbdrins1drins2,

(9)

where pb∞ is proportion of bonds occupied by oil and Abo is
the cross-sectional area for oil in the bond. The total water
saturation Sw is then calculated by

Sw = 1 − (Ssoφs + Sboφb). (10)

The calculation of Ab, Abo, and lb are covered in Ap-
pendix A. The functions pb∞ and ps∞ are calculated
numerically using a code developed in-house in the numer-
ical computing environment MATLAB®. The algorithm is
outlined in Sec. III. The results of numerical calculation are
presented in Fig. 2. As the network is calculated on a finite
40 × 40 × 40 grid, there are nonzero values of pb∞ and ps∞
before the percolation threshold.
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FIG. 2. Numerical calculation of the infinite cluster strength during the site-bond percolation process on a simple cubic lattice during bond
(a) or site (b) percolation. In (a) bonds are forming an infinite cluster (pb∞) against available bonds (pb) for different proportion of available
sites (ps) compared to the analytical model (in black) during bond percolation. In (b) sites are forming an infinite cluster (ps∞) against available
sites for different proportion of available bonds compared to the analytical model (in black) during site percolation.

B. Effective medium theory

EMT is used to approximate the conductance of a net-
work. It approximates a network with some distribution of
bond conductance gp with an equivalently conductive net-
work where each bond conductance is equal to the effective
medium conductance ge. It is also called the effective medium
approximation (EMA). Reference [50] derived the equation of
effective conductance as

∫ ∞

0
h(gp)

gp − ge

gp + (
Z
2 − 1

)
ge

dgp = 0, (11)

where h is the frequency of conductance gp in the network,
and Z is the coordination number. Given our distribution of
bond sizes and site sizes, Monte Carlo simulation can be
used to quickly obtain the conductance distribution. In total
2 × 106 Monte Carlo permutations are used for generation
of the conductance distributions. In this paper we use the
coefficient of variation (cv) to show convergence of the Monte
Carlo simulation. The coefficient of variation is a widely used
statistical measure of the dispersion of data points in a data
series around the mean of the data series. It is the ratio of
the standard deviation to the mean. Figure 14 in Appendix B
shows the convergence of the permeability calculation. The
probability of a site or bond can be found from the site or
bond size distribution, respectively.

The distribution for oil can be generated, by assigning all
sites smaller than rs and all bonds smaller than rb to have no oil
conductance. The probability distribution used for the Monte
Carlo simulation is

P(rins) =
{

0 , rins < rs

fs(rins)/ps , rins > rs
,

P(rinb) =
{

0 , rinb < rb

fb(rinb)/pb , rinb > rb
. (12)

The conductance to oil from one site to the next, go, is
calculated in the following equation:

l

go
= rins1

gos(rins1)
+ lb

gob(rinb)
+ rins2

gos(rins2)
, (13)

where gos is conductance to oil in the site and gob is conduc-
tance to oil in the bond. The subscripts 1 and 2 define the first
and second site, respectively. The integral of the distribution
of oil conductance ho, should be equal to the number of bonds
available to oil. Therefore, the normalized distribution gener-
ated by the Monte Carlo simulation is multiplied by pb to get
the conductance distribution ho. Finally, the conductance to oil
can be calculated by solving the following equation for ge:

−(1 − pb)(
Z
2 − 1

) +
∫ ∞

0
ho(go)

go − ge

go + (
Z
2 − 1

)
ge

dgo = 0. (14)

The EMA for water is more complex. There are six possi-
ble configurations that can exist between two sites and a bond.
The diagram for each configuration is given in Fig. 3. C1 to C3

are configurations with oil in the bond. C1 is the configuration
with oil in both sites, C2 is the configuration with oil in one

FIG. 3. The six configurations (C1 to C6) of oil and water which
can exist in a bond and its two adjacent sites. The two squares
represent the two sites and the rectangle in between represents the
bond. The black color represents oil and the blue color represents
water.
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site and C3 is the configuration with oil in no sites. Given
that our problem considers capillary dominated drainage, the
configuration C3 will not exist. Henceforth it is ignored in the
paper. The configurations C4 to C6 are configurations with
water in the bond. C4 is the configuration with oil in both
sites, C5 is the configuration with oil in one site, and C6 is the
configuration with oil in no sites. The conductance to water for
configurations C1 to C6 are gw1 to gw6. They are calculated by

l

gw1
= rins1

gwcs
+ lb

gwcb
+ rins2

gwcs
, (15)

l

gw2
= rins1

gs(rins1)
+ lb

gwcb
+ rins2

gwcs
, (16)

l

gw4
= rins1

gwcs
+ lb

gb(rinb)
+ rins2

gwcs
, (17)

l

gw5
= rins1

gs(rins1)
+ lb

gb(rinb)
+ rins2

gwcs
, (18)

l

gw6
= rins1

gs(rins1)
+ lb

gb(rinb)
+ rins2

gs(rins2)
, (19)

where gwcs is the conductance in a site to corner water, gwcb

is the conductance in a bond to corner water, gb is the con-
ductance of a bond, and gs is the conductance of a site. The
probability that a bond or site with inscribed radius rinb or
rins has oil in the center is given by Eq. (12). The probability
distribution that a bond or site with inscribed radius rinb or rins

only contains water is given by

P(rins) =
{

fs(rins)/(1 − ps) , rins < rs

0 , rins > rs
,

P(rinb) =
{

fb(rins)/(1 − pb) , rinb < rb

0 , rinb > rb
. (20)

Given these probability distributions, the distribution of
conductance made up by each of the configurations hwi can
be calculated using Monte Carlo simulation. The probabilities
of configurations 1 to 6 are p1 . . . p6. The probabilities depend
on the proportion of sites and bonds available to the invading
phase. They are calculated numerically using code developed
in house in numerical computing environment MATLAB®.
The results are given in Fig. 4. The total distribution for water
conductance, hw can be calculated by

hw(gw ) =
i=6∑
i=1

pihwi(gwi ). (21)

Given the distribution for conductance to water, gw, the
effective conductance to water for the network is calculated
by solving the following equation for ge:∫ ∞

0
hw(gw )

gw − ge

gw + (
Z
2 − 1

)
ge

dgo = 0. (22)

The calculation of parameters gw, go, gb, gs, gwcb, and gwcs

is covered in Appendix A.

C. Critical path theory

A method of estimating the conductance of a disordered
network was developed in Ref. [55]. The conductance of a set

of parallel conductors is controlled by the largest conductor.
The conductance of a set of conductors in series is controlled
by the smallest conductor. They divide the network into two
sets of conductors; small and large conductors. The smallest
conductor of the large set is called the critical conductance
gc. All conductors greater than gc are reduced to gc and all
conductors smaller than gc are set to zero. The CPT shows that
the resultant equation for conductance as given in Ref. [56] is

ge = ccptgc(pcpt (gc) − pbth )μ, (23)

where ccpt is a constant, μ is the percolation exponent for con-
ductance (Ref. [56] gives a value of μ = 2 for 3D networks)
and pbth is the bond percolation threshold. The probability pcpt

is the probability that a bond conductance is greater than or
equal to some critical conductance gc:

pcpt (gc) =
∫ ∞

gc

h(g)dg. (24)

The correct critical conductance gc to use is the con-
ductance which maximizes ge [56]. To calculate the correct
threshold to use during bond-site percolation, we will need
the thresholds for site and bond percolation. The percolation
threshold for bond percolation and site percolation in a simple
cubic lattice is p∗

bth = 0.2488 and p∗
sth = 0.3116 [57], and

this will be used throughout the paper. However, in the dis-
cussion section results for networks with various coordination
numbers are required. For that section, the following expres-
sion for percolation thresholds of kagome lattices [57] is used:

p∗
th = ϒ0[(d − 1)(Z − 1)]−a1 da2 , (25)

where for sites γ0 = 1.2868, a1 = 0.6160, and a2 = 0 and
for bonds γ0 = 0.7541, a1 = 0.9346, and a2 = a1. The
expression gives slightly different results for the percola-
tion threshold of cubic lattice (p∗

bth = 0.2448 and p∗
sth =

0.3115), but the difference is only around 1.6% for bond
percolation.

The percolation threshold for bonds in a bond-site network,
pbth, is dependent on the proportion of sites that can also
contribute to the infinite cluster ps∞. Reference [58] obtained
the following expression for the bond percolation threshold
during bond-site percolation:

pbth(ps∞) = (p∗
bth )(1−αs (ps∞ ))

, (26)

where

αs(ps∞) = log (ps∞)

log (p∗
sth )

. (27)

III. CALCULATION OF THE INFINITE CLUSTER AND
CONFIGURATION PROPORTION DURING BOND-SITE

PERCOLATION

The in-house code in Matlab® is developed for calculation
of the percolation process across a 40 × 40 × 40 simple cubic
lattice. The cubic lattice with half of its bonds disabled and
pb = 1 will be equivalent to the cubic lattice when pb = 0.5.
For this reason, numerical calculation of the second lattic is
not required. The procedure is as follows:
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FIG. 4. Numerical calculation of the proportion of bonds which make up configurations C1 to C6 for various values of bonds (pb) and sites
(ps) allowed to be penetrated by oil: (a) C1; (b) C2; (c) C4; (d) C5; (e) C6.

(1) One face of the lattice network is designated as the
entry for the invaded phase.

(2) Every bond and site is initially unavailable to the in-
vading phase, meaning that pb = 0 and ps = 0.

(3) A proportion of sites is made available to the invading
phase.

(4) One random bond in the lattice is made available to the
invading phase.

(5) The proportions pb∞, ps∞, and p1 to p6 are calculated.
(6) Steps 4 to 5 are repeated until all the bonds are avail-

able to the invading phase.

The proportions pb∞, ps∞ and p1 to p6 are calculated for
120 simulations for 32 different values of ps. Figures 2 and 4
show the average result of these simulations.

The calculation of pb∞ is given in Fig. 2(a). When all
the sites are available, the infinite cluster strength for bonds
follows the bond percolation process. As the proportion of
available sites is reduced, pb∞ decreases. When the proportion
of available sites drops below the site percolation threshold,
the invading cluster can no longer form an infinite cluster.

The calculation of ps∞ is given in Fig. 2(b). Similar to the
previous figure, the proportion of sites in the infinite cluster
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will decrease as the number of bonds decrease. However, one
difference is that if pb > 0.64, all sites can be connected to
the infinite cluster. If pb < 0.64, there will be some proportion
of sites which will be separate from the infinite cluster. This
proportion will decrease as pb decreases, and drop to zero
once pb is below the bond percolation threshold.

The probability of configuration C1 will always monoton-
ically increase as the number of bonds and sites available
to be filled by oil increases [Fig. 4(a)]. When all the sites
are available to oil (ps = 1), the probability p1 is the same
as the infinite cluster strength during bond percolation. The
probability of configuration p2 will monotonically increase as
the number of bonds to be filled by oil increases [Fig. 4(b)].
There exists some maximum for p2 at some intermediate value
for ps. If there are no sites available to oil or if all the sites are
available to oil, configuration C2 cannot exist. Configuration
C2 only exists at some intermediate value for ps.

The probabilities p4 and p5 share a nonmonotonic rela-
tionship with pb [Figs. 4(c) and 4(d)]. If pb is too low, not
enough sites will become part of the infinite cluster. Other-
wise, if pb is too high, there will be less bonds occupied by
the wetting phase. Proportion p6 will monotonically decrease
with increase in either pb or ps [Fig. 4(e)].

IV. PORE NETWORK SIMULATOR

As the target of all pore network simulations is a direct
comparison against solutions obtained based on percolation
theory, all physics mechanisms and parameters of the pore
network simulator (PNS) are tuned to be the same as the
percolation model.

At first, we constructed a lattice-based pore-network model
with prescribed pore-body and pore-throat size distributions.
Given the distance in between the pore bodies, we place them
at the nodes of the lattice by randomly sampling from the
size distribution. Next, we loop through each of the pore
bodies and pore throat and assign the radii from the prescribed
distribution. For the case where Z = 3, the number of throats
attached to the given pore body is randomized. While placing
throats we also perform body-throat partitioning that will de-
fine local element’s conductance according to Eqs. (15)–(19).
The length of throat is defined as in Eq. (13). The shape factors
for all pore bodies and pore throats are assigned to equal
that of the square and the equilateral triangle, respectively.
The construction procedure as described above ensures that
resulting characteristics of the constructed network are the
same as those for percolation theory simulations [and no cor-
relations exist between pore and throat placement as assumed
in all percolation model (PM) computations] and for PNS on
lattices with more than 103 throats the differences for pore,
throat, length, and Z distributions are virtually negligible. This
is observable in the comparison of the distributions used for
the PM and the histogram of the elements for the PNS in
Fig. 5.

After construction the pore network is saved into the
so-called Statoil format and is also visualized using the
open-source VTK library. All processing is performed us-
ing the in-house C++ code imbedded within the credible
pore-network extraction framework [36,59] and the size of all
models was 403 lattice units (totaling to 64 × 103 pore bodies

FIG. 5. Comparison of the site/bond size distributions used in
percolation model (PM) against the throat/body distributions used
in pore network simulator (PNS).

and 19.2 × 104 pore throats for Z = 6). The examples of visu-
alizations for PNS with Z = 6 is presented in Fig. 6(a) and for
Z = 3 in Fig. 6(b). For single and two-phase flow simulations
the constructed pore network is passed into Valvatne’s code
[35], which utilized the same physics as described for PM.
The flow was simulated in a single direction along one of
major orthogonal axes. The contact angles within the network
are assigned to 0 ° to represent fully water-wet conditions.
The fluid properties for simulations using both theoretical
and modeling approaches were chosen to represent a typical
water-oil system with the surface tension of 30 mN/m. The
only major difference between PM and PNS simulations lies
with boundary conditions–with PNM simulator we utilized
closed walls [60] on the faces of the cubical modeling do-
mains parallel to applied pressure gradient. The simulated
network permeability, capillary curves, and relative perme-
ability curves for drainage from a network initially saturated
with water were saved for comparison against PM results.

V. COMPARISON BETWEEN PERCOLATION MODEL
AND PORE- NETWORK SIMULATOR

The PM developed in Sec. II is compared against the PNS
described in Sec. IV. Four different distributions for bond

FIG. 6. Visualization of the pore network used in the pore net-
work simulator: (a) Z = 6; (b) Z = 3.
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FIG. 7. Frequency of bonds and sites with inscribed radius rin for: (a) distribution A; (b) distribution B; (c) distribution C; (d) distribution D.

inscribed radius and site inscribed radius were used. The prob-
ability density function for each of the site-bond distributions
is shown in Fig. 7. The density functions are normalized
lognormal distributions with an upper limit of 29 μm. The
distance between adjacent sites is l = 60 μm. In total 8 cases
are compared.

The capillary pressure curves obtained from the percola-
tion model show very high agreement with those from the
PNS for all eight cases (Fig. 8). However, there is deviation
in relative-permeability curves.

Figure 9 shows the comparison of pore network simulator
with the percolation model with EMT and CPT for calcula-
tion of relative permeability for lattice with Z = 6. Figure 10
shows the same comparison but for the second lattice, where
Z = 3. In all the cases, EMT deviates from the PNS.

Water relative permeability matches at very high water
saturations but the pore network simulator diverges from the
convex trend at lower water saturations. Generally, the PNS
predicts higher water relative permeability. The CPT and EMT
calculations for water relative permeability are similar. Both
EMT and CPT can be treating the oil clusters as if they are
randomly distributed throughout the network as opposed to a
penetrating backbone cluster with many branches. They can
therefore predict that more water pathways are broken than
what is actually occurring. CPT predicts slightly lower water
relative permeability to EMT in some cases. This is due to one
of the assumptions associated with CPT. It assumes that the

conductance for a set of conductors is in series and the overall
conductance is equal to the smallest conductor in that set. The
set is made up of a distribution of conductance, and if that set
has a wide distribution this assumption can be accurate. But if
that distribution has low variance, the assumption will under
predict the overall conductance.

The oil relative permeability curve modeled by CPT
matches the PNS much more closely than the other models.
The reason could be that the penetrating cluster of oil could
be bottlenecked by the smallest conductors in the set, which is
more suitably calculated by CPT. The oil relative permeability
curve modeled by EMT usually always terminates at lower
water saturation than the pore network simulator. This is not
uncommon, EMT has been reported in literature to underesti-
mate permeability close to the threshold.

VI. DISCUSSION

One of the advantages of the EMT or CPT technique over
the PNS is that it calculates over an infinite domain, whereas
the PNS simulation works over a finite volume and must
account for boundary conditions on the network. The impact
of finite scale and boundaries can cause differences between
the CPT, EMT, and PNS results [60].

The end point values for relative permeability; connate
water saturation, residual oil saturation, water relative perme-
ability at residual oil, and oil relative permeability at connate
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FIG. 8. A comparison between the capillary pressures calculated via the pore network simulator (PNS) and via the percolation model (PM)
at coordination number (Z) 3 and 6: (a) distribution A; (b) distribution B; (c) distribution C; (d) distribution D.

water saturation are important parameters for calculation of
water flood efficiency. The comparison shows large deviation
using either EMT or CPT for the prediction of the relative
permeability end points for all cases except for sor at Z = 6.
The Z = 3 will have a higher percolation threshold, for this
reason EMT can be diverging from results of CPT and the
PNS. However, the differences in predicted two-phase prop-
erties between PM and PNS are similar to the differences in
different pore-network extraction methodologies [59].

The relative permeability calculated by the PNS has an
inflection, and the relative permeability at any saturation lower
than this inflection is higher for the PNS than the EMT or CPT
models. The CPT and EMT methods will give permeability
values close to zero as the probability of bonds occupied by
water in the center tends to threshold, whereas in a finite
model there can be instances of breakthrough before perco-
lation threshold is reached. The pore network simulator could
be calculating higher water relative permeability due to the
finite size of the network. Simulations with pore networks of
sizes up to 703 pores showed only marginal improvements in
agreement with CPT results (and, thus, not shown here).

Pore-network simulators can be classified into two types:
quasistatic and dynamic PNS. Our percolation theory based
solution and PNS simulator both fall into the quasistatic
category. While dynamic simulators do account for a richer

variety of flow regimes (e.g., viscous fingering), they are much
more computationally expensive [61]. On the other hand, by
considering only capillary dominated flow, quasistatic models
not only provide faster computations, but also align natu-
rally with invasion percolation principles, as is exploited in
EMT and CPT based simulations here and in previous work
[43–46,49,51–56]. In addition to simplicity, one can argue
that the quasistatic approach is valid for the majority of slow
displacement processed during hydrocarbon production [2],
and such PNS models were verified experimentally using
computed tomography [62].

The percolation model predicts that water becomes immo-
bile at saturation less than 0.5 for cases where Z = 6 and 0.7
for the cases where Z = 3. The relative permeability calcu-
lated by the percolation model shows either very small or
almost no window of two-phase flow for the networks with
Z = 6. For the networks with Z = 3, the percolation model
calculates no window of saturation where both phases are
mobile. The values of end point saturation and two-phase flow
windows are unrealistic compared to natural porous media.
The reason for these high values is that the percolation thresh-
old is high.

For more realistic two-phase saturation windows and end
point values, one option is to use higher coordination num-
bers. There are analytical expressions already available for
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FIG. 9. A comparison between the relative permeability curves calculated via the pore network simulator (PNS) and via the bond-site
percolation model with effective medium theory (EMT) and critical path theory (CPT), with an average network coordination number Z = 6:
(a) distribution A; (b) distribution B; (c) distribution C; (d) distribution D.

percolation threshold in Ref. [57] and infinite cluster strength
in Refs. [47,48] for bond percolation, so for this reason we
investigate the end point value dependence on coordination
number using just bond percolation. The end point values are
determined from where the relative permeability calculated by
CPT become 1 × 10–3.

End point saturation values are given in Fig. 11(a) for Z-
values from 3 to 12 and for three different values of coefficient
of variation (cv) in inscribed bond radius. The irreducible
water saturation swc and the residual oil saturation sor reduce
as Z increases dues to the reduction in percolation threshold.

Increases in cv cause an increase in the tail end of the
lognormal distribution. As the area of the bond will scale to
the power of 2 with the inscribed radius, the oil saturation
will increase more than the water saturation when there is an
increase in cv . For this reason, an increase in cv results in a
decrease in swc and an increase in sor. swc is more sensitive
to cv and Z than sor. This is due to the distribution of smaller
bonds being more affected by changes in cv in a lognormal
distribution.

The end point relative permeability values are shown in
Fig. 11(b). The relative permeability to water at residual oil
saturation krwor and the relative permeability to oil at irre-
ducible water saturation krowc both increase as Z increases
because the percolation threshold decreases. The conductance

of the bond will scale to the power of 4 with the inscribed
radius, so an increase in cv will cause a dramatic increase in
krowc. The window for two phase flow is presented in Fig. 12.
As there is a decrease in both end point saturations with Z, the
window will increase with Z.

However, the coordination numbers observed in sandstones
are not on average that much higher than 6. Reference [63]
calculates the average coordination number for several sand-
stones in the range 1.75 to 6.75. As the coordination number
and pore body and throat size distributions should be input
data for the percolation model, the avenue for improvement
does not lie with modifying these parameters.

In some natural porous media, the larger pore bodies will
have larger pore throats. This would cause the network to have
correlation between available sites and bonds. There has been
work done to find percolation thresholds and capillary pres-
sure [64,65] in correlated site-bond percolation models, but
none yet on relative permeability. Correlated bond-site perco-
lation networks give lower thresholds, which can give relative
permeability curves that are more representative of natural
porous media. Additionally, the EMT technique, which is
shown to be quite unsuccessful here, could be more reliable
in networks with lower thresholds.

Moreover, direct simulations of percolation on pore net-
works extracted from 3D pore geometries of real porous
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FIG. 10. Comparison between the relative permeability curves calculated via the pore network simulator (PNS) and via the bond-site
percolation model with effective medium theory (EMT) and critical path theory (CPT), with an average network coordination number Z = 3:
(a) distribution A; (b) distribution B; (c) distribution C; (d) distribution D.

media can serve as a much more accurate basis for percola-
tion theory based models as discussed here. This should rely
on future improvements of pore-network extraction method-
ologies, as the current methods are known to result in poor
preservation of pore topology [66]. These shortcomings are
not relevant to this study, as we compared artificially cre-

ated networks which were not extracted from real 3D pore
images.

While the comparison against PNS was made on the as-
sumption that it provides a solid base for verification, it is
possible to speculate that PM actually provides more accurate
results. It was recently shown that boundary conditions can

FIG. 11. Sensitivity of the end point values to coordination number as calculated by bond percolation and critical path theory for different
coefficients of variation (cv) in bond inscribed radius: (a) connate water saturation (swc) and residual oil saturation (sor); (b) relative permeability
to water at residual oil (krwor) and relative permeability to oil at connate water (krowc).
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FIG. 12. The window of saturation where two phase flow exists
as calculated by bond percolation and critical path theory. Sensitivity
to the coordination number and the coefficient of variation for the
bond radii.

significantly affect obtained flow properties [60] and closed
walls boundary conditions on the walls of the modeling do-
main, as utilized in PNS, may not be appropriate for upscaling.
Contrary to PNS, PM assumes infinite porous media domain,
which is arguably a more plausible assumption for homog-
enization to continuum scale, as for example, is needed for
multiscale PNS [27].

VII. CONCLUSIONS

This work develops a percolation model that describes
the drainage of water by oil. This model builds on previous
models by utilizing site-bond percolation with independent
distributions for pore body and throat size. Additionally, the
model can use either effective medium theory (EMT) or criti-
cal path theory (CPT) to calculate conductance for media with
disordered distribution of bond conductance. It provides a fast
and robust computational framework that can be immediately
used for intensive pore-scale simulations, which include up-
scaling for highly heterogeneous pore scale media such as
shales, carbonates, and soils. The two methods are compared
against a pore network simulator (PNS).

This paper shows that the CPT and EMT techniques show
similar relative permeability curves for the invaded phase, but
dissimilar results for the invading phase. The results also show
that CPT and the PNS show similar permeability curves for
the invading phase. Differences between the methods could
be the result of boundary conditions, finite network size, and
large percolation thresholds.

While we utilize a relatively simple lattice-based pore-
network construction approach, the extension to more com-
plex pore networks with highly heterogeneous connections is
possible based on pore-network simulations for such media.

This method allows the following conclusions to be
drawn:

(1) Critical path theory is superior for calculation of oil
relative permeability over effective medium theory in all cases
studied.

(2) Effective medium theory shows deviation from pore
network simulator close to threshold.

(3) There is no simultaneous two-phase flow at small coor-
dination number. This is due to the high percolation threshold
which occurs at small coordination numbers.

(4) There is good agreement between the percolation
model and the pore network simulator capillary pressure
curves.

(5) Despite the large difference in relative permeability end
points, critical path theory shows qualitative agreement with
the relative permeability curves generated by the pore network
simulator.
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APPENDIX A: PORE-SCALE CALCULATIONS

1. Calculation of the entry pressure and meniscus curvature

For oil to enter a water wet pore body, or throat, it must
displace the water. The interfacial energy between water and
a water wet surface will be lower than oil and the water wet
surface. The difference in interfacial energy represents the
amount of work that must be done for the oil to displace the
water. The pressure of the oil phase must be large enough
for this work to be done. The pressure at which the oil phase
will overcome the work required is called the entry pressure.
The entry pressure can be calculated using the MSP Method.
The MSP method involves equating the terminal meniscus
curvature and the arc meniscus curvature to find the radius
at which the displacing phase can enter the pore throat [67].

During piston like displacement, the terminal meniscus
curvature is defined by

Pc

σow
= 1

rd
, (A1)

where Pc is capillary pressure, σow is the interfacial tension
between oil and water, and rd is the radius of curvature dur-
ing drainage. The arc meniscus curvature during piston like
displacement and under thermodynamic equilibrium is [68]

Pc

σow
= Low + Los cos θ

Aeff
, (A2)

where Low is the perimeter of the oil-water contact, Los is the
perimeter of the oil-solid contact, θ is contact angle, and Aeff

is the effective cross-sectional area of the oil. Substitution of
(A1) into (A2) results in

1

rd
= Low + Los cos θ

Aeff
. (A3)

The cross section of a triangular capillary during MSP
displacement is given in Fig. 13.
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2. Equations for arbitrary triangular capillaries

The dimensionless shape factor for G is defined as the
ratio between the cross sectional area A, and the perimeter L
squared [67]:

G = A

L2
. (A4)

It can be calculated from the relationship between the three
half-angles βi(i = 1, 2, 3) which make up the triangle:

G = 1

4
∑i=3

i=1 cot βi

. (A5)

The perimeter of triangle can be calculated from the in-
scribed radius rin and the shape factor:

L = rin

2G
. (A6)

The area of the triangle can also be derived from the in-
scribed radius and the shape factor:

A = rin
2

4G
. (A7)

During the displacement of water by oil in a triangular
capillary, the area and perimeter terms for arbitrary triangles
are given by [34]

Aeff = A − rd
2

i=3∑
i=1

[
cos θ cos (θ + βi )

sin βi
+ θ + βi − π

2

]
,

(A8)

Low = 2rd

i=3∑
i=1

[π

2
− β − θ

]
, (A9)

Los = L − 2rd

i=3∑
i=1

[
cos (θ + βi )

sin (βi )

]
. (A10)

FIG. 13. Cross section of a triangular capillary during Mayer,
Stowe, and Princep (MSP) displacement.

After substitution of Eqs. (A4)–(A10) into Eq. (A3), the
quadratic solution for rd is

rd = rin cos θ (−1 ±
√

1 + 4GD/cos2θ )

4GD
, (A11)

where D is constant. The equation to calculate D is

D =
i=3∑
i=1

[
cos θ cos (θ + βi )

sin βi
+ θ + βi − π

2

]

− 2 cos θ

i=3∑
i=1

[
cos (θ + βi )

sin (βi )

]
+ 2

i=3∑
i=1

[π

2
− β − θ

]
.

(A12)

3. Threshold radius for bonds and sites

Let us assume that all bonds and sites are completely water
wet, with θ = 0◦. The smallest bond which can be entered by
oil will have an inscribed radius which satisfies the following
condition:

rb = σow

PcDr
, (A13)

where rb is the inscribed radius of the bond and Dr is a
constant. It is derived using MSP theory:

Dr = −1 + √
1 + 4GD

4GD
. (A14)

The smallest site which can be entered by oil will have an
inscribed radius which satisfies the following condition:

rs >
2σow

Pc
, (A15)

where rs is the inscribed radius of the site.

4. Hydraulic conductance

The flow rate of the oil or water phase through a pore throat
or pore body will depend on the shape, cross-sectional area of
the phase and the pressure drop. The velocity of each phase is
proportional to pressure drop for that phase. The constant of
proportionality is called the conductance.

The bonds are modeled as equilateral triangles. The con-
ductance of an equilateral triangle gb, is given by [69]. Their
equation is applied for bond conductance gb:

gb = 0.6Gt A
2, (A16)

where Gt is the shape factor for a triangle. Sites are modeled
as cubes. The conductance of a square is given by [66]. Their
equation is applied for the calculation of site conductance gs:

gs = 0.5623GsA
2, (A17)

where Gs is the shape factor for a square. The conductance of
oil in center of triangle is a simple approximation as given by
[34]. Their equation is used for the calculation of conductance
to oil in bonds gob:

gob = 0.6Gt A
2
eff . (A18)

The conductance of oil in center of square is a simple
approximation as given by Ref. [34]. Their equation is used
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for the calculation of conductance to oil in sites gos:

gos = 0.5623GsA
2
eff . (A19)

During displacement, water will gather in corners. The area
of water in each corner Awc can be calculated by

Awc(θ, rd , β ) = rd
2

(
θ + β − π

2
+ cos θ cos (θ + β )

sin β

)
.

(A20)

The shape factor for water in the corner Gwc is

Gwc(θ, r, β ) = Awc

4
( rd cos (θi+β )

sin β

)2(
1 − sin β

cos (θi+β )

(
θi + β − π

2

))2 .

(A21)

Assuming that there is no slip condition at the water-oil
boundary, the corner water conductance gwc can then be cal-
culated by [35]:

gwc = CA2
wcGwc, (A22)

where the constant C is

C = 0.364 + 0.28
sin β cos β

4Gwc(1 + sin β )2 . (A23)

To calculate the conductance of the corner water through
a site (gwcs) or bond (gwcb), take the corner conductance mul-
tiplied by the number of corners. For sites the half-length is
β = π/4 and the number of corners is 4. For bonds β = π/6
and the number of corners is 3.

To calculate the conductance from one site to another, we
use the equation for a set of conductors in series

l

g
= rins1

gs1(rins1)
+ lb

gb(rinb)
+ rins2

gs2(rins2)
, (A24)

FIG. 14. The coefficient of variation in the permeability calcu-
lated by EMT (in red) and by CPT (in blue) plotted against the
number of Monte Carlo permutations used to generate the conduc-
tance distribution.

where l is the distance between two adjacent site centers, g is
the conductance from one site to the other, rins1 and rins2 are
the inscribed radius of the first and second site, respectively,
gs1 and gs2 are the conductance for the first and second sites,
respectively, gb is bond conductance, and lb is the bond length.

The lengths must satisfy the following equation:

lb = l − rins1 − rins2. (A25)

APPENDIX B: CONVERGENCE OF MONTE CARLO
SIMULATION

Please see Fig. 14.
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