Synthesis and electrochemical investigation of the mixed phosphate-pyrophosphates Na₄(Ni_{1-x}Fe_x)₃(PO₄)₂P₂O₇ (x = 0.25, 0.5).

Marenko A.P.¹, Alekseeva A.M.¹, Drozhzhin O.A.^{1,2}, Antipov E.V.^{1,2}

¹ Lomonosov Moscow State University, Leninskie gory GSP-1, 119991 Moscow, Russia ² Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia andrei.marenko@chemistry.msu.ru

The mixed polyanionic framework structures, as phosphate-pyrophosphates of sodium and 3*d*-metals (V, Fe, Co, Mn and Ni), are considered as promising cathode materials for sodium-ion batteries due to their superior Na mobility, high operating voltage and thermal stability. The Ni-based cathode material of this family, Na₄Ni₃(PO₄)₂P₂O₇, attracts an attention due to its high operating working potential (~ 5 V *vs.* Na/Na⁺) and the theoretical capacity of 127 mAh·g⁻¹ [1]. However, capacity fading of more than 30 % after the 1st cycle hampers the practical application. The substitution in 3*d*-metal sublattice might enhance the cycling stability due to working potential window shift. This work is devoted to synthesis of Fe-substituted Na₄(Ni_{1-x}Fe_x)₃(PO₄)₂P₂O₇ compounds and to investigation of corresponding electrochemical properties.

The single phase samples of the mixed phosphate-pyrophosphates Na₄(Ni_{1-x}Fe_x)₃(PO₄)₂P₂O₇ (x = 0.25, 0.5) have been obtained via conventional solid state synthesis in argon atmosphere. Both compounds are isostructural to Na₄Ni₃(PO₄)₂P₂O₇ (sp. gr. $Pn2_{1}a, Z = 4$) with corresponding decrease in lattice parameters and volumes: a = 18.030(1) Å, b = 6.5061(1) Å, c = 10.4814 (1) Å, V = 1229.51(2) Å³ for x = 0.25; a = 18.0401(2) Å, b = 6.5235(1) Å, c = 10.5482(1) Å, V = 1241.35(3) Å³ for x = 0.5.

Sodium electrochemical (de)intercalation into $Na_4(Ni_{1-x}Fe_x)_3(PO_4)_2P_2O_7$ have been investigated by cycling voltammetry and galvanostatic charge-discharge using two-electrode cells assembled in argon-filled glove-box with 1 M solution of NaPF₆ in propylene carbonate as electrolyte and sodium metal anode. *Ex situ* X-ray powder diffraction and scanning electron microscopy were used for electrodes characterization.

The CV-curves obtained for Na₄Ni_{1.5}Fe_{1.5}(PO₄)₂P₂O₇ within the potential range of 2.5–4 V vs. Na/Na⁺ revealed three peaks (3.2 V – 3.6 V) with good cycling stability, that is similar to Na₄Fe₃(PO₄)₂P₂O₇ behavior [3], but with higher potentials (3.0 – 3.2 V for the latter). The redox processes correspond to Fe^{2+/3+} transition with charge capacity of ~ 60 mAh·g⁻¹. The extension of the potential range up to 5.1 V vs. Na/Na⁺ resulted in appearance of three additional peaks (4.1 – 4.6 V), with the potentials lower than ones for pure Na₄Ni₃(PO₄)₂P₂O₇. This process, attributed to Ni oxidation, was not reversible.

The work was supported by the Russian Science Foundation (grant No. 17-73-30006) and performed according to the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University «The future of the planet and global environmental change».

References:

- 1. Kumar P. R.; Yahia H. B.; Belharouak I.; Sougrati M. T.; Passerini S.; Amin R.; Essehli R. // Journal of Solid State Electrochemistry 2020, 24, 17.
- 2. Wang H., Pan Z., Zhang H., Dong C., Ding Y., Cao Y., Chen Z. // *Small Methods* 2021, 5, 2100372.