УДК 577.3

—МОЛЕКУЛЯРНАЯ БИОФИЗИКА=

ИНГИБИРОВАНИЕ ХЕЛИКАЗЫ UL9 ВИРУСА ПРОСТОГО ГЕРПЕСА АНАЛОГАМИ НЕТРОПСИНА И ПРОТИВОВИРУСНАЯ АКТИВНОСТЬ БИС-НЕТРОПСИНОВ

© 2012 г. Н.П. Бажулина, А.Н. Суровая, Я.Г. Гурский^{*}, В.Л. Андронова^{**}, В.С. Архипова, М.В. Головкин, А.М. Никитин, Г.А. Галегов^{**}, С.Л. Гроховский, Г.В. Гурский

ФГБУ Институт молекулярной биологии им. В.А. Энгельгардта РАН, 119991, Москва ул. Вавилова, 32; E-mail: annasur@eimb.ru

* ФГБУ кардиологический научно-производственный комплекс, 121552, Москва, ул. 3-я Черепковская, 15 а; **ФГБУ НИИ вирусологии им. Д.И. Ивановского Минздравсоцразвития России, 123098, Москва, ул. Гамалеи, 16 Поступила в редакцию 19.01.12 г.

Получены экспериментальные данные, свидетельствующие о том, что мишенью для противовирусного действия димерных производных антибиотика нетропсина являются комплексы, образуемые хеликазой UL9 вируса простого герпеса с началом репликации вирусной ДНК, включающим два сайта OriS и один сайт OriL. Согласно данным ДНКазного фупринтинга бис-нетропсины избирательно связываются с A+T-кластером в OriS. Бис-нетропсины стабилизируют структуру A+T-кластера и ингибируют вызванное тепловыми флуктуациями раскрытие AT-пар оснований, которое необходимо для инициации процесса раскручивания ДНК хеликазой UL9. С помощью измерения эффективности резонансного переноса энергии (FRETметод) между флуоресцентными зондами, присоединенными ковалентно к 3'- и 5'-концам олигонуклеотидов в минимальном дуплексе OriS, исследована кинетика раскручивания ДНК хеликазой UL9. Показано, что Pt-бис-нетропсин ингибирует процесс раскручивания минимального дуплекса OriS хеликазой UL9. Он также уменьшает скорость раскручивания хеликазой AT-богатой шпильки в верхней нити минимального дуплекса OriS. Исследована противовирусная активность новых димерных аналогов нетропсина и их действие на инфицированных вирусом герпеса лабораторных животных.

Ключевые слова: димерные производные нетропсина, футпринтинг, вирус простого герпеса, инициация репликации, хеликаза UL9, раскручивание ДНК, FRET-метод, противовирусная активность.

Одним из путей воздействия на инфекцию, вызванную вирусом простого герпеса, является использование в качестве потенциальных лекарственных агентов химических соединений, способных избирательно связываться с вирусной ДНК и ингибировать активность ключевых вирусных ДНК-связывающих белков [1,2]. Ранее мы обнаружили, что димерные производные антибиотика нетропсина избирательно связываются с А+Т-кластером в начале репликации вируса простого герпеса и эффективно подавляют репродукцию вируса в культуре клеток Vero [3–5]. Они обладают также лечебным действием на инфицированных вирусом герпеса лабораторных животных [6].

В настоящем сообщении мы приводим экспериментальные данные, свидетельствующие о том, что мишенью для действия этих соединений является комплекс, образуемый хеликазой UL9 вируса простого герпеса с началом репликации вирусной ДНК OriS или OriL [7-16]. Бис-нетропсины при связывании с А+Т-кластером в OriS стабилизируют его структуру и ингибируют вызванное тепловыми флуктуациями раскрытие АТ-пар оснований [17-20], которое необходимо для инициации процесса раскручивания ДНК хеликазой UL9 [10-16]. С помощью измерения эффективности резонансного переноса энергии между флуоресцентными зондами, присоединенными ковалентно к 3'- и 5'концам олигонуклетидов в минимальном дуплексе OriS, исследована кинетика раскручивания ДНК хеликазой UL9. Показано, что Ptбис-нетропсин ингибирует процесс раскручивания минимального дуплекса OriS хеликазой UL9. Мы исследовали также противовирусную активность бис-нетропсинов и их лечебный эффект на вирусную инфекцию у инфицированных вирусом герпеса лабораторных животных.

Рис. 1. Нуклеотидная последовательность в начале репликации OriS вируса простого герпеса первого типа (а). Стрелками показаны два участка с палиндромными последовательностями. (б), (в) – Связывающие места I и III для хеликазы (боксы I и III), а также А+Т-кластер и бокс II. D и А – молекулы донора и акцептора, связанные ковалентно с 5'- и 3'-концами олигонуклеотида.

На рис. 1 представлена нуклеотидная последовательность минимального дуплекса OriS, показаны структуры шпилек, образуемых верхней нитью дуплекса после раскручивания ДНК хеликазой UL9, и схематически иллюстрированы основные принципы развиваемого в настоящей работе подхода, основанного на измерения эффективности резонансного переноса энергии между флуоресцентными зондами, присоединенными к 3'- и 5'-концам олигонуклетидов. Известно, что в присутствии АТФ и другого вирусного белка ICP8 (single-sranded DNA binding protein) инициаторный белок UL9 вызывает раскручивание ДНК в OriS и OriL, что приводит к инициации репликации вирусной ДНК [10–16]. В отсутствие ICP8 хеликаза UL9 раскручивает ДНК более медленно [12,13].

После расплетения минимального дуплекса OriS хеликаза UL9 связывается с одним из однотяжевых олигонуклеотидов (верхняя нить в OriS) [14–16]. В растворе этот олигонуклеотид

БИОФИЗИКА том 57 вып. 2 2012

спонтанно образует две шпильки – GC-богатую шпильку, стабилизированную комплементарными парами оснований в боксах I и III, и АТбогатую шпильку, в которую входят основания А+Т-кластера и примыкающие к нему нуклеотиды [14–16].

В экспериментах *in vitro* мы использовали инициаторный белок UL9 вируса простого герпеса и флуоресцентно-меченые фрагменты ДНК, входящие в OriS. Ранее ген UL9 вируса герпеса (штамм L2 из коллекции Института вирусологии им. Д.И. Ивановского) был амплифицирован с помощью ПЦР, вставлен в плазмиду рЕТ14 и экспрессирован в клетках *E. coli* [20]. Рекомбинантный белок UL9 образует специфические комплексы с боксами I и II в OriS и обладает хеликазной и АТФазной активностями [20].

МАТЕРИАЛЫ И МЕТОДЫ

Лиганды. Химические структуры бис-нетропсинов, использованных в настоящей работе, приведены ниже:

 $\begin{array}{rl} NMe_{2}\text{-}(CH_{2})_{3}\text{-}NH\text{-}Apc_{2}\text{-}Gly\text{-}Pt(NH_{3})_{2}\text{-}\\ Gly\text{-}Apc_{2}\text{-}NH\text{-}(CH_{2})_{3}\text{-}NMe_{2} & (Pt\text{-}bis\text{-}Nt)\\ H\text{-}Lys\text{-}Gly\text{-}Apc_{2}\text{-}CONH\text{-}(CH_{2})_{5}\text{-}\\ NHCO\text{-}Apc_{2}\text{-}Gly\text{-}Lys\text{-}H & (Lys\text{-}bis\text{-}Nt)\\ NMe_{2}\text{-}(CH_{2})_{3}\text{-}NH\text{-}Apc_{2}\text{-}Gly\text{-}Gly\text{-}Pt(NH_{3})_{2}\text{-}\\ Gly\text{-}Gly\text{-}Apc_{2}\text{-}NH\text{-}(CH_{2})_{3}\text{-}NMe_{2} & (Pt^{*}\text{-}bis\text{-}Nt)\\ (((H\text{-}Lys)_{2}\text{-}Lys)_{2}\text{-}Lys\text{-}Gly\text{-}Apc_{2}\text{-}Gly_{3}\text{-}\\ Apc_{2}\text{-}NH\text{-}(CH_{2})_{3}\text{-}NMe_{2} & (15Lys\text{-}bis\text{-}Nt) \end{array}$

Здесь Арс – остаток 1-N-пропил-4-аминопиррол-2 карбоновой кислоты.

Pt-bis-Nt и Pt*-bis-Nt содержат иис-диаминоплатиную группу в соединительной цепи между двумя нетропсиновыми фрагментами. Рtbis-Nt и Pt*-bis-Nt были синтезированы в соответствии с процедурой, описанной в работе [21]. Отличие каждого ди-N-пропил пирролкарбоксамидного фрагмента молекулы бис-нетропсина от нетропсина (Nt) состоит в замене Nметилпиррольных циклов на N-пропилпиррольные, замене С-концевой амидиновой группы на остаток третичного амина, а также в замене присутствующего в нетропсине остатка гуанидилуксусной кислоты на остатки глицина. Эти замены увеличивают устойчивость соединений к деградации в водных растворах. Концентрации бис-нетропсинов определяли спектрофотометрически, используя коэффициент молярной экстинкции при 297 нм, равный 42000 М⁻¹см⁻¹.

Рекомбинантный белок UL9. Для синтеза полноразмерного рекомбинантного белка UL9 в клетках *E. coli* BL21 (DE3) использовалась модифицированная плазмида рЕТ14, содержащая ген UL9 вируса простого герпеса первого типа (штамм L2 из коллекции Института вирусологии им. Д.И. Ивановского) [20]. Белок содержит гистидиновый «таг» - кластер из шести остатков гистидина на N-конце, что позволяет использовать металлхелатирующие (Ni-NTA) колонки для очистки белка. Последующая очистка белка влючает диализ и хроматографию на фосфоцеллюлозе Р11. Концентрацию белка определяли спектрофотометрически, используя коэффициент молярной экстинкции для мономера UL9 при 280 нм, равный 89000 М⁻¹см⁻¹. Рекомбинантный белок UL9 хранился в буфере А, содержащем 20 мМ трис HCl (pH 7,2); 20 мМ HEPES-NaOH; 0,54 М NaCl, 0,01% твин 20; 0,10 мМ EDTA; 1 мМ дитиотреитола и 20 об.% глицерина.

ДНКазный футпринтинг. Фрагмент ДНК получали расщеплением модифицированной плазмиды pGEM7(f+) (Promega), содержащей вставки олигонуклеотидов с псевдосимметричными последовательностями, рестриктазами NcoI и ApaI [22]. Фрагмент также содержал вставку из начала репликации вируса герпеса OriS с последовательностью

5'-GCTCGCACTTCGCCCTAATAATATA TATATATTGGGTCGAAGTGCGAACGC-3',

включающей A+T-кластер и связывающие места для хеликазы UL9. Для введения радиоактивной метки по 3'-концу фрагмента использовали [α-³²P]dATP (Изотоп, Москва), немеченые dNTP и фрагмент Кленова ДНК полимеразы I *Escherichia coli*. Выделение фрагмента проводилось в 5%-м полиакриламидном геле [23].

Футпринтинг комплексов фрагмента ДНК с бис-нетропсинами проводили, как описано ранее [22]. Для приготовления комплекса 10 мкл раствора фрагмента (примерно 10⁴ Бк) 10 мМ трис-HCl (pH 7,5), 0,5 М NaCl (pH 6), смешивали с 10 мкл раствора лиганда в воде и охлаждали до 0°С. К смеси добавляли 20 мкл раствора ДНКазы I в 10 мМ трис-HCl (рН 6), 0,25 M NaCl, 5 мМ MnCl₂ и выдерживали 3 мин при 0°С. Для остановки реакции добавляли 85 мкл раствора 0,15 M NaCl, 50 мМ трис-HCl (рН 7,5), 10 мМ ЕDTA, 10 мкг/мл тРНК, ДНК экстрагировали фенолом, осаждали этанолом, промывали 70%-м этанолом, высушивали, растворяли в 1 мкл 95% формамида, содержащего 15 мМ EDTA, 0,05% бромфенолового синего и 0,05% ксиленцианола FF, нагревали 1 мин при 90°С, быстро охлаждали и наносили на 6%-й денатурирующий полиакриламидный гель длиной 40 см с градиентной

толщиной 0,15–0,45 мм [22]. Электрофорез проводили 60 мин при 2500 В. Перед экспонированием гель фиксировали в 10%-й уксусной кислоте и высушивали на стекле, предварительно обработанном гамма-метакрилпропилоксисиланом (LKB, Швеция).

Олигонуклеотидные конструкции. В качестве субстратов для исследования ДНК-связывающей и хеликазной активностей рекомбинантного белка UL9 мы использовали следующие олигонуклеотидные конструкции:

5'-aaaagaagtgagaacgcgaagcgttcgcacttcgtcccaatatatat	(S1)
3'-TTTTCTTCACTCTTGCGCTTCGCAAGCGTGAAGCAGGGTTATATATA	(S2)
5'-AAAAGAAGTGAGAACGCGAAGCGTTCGCACTTCGTCCCAATATATAT	(S3)
R6G-5'AAAAGAAGTGAGAACGCGAAGCGTTCGCACTTCGTCCCAATATATAT	(S4)
R6g-5'aaaagaagtgagaacgcgaagcgttcgcacttcgtcccaatatatat	(S5)
BHQ2-3'TTTTCAACACTCTTGCGCTTCGCAAGCCTGAAGCAGGGTTATATATA	(S6)
3'-TTTTCTTCACTCTTGCGCTTCGCAAGCGTGAAGAAA-5'-R6G	(S7)
Cy5-3'-AAAGGGTTATATATATATAATAATCCC-5'-BHQ2	(S8)
3'-TTTTCTTCACTCTTGCGCTTCGCAAGCGTGAAGCAGGG-5'	(S9)

Олигонуклеотиды (S1-S9) были синтезированы фосфороамидитным методом и очищены с помощью электрофореза в полиакриламидном геле («Синтол», Россия). Красители были присоединены ковалентно к 3'- и 5'-концам олигонуклеотидов S5-S8 с помощью аминогексаметиленовых линкеров. Здесь R6G и Cy5 аналоги 6-карбосиродамина G и цианинового красителя Су5 соответственно. ВНQ2 – нефлуоресцирующий краситель (Black hole quencher 2). Красители R6G и Cy5 служат в качестве донора энергии электронного возбуждения, а BHQ2 является ее акцептором при резонансном переносе энергии электронного возбуждения от донора к акцептору по механизму Ферстера в олигонуклеотидах (S5), (S6) и (S8). Эффективность переноса энергии зависит от расстояния *R* между донором и акцептором как $1/R^6$ [24]. Она также зависит от величины интеграла перекрытия нормированного спектра флуоресценции донора и спектра поглощения акцептора. От величин интеграла перекрытия, квантового выхода флуоресценции донора и величины коэффициента, учитывающего взаимную ориентацию переходных моментов молекул донора и акцептора, зависит величина R_0 – критическое расстояние между донором и акцептором, при котором вероятность безизлучательного переноса энергии от донора к акцептору равна вероятности испускания кванта света донором в отсутствие акцептора. По нашим данным для пар красителей R6G – BHQ2 радиус миграции энергии R_0 равен 63 Å.

БИОФИЗИКА том 57 вып. 2 2012

Хеликазная активность. В экспериментах по связыванию и раскручиванию ДНК инициаторным белком UL9 мы использовали в качестве субстратов олигонуклеотидные конструкции (S1)+(S2), (S5)+(S2), (S4)+(S2), a также (S5)+(S9),(S4)+(S9), (S3)+(S6) и (S3)+(S7)+(S8). При температуре 42°С в среднем три пары оснований в дуплексе (S1)+(S2) находятся в расплетенном состоянии и могут служить в качестве «зародыша» для катализируемого хеликазой перехода «спираль-клубок» в А+Т-кластере. При инкубации дуплекса (S1)+(S2) с хеликазой UL9 и АТФ в течение 60 мин при 42° С образуется небольшое количество продукта с подвижностью в полиакриламидном геле, соответствующей подвижности комплекса однотяжевого олигонуклеотида с хеликазой UL9 [20]. В качестве субстрата для хеликазы UL9 мы использовали также олигомер (S3)+(S7)+(S8) и олигонуклеотидные конструкции (S5)+(S9), (S4)+(S9) и (S3)+(S6). Каждая из этих конструкций имеет однотяжевый хвост на З'-конце верхней нити в минимальном дуплексе OriS. Для образования олигомера (S3)+(S7)+ (S8) или 63-членного дуплекса (S4)+(S2), (S5)+(S2) комплементарные нити смешивали в эквимолярных концентрациях, смеси отжигали при 90°C, а затем охлаждали до комнатной температуры в течение 8-10 ч. Нуклеотидная последовательность минимального дуплекса (63 пары оснований) соответствует фрагменту ДНК в начале репликации OriS вируса простого герпеса первого типа. Этот фрагмент включает А+Т-кластер и связывающие места I и III для инициаторного белка UL9.

Приборы и методы. Спектры кругового дихроизма измеряли на приборе Jasco-720, используя кюветы с длиной оптического пути 1,0; 0,1 и 0,2 см. Спектры поглощения измеряли на спектрофотометре Jasco V-550. Флуоресцентные измерения проводили на спектрофлуориметре Cary Eclipse. Исследования проводили в 0,001 M Na-какодилатном буфере в присутствии 0,1 M NaCl, pH 7,0. Бис-нетропсины растворяли в небольшом количестве этанола, а затем переводили в упомянутый выше буфер.

Тушение флуоресценции донора, вызванное безизлучательным переносом энергии электронного возбуждения от донора к акцептору (Forster mechanism of resonance energy transfer, FRET) [24], зависит от расстояния между донором и акцептором в ДНК и ДНК-белковом комплексе

$$I_{\rm DA}/I_{\rm D} = 1/(1 + (R_0/R)^6).$$
 (1)

Здесь $I_{\rm D}$ – интенсивность флуоресценции донора в отсутствие акцептора. $I_{\rm DA}$ – интенсивность флуоресценции донора в присутствии акцептора. R – расстояние между донором и акцептором. R_0 – критическое расстояние между донором и акцептором, при котором вероятность резонансного переноса энергии от донора к акцептору равна вероятности излучения кванта света донором в отсутствие акцептора.

$$R_0 = 10^{-5} (880 K^2 n^{-4} q_{\rm D} J)^{1/6} \text{\AA}.$$
 (2)

Здесь q_D – квантовый выход флуоресценции донора, *п* – индекс рефракции среды, разделяющей молекулы донора и акцептора, K² – коэффициент, зависящий от взаимной ориентации переходных моментов молекул донора и акцептора. Для случайной взаимной ориентации переходных моментов $K^2 = 2/3$. *J* – интеграл перекрытия нормированного спектра флуоресценции донора и спектра поглощения акцептора. Для определения эффективности переноса энергии 1 – I_{DA}/I_D необходимо измерить интенсивности флуоресценции донора в системе, содержащей олигонуклеотид с двумя зондами (D и A), а также в системе, содержащей олигонуклеотид, который конъюгирован только с донором (D).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Специфичность связывания бис-нетропсинов с началом репликации OriS. На рис. 2 приведена диаграмма футпринтинга комплексов Pt-bis-Nt и Pt*-bis-Nt с фрагментом ДНК, который содержит вставку с последовательностью, соответствующей началу репликации OriS вируса герпеса, а также вставки олигонуклеотидов с псевдосимметричными последовательностями, которые могут служить в качестве сильных мест связывания для Pt-bis-Nt и Pt*-bis-Nt.

Как видно из рис. 2, оба бис-нетропсина защищают А+Т-кластер от расщепления ДНКазой І. Концентрационные зависимости защитного эффекта показывают, что Pt-bis-Nt образует более прочный комплекс с А+Т-кластером, чем Pt*-bis-Nt. При низких концентрациях Ptbis-Nt защищает от расщепления более протяженный участок ДНК, чем Pt*-bis-Nt. Ранее было показано, что Lys-bis-Nt и 15Lys-bis-Nt связываются избирательно с протяженными кластерами АТ-пар оснований [5,17]. Pt-bis-Nt защищает от расщепления А+Т-кластер и участки ДНК с псевдосимметричными последовательностями, содержащими кластеры из четырех АТ-пар оснований, которые разделены одной или двумя GC-парами оснований. Примером может служить участок с последовательностью 5'-TATAGGTATA-3', в котором наблюдается ярко выраженный защитный эффект в присутствии 3,3 мМ Рt-бис-нетропсина, в то время как в присутствии Pt*-bis-Nt защитный эффект не наблюдается даже при втрое раза большей концентрации бис-нетропсина.

Хеликазная активность инициаторного белка **UL9 вируса герпеса.** После отжига олигонуклеотидов (S5) и (S2) образуется дуплекс, который содержит А+Т-кластер и связывающие места I и III для хеликазы. Верхняя нить в этом дуплексе сама по себе при комнатной температуре сворачивается в две шпильки, одна из которых включает основания, присутствующие в боксах I и III. Эта шпилька богата GC-парами. По нашим данным, она плавится при температуре 83°С, в то время как вторая шпилька, состоящая преимущественно из АТ-пар оснований, неустойчива и является полностью расплавленной при температуре 45°С [14,15]. В двушпилечной структуре олигонуклеотида (S5) (или (S6)) 5'и З'-концы олигонуклеотида являются пространственно сближенными. Таким образом, если при связывании хеликазы UL9 с дуплексом структура дуплекса деформируется и в обеих нитях образуются шпильки, то молекулы донора и акцептора, находящиеся на 5'- и 3'-концах каждого олигонуклетида, оказываются пространственно сближенными (рис. 1). Это проявляется в тушении флуоресценции донора акцептором. Интенсивность флуоресценции свободного олигонуклеотида (S5) значительно меньше, чем интенсивность флуоресценции дуплекса, в котором флуоресцентные зонды раз-

Рис. 2. Профили расщепления фрагмента, содержащего участок начала репликации OriS, ДНКазой I. Дорожка *I* – исходный фрагмент без обработки; дорожки; *2*, *8* – А+G-химическое расщепление по пуринам; дорожки *3*, *9* – расщепление ДНКазой I свободного фрагмента; дорожки *4*–7 – расщепление ДНКазой I фрагмента в присутствии 10; 3,3; 1 и 0,3 мкМ Pt*-bis-Nt соответственно; дорожки *10–13* – расщепление ДНКазой I фрагмента в присутствии 10; 3,3; 1 и 0,3 мкМ Pt*-bis-Nt соответственно.

делены большим расстоянием. Эффективность переноса энергии электронного возбуждения от D к A $1 - I_{DA}/I_D$ для свободного олигонуклеотида изменяется в пределах от 0,74 до 0,88. Эти значения $1 - I_{DA}/I_D$ указывают на то, что (S5) находится в форме шпильки в растворе. Аналогичные результаты получены для олигонуклеотидов (S6) и (S8). При добавлении хеликазы UL9 к олигонуклеотиду (S5) и дуплексу (S5)+(S9) интенсивность флуоресценции уменьшается в отсутствие ICP8 и АТФ (рис. 3). Это может быть связано с непосредственным взаимодействием между хеликазой и флуоресцентной меткой или является следствием изменений в структуре дуплекса и олигонуклеотида при связывании с хеликазой. Более протяженный дуплекс образуется при отжиге олигонуклеотидов (S3) и (S6). На рис. 3 представлены спектры флуоресценции дуплекса (S5)+(S9) и однотяжевого олигонуклеотида (S5) в отсутствие и в

БИОФИЗИКА том 57 вып. 2 2012

Рис. 3. Спектры флуоресценции дуплекса (S5)+(S9) (кривая I) и его комплекса с хеликазой UL9 (кривая 2), а также спектры флуоресцении свободного олигонуклеотида (S5) (кривая 3) и комплекса олигонуклеотида (S5) с хеликазой (кривая 4). Длина волны возбуждения 510 нм, щели для возбуждения и эмиссии равны 10 и 5 нм соответственно. Концентрации дуплекса (S5)+(S9) и олигонуклеотида (S5) равны $2\cdot10^{-7}$ М. Концентрация димеров хеликазы равна $6,3\cdot10^{-7}$ М. Условия: 20 мМ трис-HC1 (pH 7,2), 12 мМ MgCl₂, 10% глицерин, 0,01% тритон X-100, 1 мМ дитиотриэтол.

присутствии хеликазы UL9. Кривые 1 и 2 соответствуют спектрам флуоресценции дуплекса (S5)+(S9) в отсутствие и в присутствии хеликазы UL9. Кривые 3 и 4 – спектры флуоресценции свободного олигонуклеотида (S5) и его комплекса с хеликазой соответственно.

Значительное тушение наблюдается для свободного однотяжевого олигонуклетида (S5) и его комплекса с хеликазой. По нашим данным, хеликаза UL9 образует более прочный комплекс с однотяжевым 63-членным олигонуклеотидом (S1), чем с минимальным дуплексом (S1)+(S2) (константы связывания различаются примерно в 10 раз) [20]). Это различие в сродстве хеликазы к дуплексу (S1)+(S2) и однотяжевому олигонуклеотиду (S1) является основной причиной для наблюдаемого при связывании хеликазы с дуплексами (S1)+(S2) и (S5)+(S9) структурного перехода, который приводит к дестабилизации и частичному раскручиванию дуплексов. Ранее нами было показано, что при инкубации хеликазы UL9 с дуплексом (S1)+(S2) в течение 60 мин при 42°С в присутствии 5·10⁻³ М АТФ появляется продукт, подвижность которого в полиакриламидном геле соответствует подвижности комплекса однотяжевого олигонуклеотида с хеликазой UL9 [20]. Комплексы олигонуклеотидов (S1) и (S2) с хеликазой имеют одинаковые подвижности в полиакриламидном геле. Обратная реакция – образование дуплекса из однотяжевых олигонуклеотидов – затруднена, так как олигонуклеотиды (S1) и (S2) образуют шпильки, с которыми связывается хеликаза UL9.

Раскручивание хеликазой UL9 АТ-богатой шпильки в олигонуклеотиде (S5) в отсутствие и в присутствии Pt-бис-нетропсина. При добавлении АТФ к смеси, содержащей однотяжевый олигонуклеотид (S5) и хеликазу UL9, наблюдаются зависимые от времени изменения интенсивности флуоресценции донора, свидетельствующие о раскручивании хеликазой АТ-богатой шпильки, что приводит к увеличению среднего расстояния между флуоресцентными зондами. На рис. 4 представлена зависимость от времени интенсивности флуоресценции олигонуклеотида (S5) при 559 нм после добавления хеликазы UL9 и АТФ в отсутствие (а) и в присутствии Pt-bis-Nt (б).

Экспериментальные зависимости интенсивности флуоресценции от времени хорошо описываются уравнением

$$I_{559}(t) = A_0 + A_1 \exp(-t/T_1).$$
(3)

Здесь $I_{559}(t)$ – интенсивность флуоресценции комплексов олигонуклеотида с хеликазой в отсутствие или в присутствии Pt-bis-Nt, t – время, которое отсчитывается от момента добавления в исследуемый раствор АТФ, T_1 – характерное время для исследуемого процесса, A_0 и A_1 константы. Сплошные кривые на рис. 4 – это теоретические зависимости $I_{559}(t)$, для которых сумма квадратов отклонений экспериментальных точек от рассчитанных значений $I_{559}(t)$ достигает минимума. На рис. 4 указаны значения величин A₀, A₁ и T₁, которые удовлетворяют этому критерию. Форма кривых, представленных на рис. 4, свидетельствует о том, что Ptbis-Nt замедляет раскручивание АТ-богатой шпильки хеликазой UL9. Среднее значение T_1 по данным трех независимых экспериментов составляет 169,57 ± 22,70 мин, в то время как в отсутствие Pt-bis-Nt среднее значение T_1 по данным трех независимых экспериментов равно 113,54 ± 14,70 мин. Это различие в средних значениях T₁ является количественной мерой того, насколько уменьшается скорость хеликазной реакции в присутствии Рt-бис-нетропсина. Уменьшение скорости раскручивания ДНК связано с образованием комплекса Pt-bis-Nt с ATбогатой шпилькой. Ранее было показано, что Pt-bis-Nt увеличивает термостабильность AT-бо-

Рис. 4. Кинетика раскручивания АТ-богатой шпильки в олигонуклеотиде (S5) хеликазой UL9 в отсутствие (a) и в присутствии Рt-бис-нетропсина (б). I_0 – интенсивность флуоресценции свободного олигонуклеотида при 559 нм. Длина волны возбуждения – 510 нм, щели для эмиссии и возбуждения равны 10 и 5 нм соответственно. Стрелками указаны моменты времени, когда к раствору олигонуклеотида (S5) были добавлены хеликаза UL9, Pt-bis-Nt и АТФ. Концентрации АТФ, олигонуклеотида (S5) и хеликазы в реакционной смеси равны 1,8·10⁻²; 1,1·10⁻⁷ и 3,9·10⁻⁷ М соответственно. Концентрация Pt-bis-Nt равна 1.98·10⁻⁷ М. Условия: 20 мМ трис-HCl (pH 7,2), 12 мМ MgCl₂, 10% глицерин, 0,01% тритон X-100, 1 мМ дитиотриэтол, 37°С.

гатой шпильки при связывании (температура плавления увеличивается примерно на 20°С) [17]. 15Lys-bis-Nt и Lys-bis-Nt также увеличивают температуру плавления АТ-богатой шпильки [20].

Раскручивание хеликазой UL9 двуспиральных олигонуклеотидов в отсутствие и в присутствии Pt-бис-нетропсина. Олигонуклеотиды (S3) и (S6) способны образовывать дуплекс, в котором нижняя нить содержит флуоресцентные зонды R6G и BHQ2 на 5'- и 3'-концах.

$\begin{array}{c} 5'AAAAGAAGTGAGAACGCGAAGCGTT\\ CGCACTTCGTCCCAATATATATATATATT\\ ATTAGGG(T)_{18}3' \end{array} (S3)$

БИОФИЗИКА том 57 вып. 2 2012

Рис. 5. Раскручивание двуспиральной ДНК хеликазой UL9 в отсутствие (а) и в присутствии в реакционной смеси Рt-бис-нетропсина (б). I_0 – интенсивность флуоресценции свободного дуплекса (S3)+(S6) при 559 нм. Длина волны возбуждения – 510 нм, щели для эмиссии и возбуждения равны 10 и 5 нм соответственно. Концентрации АТФ и дуплекса (S3)+(S6) и хеликазы в реакционной смеси равны $1,8\cdot10^{-2}$; $1,1\cdot10^{-7}$ и $3,9\cdot10^{-7}$ М соответственно. Концентрация Pt-bis-Nt равна $8,9\cdot10^{-7}$ М. Сплошными линиями показаны теоретически рассчитанные зависимости $I_{559}(t)$, для которых сумма квадратов отклонений экспериментальных точек от рассчитанных значений $I_{559}(t)$ является минимальной. Условия указаны в подписи к рис. 4.

BHQ2-3'TTTTCAACACTCTTGCGCTTCG (S6)CAAGCCTGAAGGAGGGTTATATATATA TAATAATCCCGCTT-5'-R6G

На рис. 5 представлены зависимости от времени интенсивности флуоресценции комплекса хеликазы с дуплексом (S3)+(S6) после добавления АТФ в отсутствие (а) и в присутствии Pt-бис-нетропсина (б).

Как видно из рис. 5, интенсивность флуоресценции $I_{559}(t)$ комплексов хеликазы с дуплексом в присутствии АТФ линейно зависит от времени инкубации реакционной смеси. В ходе реакции появляется свободный олигонук-

Рис. 6. Раскручивание ДНК в олигомере (S3)+ (S7)+(S8) в отсутствие (а) и в присутствии в реакционной смеси Pt-bis-Nt (б). I_0 – интенсивность флуоресценции свободного олигомера (S3)+(S7)+(S8) при 670 нм. Длина волны возбуждения – 620 нм, щели для эмиссии и возбуждения равны 10 и 5 нм соответственно. Концентрации АТФ, олигомера (S3)+(S7)+(S8) и хеликазы в реакционной смеси равны $1,8\cdot10^{-2}$; $1,1\cdot10^{-7}$ и $3,97\cdot10^{-7}$ М соответственно (а) и $1,9\cdot10^{-2}$; $1,15\cdot10^{-7}$ и $3,44\cdot10^{-7}$ М соответственно (б). Концентрация Pt-bis-Nt равна $1,4\cdot10^{-7}$ М. Сплошными линиями показаны зависимости $I_{670}(t)$, которые дают наилучшее соответствие с экспериментальными данными. Условия указаны в подписи к рис. 4.

леотид (S6), который спонтанно сворачивается в шпильку и может связываться с хеликазой. Так как средние расстояния между донором и акцептором в шпильке меньше, чем в дуплексе (S3)+(S6), то уменьшение интенсивности флуоресценции при 559 нм отражает увеличение концентрации свободного олигонуклеотида (S6) в реакционной смеси. Как видно из рис. 5, наклон прямой $I_{559}(t)$ для системы, в которой присутствует Pt-bis-Nt, в 1,5 раза меньше, чем наклон прямой в контроле, т.е. в отсутствие Pt-бис-нетропсина в реакционной смеси. Таким образом, Pt-бис-нетропсин при связывании с OriS уменьшает скорость раскручивания дуплекса (S3)+(S6) хеликазой UL9.

Эти результаты подтверждаются экспериментальными данными, полученными для олигомера (S3)+(S7)+(S8). Этот олигомер отличается от дуплекса (S3)+(S6) тем, что в нем вместо нижней нити дуплекса используются два флуоресцентно-меченых олигонуклеотида (S7) и (S8). После отжига олигонуклеотидов (S3), (S7) и (S8) верхняя нить в олигомере содержит неструктурированный однотяжевый хвост из 18 остатков тимина на 3'-конце.

3'-TTTTCTTCACTCTTGCGCTTCGCAA (S7) GCGTGAAGAAA-5'-R6G

Cy5-3'-AAAGGGTTATATATATATATATA (S8) ATCCC-5'-BHQ2

Здесь Су5 – аналог цианинового красителя Су5, BHQ2 – тушитель флуоресценции BHQ2 (Black hole 2 quencher). Флуоресцентные зонды присоединены к 3'- и 5'-концам олигонуклеотида (S8). Олигонуклеотид (S7) несет флуоресцентный зонд (R6G) на 5'-конце.

Измерение интенсивности флуоресценции при 670 нм, I₆₇₀(t), после добавления хеликазы и АТФ позволяет исследовать кинетику раскручивания ДНК в олигомере (S3)+(S7)+(S8) хеликазой UL9. Из рис. 6 видно, что в отсутствие Pt-бис-нетропсина в реакционной смеси наблюдается уменьшение интенсивности флуоресценции при 670 нм, которое вызвано раскручиванием ДНК и связано с диссоциацией олигонуклеотида (S8) и стабилизацией его структуры в форме шпильки. Обратная реакция – ассоциация олигонуклеотидов и образование олигомера (S3)+(S7)+(S8) – затруднена, так как свободные олигонуклеотиды (S7) и (S8) содержат палиндромные последовательности и сворачиваются в шпильки, с которыми связывается хеликаза. В присутствии Рt-бис-нетропсина в реакционной смеси (молярное отношение бис-нетропсина к олигомеру ДНК равно 1,2) процесс раскручивания хеликазой олигомера (S3)+(S7)+(S8) практически полностью ингибирован (рис. 6б). Мы также обнаружили, что Рt-бис-нетропсин замедляет раскручивание АТбогатой шпильки в олигонуклеотиде (S5) и препятствует образованию протяженного неструктурированного хвоста на З'-конце олигонуклетида. Это приводит к подавлению инициации репликации вирусной ДНК.

Данные ДНКазного футпринтинга показывают, что Pt-бис-нетропсин избирательно связывается с А+Т-кластером в OriS. Pt*-bis-Nt и малоактивные аналоги нетропсина обладают меньшим сродством к А+Т-кластеру, чем Рtбис-нетропсин (константа связывания Рt-бис-нетропсина (≈ 10⁸ М⁻¹) в 10 (или более) раз превосходит константу связывания Pt*-bis-Nt). 15Lys-bis-Nt, Pt-bis-Nt и Lys-bis-Nt обладают высокой противогерпесной активностью в культуре клеток Vero E6 (IC₅₀ равно 1,3: 4,4 и 11,6 мМ, а индексы селективности (SI) равны 47, 59 и 29 для 15Lys-bis-Nt, Pt-bis-Nt и Lys-bis-Nt соответственно. Pt*-bis-Nt практически не обладает противовирусной активностью в культуре клеток Vero E6, инфицированных вирусом простого герпеса первого типа (SI \approx 0) [5,20]. Бис-нетропсины, обладающие высокой противовирусной активностью (15Lys-bis-Nt, Pt-bis-Nt и Lys-bis-Nt) при связывании с А+Т-кластером в OriS увеличивают температуру плавления А+Т-кластера и ингибируют процесс флуктуационного раскрытия АТ-пар оснований, который необходим для инициации раскручивания ДНК хеликазой UL9.

Противовирусная активность бис-нетропсинов. Исследована антивирусная активность димерных аналогов нетропсина в культуре клеток Vero E6 и изучено лечебное действие 15 Lysbis-Nt и Lys-bis-Nt на инфицированных лабораторных животных при внутрибрюшинном введении субстанций (мыши Balb/ с) и при их использовании в форме лечебной мази для лечения кожной герпетической инфекции у морских свинок. Показано, что при внутрибрюшинном введении лабораторным животным 15Lys-bis-Nt (разовая доза 30 мг на килограмм массы животного, бис-нетропсин вводился два раза в сутки в течение пяти суток после начала инфекции) наблюдается 45% уменьшение смертности животных при 60% смертности в контрольной инфицированной, но нелеченной группе животных [25]. Бис-нетропсины подавляют репродукцию вариантов вируса с лекарственной устойчивостью.

Исследован лечебный эффект 15Lys-bis-Nt и Lys-bis-Nt при подавлении кожной вирусной инфекции у морских свинок, вызванной вирусом герпеса человека. В этих экспериментах 15Lys-bis-Nt и Lys-bis-Nt использовались в виде 0,075 и 0,15% мазей на основе полиэтиленгликоля. Раствор, содержащий вирус с титром 7 lg БОЕ/мл, втирался в депилированные скарифицированные участки кожи животных площадью около 5 см². Мазь наносилась спустя 48

4 БИОФИЗИКА том 57 вып. 2 2012

ч после инфицирования животного на пораженный участок поверхности тела животного два раза в сутки в течение пяти суток. В контроле через 4 сут после инфицирования возникали герпетические высыпания. Через пять суток проявления симптомов заболевания достигали максимального развития. Ярко выраженный лечебный эффект наблюдался для каждого из используемых бис-нетропсинов при применении в виде 0,15% мазей на основе полиэтеленгликоля. Наблюдалось уменьшение площади пораженной поверхности тела животного, уменьшалось количество везикулярных герпетических высыпаний по сравнению с контролем. Полная реэпителизация наступала на сутки быстрее, чем в контроле. Для получения аналогичного лечебного эффекта при применении ацикловира приходилось использовать 5% мазь, содержащую в 30 раз большее количество лекарственного агента [26]. Сравнительное изучение эффективности лечебного действия биснетропсинов и ацикловира в опытах in vivo показало, что использование Lys-bis-Nt и 15Lysbis-Nt в виде мазевой лекарственной формы является более эффективным воздействием на кожную герпетическую инфекцию, чем применение ацикловира. Особенную ценность димерные производные нетропсина представляют для подавления инфекции, вызванной вариантами вируса герпеса с лекарственной устойчивостью к ацикловиру, когда оральное применение ацикловира и применение в форме мази оказываются неэффективными.

Авторы благодарят А.Б. Полтарауса и его группу за секвенирование клонированных фрагментов ДНК.

Работа выполнена при финансовой поддержке программы Президиума РАН по молекулярной и клеточной биологии и Российского фонда фундаментальных исследований (грант 11-04-02001).

СПИСОК ЛИТЕРАТУРЫ

- 1. M. R. Singleton, M. S. Dillingham, and D. B. Wigley, Ann. Rev. Biochem. **76**, 23 (2007).
- 2. J. W. Lown, K. Krowicki, J. Balzarini, et al., J. Med. Chem. **32**, 2368 (1989).
- В. Л. Андронова, С. Л. Гроховский, А. Н. Суровая и др., Докл. АН РАН. Биохим. Биофиз. 380, 345 (2001).
- В. Л. Андронова, С. Л. Гроховский, А. Н. Суровая и др., Докл. АН РАН. Биохим. Биофиз. 399, 829 (2004).
- 5. В. Л. Андронова, С. Л. Гроховский, А. Н. Суровая и др., Докл. АН РАН. Биохим. Биофиз. **422**, 688 (2008).

- 6. В. Л. Андронова, С. Л. Гроховский, А. Н. Суровая и др., Докл. АН РАН. Биохим. Биофиз. **413**, 830 (2007).
- 7. P. D. Olivio, N. J. Nelson, and M. D. Challberg, J. Virol. 63, 196 (1989).
- P. E. Bohmer, M. S. Dodson, and I. R. Lehman, J. Biol. Chem. 268, 1220 (1993).
- 9. L. Murata and M. S. Dodson, J. Biol. Chem. 274, 37079 (1999).
- E. C. Stabel and P. D. Olivo, Nucl. Acids Res. 21, 5203 (1993).
- A. Koff, J. F. Schwedes, and P. J. Tegtmeyer, J. Virol. 65, 3284 (1991).
- 12. S. S.-K. Lee and I. R. Lehman, Proc. Natl. Acad. Sci. USA 94, 2838 (1997).
- X. He and I. R. Lehman, Proc. Natl. Acad. Sci. USA 98, 3024 (2001).
- A. Aslani, B. Macao, S. Simonsson, and P. Elias, Proc. Natl. Acad. Sci. USA 98, 7194 (2001).
- A. Aslani, M. Olsson, and Per Elias, J. Biol. Chem. 277, 41204 (2002).

- B. Macao, M. Olsson, and Per Elias, J. Biol. Chem. 279, 29211 (2004).
- 17. А. Н. Суровая, С. Л. Гроховский, Н. П. Бажулина и Г. В. Гурский, Биофизика **53**, 744 (2008).
- 18. A. N. Surovaya, G. Burckhardt, S. L. Grokhovsky, et al., J. Biomol. Struct. Dyn. 18, 689 (2001).
- 19. G. V. Gursky, S. L. Grokhovsky, A. N. Surovaya, et al., J. Biomol. Struct. Dyn. 26, 895 (2009).
- 20. А. Н. Суровая, <u>С. Л.</u> Гроховский, Я. Г. Гурский и др., Биофизика **55**, 230 (2010).
- 21. С. Л. Гроховский, А. Л. Жузе и Б. П. Готтих, Биоорган. химия 18, 570 (1992).
- 22. S. L. Grokhovsky, A. N. Surovaya, G. Burkhardt, et al., FEBS Lett. **439**, 346 (1998).
- 23. J. Sambrook; E. F. Fritsch, and T. Maniatis, *Molecular cloning: A laboratory Manual. Cold Spring Harbor* (Cold Spring Harbor Laboratory Press, New York, 1989).
- 24. Th. Forster, Ann. Phys. (Leipzig) 2, 55 (1948).
- 25. В. Л. Андронова, С. Л. Гроховский, П. Г. Дерябин и др., Вопр. вирусологии (в печати).
- 26. В. Л. Андронова, С. Л. Гроховский, А. Н. Суровая и др., Вопр. вирусологии (в печати).

Inhibition of Herpes Simplex Virus Helicase UL9 by Netropsin Derivatives and Antiviral Activities of Bis-Netropsins

N.P. Bazhulina*, A.N. Surovaya*, Ya.G. Gursky**, V.L. Andronova***, V.S. Arkhipova*, M.V. Golovkin*, A.M. Nikitin*, G.A. Galegov***, S.L. Grokhovsky*, and G.V. Gursky*

*Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia

**Scientific and Technological Cardiology Complex, Moscow, 121552 Russia

***Ivanovsky Research Institute of Virology, Moscow, 123098 Russia

Data obtained show that antiviral activities of bis-linked netropsin derivatives are targeted by specific complexes formed by helicase UL9 of herpes simplex virus type 1 with viral DNA replication origins, represented by two OriS sites and one OriL site. According to the results of footprinting studies bis-netropsins get bound selectively to an A+T-cluster which separates interaction sites I and II for helicase UL9 in OriS. Upon binding to DNA bis-netropsins stabilize a structure of the A+T-cluster and inhibit thermal fluctuation-induced opening of AT- base pairs which is needed for local unwinding of DNA by helicase UL9. Kinetics of ATP-dependent DNA unwinding in the presence and absence of Pt-bis-netropsin are studied by measuring the efficiency of Forster resonance energy transfer (FRET) between the fluorescent probes attached covalently to 3?- and 5?-ends of the oligonucleotides in the minimal OriS duplex. Pt-bis-netropsin and related molecules inhibit unwinding of the AT- rich hairpin formed by the upper strand in the minimal OriS duplex. The antiviral activities and toxicity of bis-linked netropsin derivatives are studied in cell cultured experiments and experiments with animals infected by herpes virus.

Key words: bis-linked netropsin derivatives, footprinting, herpes simplex virus type 1, helicase UL9, FRET method, DNA unwinding, antiviral activity