
climate

Article

The Stationary Concentrated Vortex Model

Oleg Onishchenko 1,2, Viktor Fedun 3,* , Wendell Horton 4, Oleg Pokhotelov 1, Natalia Astafieva 2,
Samuel J. Skirvin 3 and Gary Verth 5

����������
�������

Citation: Onishchenko, O.; Fedun, V.;

Horton, W.; Pokhotelov, O.; Astafieva,

N.; Skirvin, S.J.; Verth, G. The

Stationary Concentrated Vortex

Model. Climate 2021, 9, 39. https://

doi.org/10.3390/cli9030039

Received: 25 January 2021

Accepted: 20 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow, Russia; onish@ifz.ru (O.O.);
pokh@ifz.ru (O.P.)

2 Space Research Institute, 84/32 Profsouznaya Str., 117997 Moscow, Russia; ast@iki.rssi.ru
3 Plasma Dynamics Group, Department of Automatic Control and Systems Engineering, University of

Sheffield, Mappin 6 Str., Sheffield S1 3JD, UK; sjskirvin1@sheffield.ac.uk
4 Space and Geophysical Laboratory, Applied Research Laboratory at the University of Texas (ARLUT),

Austin, TX 78705, USA; horton@physics.utexas.edu
5 Plasma Dynamics Group, School of Mathematics and Statistics, University of Sheffield, Hicks Building,

Sheffield S3 7RH, UK; g.verth@sheffield.ac.uk
* Correspondence: v.fedun@sheffield.ac.uk

Abstract: A new model of an axially-symmetric stationary concentrated vortex for an inviscid
incompressible flow is presented as an exact solution of the Euler equations. In this new model,
the vortex is exponentially localised, not only in the radial direction, but also in height. This new
model of stationary concentrated vortex arises when the radial flow, which concentrates vorticity in a
narrow column around the axis of symmetry, is balanced by vortex advection along the symmetry
axis. Unlike previous models, vortex velocity, vorticity and pressure are characterised not only by a
characteristic vortex radius, but also by a characteristic vortex height. The vortex structure in the
radial direction has two distinct regions defined by the internal and external parts: in the inner part
the vortex flow is directed upward, and in the outer part it is downward. The vortex structure in the
vertical direction can be divided into the bottom and top regions. At the bottom of the vortex the
flow is centripetal and at the top it is centrifugal. Furthermore, at the top of the vortex the previously
ascending fluid starts to descend. It is shown that this new model of a vortex is in good agreement
with the results of field observations of dust vortices in the Earth’s atmosphere.

Keywords: vortices; vortex models; nonlinear processes

1. Introduction

The ubiquity of vortex motion in the Earth’s atmosphere stimulates a lot of interest
from both a fundamental research and a practical point of view. Vortices at various scales
are regularly observed in the turbulent near-surface environment. Studying their structure
and dynamics to determine what governs their mass and heat transport is fundamental
for weather and climate forecasting. Of the great variety of types of vortex motion in
the atmosphere, concentrated vortices, as they are relatively well-defined vortex struc-
tures, have been a particular focus of study. For an ideal fluid, a concentrated vortex is
defined to be bounded by a potential flow, has a non-zero vorticity and is exponentially
localised in space. Unlike vortices at planetary scales, concentrated vortices such as dust
devils and tornadoes, correspond to mesoscale vortices in which Coriolis force can be
disregarded. Even with this restriction, there are still a wide class of observed concentrated
vortices and they have attracted the attention of numerous researchers [1–12]. Despite
the fact that concentrated vortices occur in many different environments, they actually
have much in common, e.g., they have the general property of having a spiral like upward
movement of mass. Regarding the radial structure of concentrated vortices, the toroidal
velocity reaches a maximum value on the characteristic radius and tends to zero at the
vortex centre and on the periphery of the vortex approach. Modelling dust devils is of
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interest as they are the most numerous and regularly observed concentrated vortices in
the atmospheres of the Earth and Mars. In the framework of Martian Atmosphere And
Dust in the Optical and Radio (MATADOR) project (NASA), the extensive studies were
devoted to the understanding of the role of hydrodynamic and electromagnetic forces
in dust devils formation [13–15]. Similar studies have been carried out in a number of
laboratory experiments [16–19]. It was shown that in the first approximation the influence
of the electric field on the vortex dynamics and trajectory of dust particles can be neglected
in comparison to the hydrodynamic effects. The influence of electric forces on the formation
of nonlinear structures in dusty plasmas was studied recently in [20–24]. The interplay
between chaos and concentrated vortex structures was discussed previously in [25,26].
The typical structure of dust devils [27] was conventionally divided into the lower part in
the form of a “skirt”, the central part in the form of a vertical column of rapidly rotating
dust and the upper part where the rotation dies and the vertical flow decreases. As well as
understanding dust devils, detailed knowledge of the internal properties of the structure
of concentrated vortices can also be applied to the study of tornadoes and tropical cyclones.
In this regard, there is much motivation to search for new and physically accurate solutions
of the hydrodynamic equations describing concentrated vortex fluid flow.

In general, the dynamics of all vortex development can be divided into three stages:
generation, quasi-stationary state, and decaying. Generation of vortices usually proceeds
rapidly in time. A large number of papers have been devoted to the study of generating
vortices [4,28–33]. The damping of vortices can be due to the viscous dissipation of vorticity
and surface friction. Usually the longest lasting stage during the lifetime of a vortex is
when it is in a quasi-steady state.

Only a small number of exact solutions of the Navier–Stokes equations describing the
structure of vortices are known. Among them are models of Burgers, Sullivan, and Hill.
Ring-shaped Hills vortices [34–36] with uniform vorticity can only be used during the
initial stage of development of concentrated vortices. For the interpretation of observa-
tions of concentrated vortices representing structures stretched along their axis with a
significantly inhomogeneous axial flow, Rankin, Burgers, and Sullivan vortex models are
often used. However, the main drawback these models is that they are not localised in
space. Furthermore, the viscosity of the medium is an essential element necessary for the
existence of Burgers and Sullivan vortices and as the viscosity decreases these types of
vortices approach an non-physical line vortex. Two obvious questions therefore arise: (i)
Can stationary vortices exist in an inviscid fluid? (ii) Can there exist localised vortices? In
this regard, the search for more physical solutions of the hydrodynamic equations describ-
ing vortex flows fluid is an urgent task. The simplest model of a stationary concentrated
vortex in an ideal incompressible fluid was studied previously by [37]. In this model,
the vortex, as well as the Burgers and Sullivan vortex models, is localised in the radial
direction, but not vertically localised. The preliminary results on the description of vortex
models were obtained in works [38–40]. The aim of this paper is therefore to develop an
axially symmetric vortex model describing fluid motion that is localised both in the radial
and axial directions.

In Section 2, we review the most important elementary analytical models of steady
vortices frequently used for the description of both space and laboratory observations.
In Section 3, we develop a new analytical vortex model describing inviscid fluid motion
localised in both radial and vertical directions. We show that the vortex flow structure in
new model is exponentially localised in the radial and vertical directions. The main results
are outlined in Section 4.

2. Vortex Models

To start, let us use the Navier–Stokes equation for an incompressible (∇ · v = 0)
viscous fluid, i.e.,

dv
dt

= −1
ρ
∇p + g+ν∆v, (1)
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where d/dt = ∂/∂t + v · ∇ is the Lagrangian (convective) time derivative; ρ and p are the
density and pressure, respectively; and ν is the kinematic viscosity. Finally, g = −gêz is the
gravitational acceleration with êz being the unit vector which is aligned with the axis of
the vortex. Let us investigate the case of stationary structures by assuming that ∂/∂t = 0.
For convenience, the cylindrical (r, φ, z) coordinates will be used. Here, r, φ and z are the
radial, toroidal direction and axial directions, respectively. Note that this model is focused
on the interpretation of vertical vortices in the atmosphere so that the the axial and vertical
directions coincide. The only axially symmetric flows, i.e., ∂/∂φ = 0 will be considered.
With both these assumptions, from Equation (1) it follows that

∂

∂r

(
p
ρ
+

v2
r

2

)
+ vz

∂vr

∂z
−

v2
φ

r
= ν

(
∂2vr

∂r2 +
1
r

∂vr

∂r
− vr

r2 +
∂2vr

∂z2

)
, (2)

vr

[
1
r

∂

∂r
(
rvφ

)]
+ vz

∂vφ

∂z
= ν

(
∂2vφ

∂r2 +
1
r

∂vφ

∂r
−

vφ

r2 +
∂2vφ

∂z2

)
, (3)

and
∂

∂z

(
p
ρ
+

v2
z

2

)
+ vr

∂vz

∂r
= −g + ν

(
∂2vz

∂r2 +
1
r

∂vz

∂r
+

∂2vz

∂z2

)
. (4)

The equation of continuity takes the following form,

∂vr

∂r
+

vr

r
+

∂vz

∂z
= 0. (5)

In the unperturbed atmosphere equation, (4) reduces to the hydrostatic condition
∂p/∂z = −ρg with solution pat = p0 exp(−z/H) where H = p0/ρ0g is the atmospheric
scale height. It is also assumed that the flow is weakly compressible, i.e., speeds are much
smaller than the sound speed and the pressure perturbations are significantly smaller than
the ambient atmospheric pressure.

2.1. Rankine Vortex

Rankine [41] described a stationary vortex motion neglecting the radial and vertical
velocity components, i.e., v = (0, vφ, 0). This vortex is often called a combined vortex for
the reason that it has two separate flow fields. In the interior region flow possesses solid
body rotation and in the outer region the velocity decays in inverse proportion with radial
distance, i.e.,

vφ =
Vr
r0

if r < r0, (6)

and
vφ =

Vr0

r
if r > r0, (7)

where V = const is the characteristic velocity and r0 is the radius of the vortex core.
Rankine vortex has the vertical vorticity component ωz = (5 × v)z = 2V/r0 in the
internal region and in the external region ωz = 0. In the interpretation of observations
and the results of laboratory and numerical modelling the Rankine vortex model is often
used [2]. Despite the fact that this model with piecewise-continuous toroidal velocity or
azimuthal velocity is not an exact solution of the Navier–Stokes equations, a satisfactory
agreement with the analytical vortex solution of Rankine was obtained from a comparison
of the observations of dust devils [6,42–46] and also from a comparison with the results
of numerical simulation [47]. The modification of the Rankine vortex model, when the
characteristic radius of the vortex is a function of the vertical coordinate, was investigated
in [48,49].
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2.2. Burgers Vortex

One of the exact analytic solutions of the 3D Navier–Stokes equations of a viscous
fluid describing a stationary vortex flow with three non-zero velocity components is the
so-called Burgers or Burgers–Rott vortex [50,51]. The radial velocity component is directed
towards the centre and is proportional to the radial distance r and the vertical component
is proportional to z,

vr = −
α

2
r, vφ = vφ(r) and vz = αz, (8)

where α > 0 is the strength of suction. By assuming that the toroidal velocity depends
only on the radial distance and the vertical velocity is a linear function of z, from (3) it
follows that

vr

r
d
dr
(
rvφ

)
= ν

(
d
dr

vφ

r
+

d2

dr2 vφ

)
. (9)

The term on the left-hand side of (9) is the vortex stretching term which tends to
amplify the vorticity. The term on the right in Equation (9) is related to the viscous
diffusion that tends to spread the vorticity. The stationary Burgers vortex arises when
these two effects balance each other. Substituting vr from Equation (8) into Equation (9),
one obtains

vφ =
Γ

2πr

[
1− exp

(
− r2

2R2
B

)]
, (10)

where Γ = const is the circulation, RB = 2ν/α is the characteristic vortex radius. The toroidal
velocity reaches a maximum value at the radial distance r = 1.12RB. In the inner region
of the vortex, at r � RB, and far from the periphery, at r � RB, the radial dependence of
the toroidal velocity in the Burgers and Rankine vortices coincide. The vertical vorticity
component ωz in this vortex equals to

ωz = ωz0 exp

(
− r2

2R2
B

)
, (11)

where ωz0 is a characteristic vertical vorticity. Making use of expressions for the radial,
toroidal and vertical velocity components one can obtain from Navier–Stokes Equations (2)
and (4) the expression for the pressure

p = p0 + ρ

r∫
0

v2
φ

r
dr− ρα2

2

(
r2 + 4z2

)
. (12)

As in the Rankine vortex, the fluid rotates around the axis; however, in the Burgers
vortex, along with the finite toroidal velocity, the radial and vertical velocity components
are non-zero. The fluid in the vortex moves in a spiral, approaching the centre of rotation,
and accelerates upwards. Unlike the Rankine vortex, there is a mechanism of vertical vor-
ticity amplification. In concentrated vortices, such as dust devils or typhoons, in addition
to rotation along a certain vertical axis, there is also suction into the vortex and transport
of matter upward. However, this model, which has advantages when compared to the
Rankine model, still has a number of drawbacks. For instance, the vertical velocity has no
radial dependence and is only a function of z, which means that it is the same everywhere
for a given height. Physically, this cannot be justified. Furthermore, in the Burgers model,
the radial and vertical velocities grow without bound, respectively, with increasing dis-
tance from the centre of the vortex and with increasing height in the atmosphere. For these
reasons, this model is not realistic at high altitude and at large radial distances.
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2.3. The Sullivan Vortex

The Sullivan vortex [52] is also an exact solution to Navier–Stokes equations. It has
some similarity to the Burgers vortex but it possesses more complicated structure than the
Burgers vortex. The velocity components of the Sullivan vortex are

vr = −αr +
6ν

r

[
1− exp

(
−αr2

2ν

)]
, (13)

vz = 2αz
[

1− 3 exp
(
−αr2

2ν

)]
, (14)

vφ =
A
r

H(αr2/2ν)

H(∞)
. (15)

Here

H(x) =
x∫

0

exp[ f (t)]dt, (16)

and

f (t) = −t + 3
t∫

0

[1− exp(−y)]
dy
y

. (17)

Using the expressions for velocity components (13)–(15) one can obtain from the
Navier–Stokes equations an explicit expression for the pressure,

p = p0 + ρ

r∫
0

v2
φ

r
dr− ρα2

2

(
r2 + 4z2

)
− 18ρν2

r2

[
1− exp

(
−αr2

2ν

)]
. (18)

Away from the vortex centre, in this two-cell vortex, the flow is predominantly in
the negative radial direction (toward the centre) with the upward flow. Near the centre,
the flow is outward with the down-welling motion. The Sullivan vortex is probably the
simplest two-cell dissipative vortex that can describe the flow in an intense dust devils
or tornado vortices [8,10,53]. It is, certainly, recognised that a tornado is too complex a
phenomenon to be completely described by a simple explicit stationary solution of the
hydrodynamic equations. However, explicit solutions provide important information about
the structure of possible vortex flows. Similar to the Burgers vortex, the vertical velocity
in the Sullivan vortex increases without bound with increasing altitude. The principal
mechanism underlying steady state dissipative Burgers and Sullivan vortices is the balance
between the viscous diffusion and radial flow. This naturally raises the question: Can
stationary vortices exist in a non-dissipative medium? This will be addressed in the
following section.

3. Vortex Model for an Incompressible and Inviscid Fluid

The most general divergence-free flow velocity v can be decomposed into its poloidal
vp = (vr, 0, vz) and toroidal vφêφ parts, where êφ is the unit vector in the toroidal direction,
i.e., v = vp + vφêφ. As the vortex is axisymmetric, the poloidal velocity is expressed in
terms of the stream function ψ(r, z) using the relation vp = ∇× (ψ∇φ) defined as

vr = −
1
r

∂ψ

∂z
, vz =

1
r

∂ψ

∂r
. (19)

If one neglects the effects due to viscosity, Equation (3) can be rewritten in the form
of the law of conservation of angular momentum per unit mass around the vortex axis,
M = rvφ, i.e.,

vr
∂M
∂r

+ vz
∂M
∂z

= 0. (20)
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The first term in Equation (20) corresponds to the nonlinear effect of angular momen-
tum amplification during radial compression of vortex filaments in a stream converging to
the centre of the vortex, while the second term describes the vertical advection of angular
momentum responsible for its weakening. In such a vortex, fluid in the vortex moves
in a spiral, approaching the centre of rotation and then rushes upwards. The condition
for the existence of stationary vortices is the balance of the effects of increasing the angu-
lar momentum in the flow of matter flowing to the centre and its weakening as a result
of vertical advection. From Equations (19), the poloidal velocity components can be ex-
pressed through the stream function ψ and it is possible to reduce Equation (20) to the
following form,

J{ψ, M} = 0, (21)

where J{a, b} = (∂a/∂r)∂b/∂z− (∂a/∂z)∂b/∂r is the Jacobian. The solution of this equa-
tion is M = f (ψ), where f is an arbitrary function. As a particular solution of Equation (20)
it is convenient to use M = Aψ, where A = const. Thus, the toroidal velocity is given by

vφ = Aψ/r. (22)

Equations (19) and (22) describe the velocity field in the vortex for arbitrary stream
function ψ(r, z). To physically constrain the stream function ψ(r, z) let us modify Morton’s
boundary conditions (see Equation (5) in [54]) for vr,vφ, vz and pressure p as follows:

(a) in the vortex centre, for r = 0 :
vr = vφ = 0, vz and p are finite values;

(b) at the bottom boundary, for z = 0 :
vz = vφ = 0, vr and p are finite values; and

(c) at the vortex periphery, when r/r0 � 1 and z/L� 1, where r0 and L are characteristic
vortex scales in the radial and vertical directions, respectively,
vr = vφ = vz = 0 and p = 0.

The following stream function may be used to satisfy the conditions (a), (b) and (c),

ψ = v0r2 z
L

exp

(
− z

L
− r2

r2
0

)
, (23)

where v0 = const is the characteristic poloidal vortex velocity. From Equations (19), (22)
and (23) it follows that

vr

v0
= − r

L

(
1− z

L

)
exp

(
− z

L
− r2

r2
0

)
, (24)

vz

v0
= 2

z
L

(
1− r2

r2
0

)
exp

(
− z

L
− r2

r2
0

)
, (25)

and
vφ

vφ0
= ± r

r0

z
L

exp

(
− z

L
− r2

r2
0

)
. (26)

Here, vφ0 is the characteristic toroidal velocity. It follows from Equation (26) that both
directions of rotation are equally probable.

Taking into account Equations (2) and (4), one can obtain an expression for the pressure

p = pat − ρ
v2

r + v2
z

2
+ ρ

∫ r

0

v2
φ

r
dr− ρ

∫ z

0
vr

∂

∂r
vzdz− ρ

∫ r

0
vz

∂

∂z
vrdr. (27)

At the investigation of thin vortices stretched along the axial axis, when r2
0/L2 � 1,

the last term on the right side of the Equation (27) can be ignored in comparison with
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the penultimate term. Equations (24)–(27) correspond to the exact solution of the Euler
equations for incompressible fluid. Making use of Equations (24)–(26), one can obtain the
expression for the toroidal and axial vorticities

ωφ = (∇× v)φ = 4
v0

r0

r
r0

z
L

(
2− r2

r2
0

)
exp

(
− z

L
− r2

r2
0

)
, (28)

and

ωz = (∇× v)z = ±2
vφ0

r0

z
L

(
1− r2

r2
0

)
exp

(
− z

L
− r2

r2
0

)
. (29)

When describing the spiral motion, which is characterised by the axial and radial
velocity components, the Burgers and Sullivan vortices have significant drawbacks that
limit their applicability to the description of motion in concentrated vortices.

Our model allows us to calculate the vertical and radial mass flows. The vertical mass
flux Mz = 2πρ

∫ ∞
0 vzrdr consists of an upward flow in the inner part of the vortex

M1z = 2πρ
∫ r0

0
vzrdr = 2πr2

0ρv0
z
L

exp
(
−1− z

L

)
, r < r0, (30)

and downward flow in the whirlwind tail

M2z = 2πρ
∫ ∞

r0

vzrdr = −2πr2
0ρv0

z
L

exp
(
−1− z

L

)
, r > r0, (31)

which balance each other. The radial flow Mr = 2πr
∫ ∞

0 vrdz consists of a vortex that
converges to the centre of the flow in the lower part

M1r = 2πr
∫ L

0
vrdz = −2πr2v0exp

(
− r2

r2
0
− 1

)
(32)

and outward flow at the top

M2r = 2πr
∫ ∞

L
vrdz = 2πr2v0exp

(
− r2

r2
0
− 1

)
. (33)

It follows that in our model, where the vertical and radial mass flows are equal to
zero, Mz = 0 and Mr = 0, the condition of mass conservation is fulfilled. This also means
that the particle trajectories are closed. The model in contrast to the Burgers and Sullivan
models, where Mz > 0 and Mr 6= 0, does not require a non-physical assumption about the
source of mass in the vortex.

Using the Formulas (24)–(26), one can calculate the integral of the kinetic energy of
the vortex

Etot =
∫

v2dr =
π

16
v2

0r2
0L

(
4 +

r2
0

L2 +
v2

φ0

v2
0

)
. (34)

The term is proportional r2
0

L2
0

on the right side of the Equation (34) is due to the contri-

bution of the radial velocity to the kinetic energy. In thin vortex structures this contribution
can be ignored.

According to the Rayleigh criterion [55,56], the vortex is stable, when
κ =

(
1/r3)(dr4Ω2/dr

)
> 0, where κ is the epicyclic frequency and Ω is the angular

velocity. Taking into account that Ω = vφ/r and using Equations (24)–(26) one can obtain

κ2 = 4
v2

φ0

r2
0

( z
L

)2
(

1− r2

r2
0

)
exp

(
−2z

L
− 2r2

r2
0

)
.
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One can see that vortex is stable in the internal vortex region, r < r0, and unstable in
the vortex tail, at r > r0. In this new model, vortices are exponentially localised not only in
the radial direction, but also in height. Unlike previous models, vortex velocity, vorticity
and pressure are characterised not only by a characteristic vortex radius r0, but also by a
characteristic vortex height L. The vortex structure in new model in the radial direction
has two distinct regions defined by the internal and external parts, i.e., r < r0 and r > r0,
respectively. In the inner part of the vortex the flow is directed upward, and in the outer
part it is downward.

With increasing altitude in the central region, the vertical and toroidal velocities
increase. The vortex structure in the z direction can be conditionally divided into the
bottom when z < L and top, when z > L, regions. In the bottom part, the flow is directed
towards the axis of symmetry, and in the top part it is outwards.

To illustrate the applicability of the proposed model quantitatively let us use the
results of field observations of dust devils [6,27,44]. The typical characteristic dust devil
radius r0 ranges from a few meters to several tens of meters, and the characteristic vortex
height L reach a height of several hundred or even thousands of meters. Typically, toroidal
wind speeds within dust devils are vφ < 25 ms−1, and vertical wind speed vz < 10 ms−1.
From Equation (25) it follows that the vertical velocity reaches the maximum value in
the centre of the vortex at r = 0 at the height z = L. By using this, the maximum value
of vertical velocity can be estimated as (vz)max = 2 exp(−1)v0 ≈ 0.736v0. Similarly,
from Equation (26), one can see that the toroidal velocity reaches its maximum value at
r = 2−1/2r0 and at z = L, and therefore the maximum value of vφ can be estimated as
(vφ)max = 2−1/2 exp(−1.5)v0 ≈ 0.158vφ0. By using these relations, it is easy to obtain that
vφ0 ≈ 127 ms−1 and v0 ≈ 13.6 ms−1, and therefore vφ0/v0 ≈ 9.34. At (vz)max = 5 ms−1

the v0 is approximately equal to 6.79 ms−1 and vφ0/v0 ≈ 18.7.
In the calculations of the particle trajectories it was assumed that at the initial radial

position of the particles was r = r0. Figure 2 shows the radial distribution of dimensionless
pressure at different heights for vφ0/v0 = 9.34. The deep well of the lowered (negative)
pressure in the central region of the vortex is due to the significant poloidal velocity
components. The fluid in the region with negative pressure is sucked into the centre of
the vortex.

The illustration of the vortex model plotted for the the typical velocity ratio vφ0/v0 =
9.34 is shown in Figure 1, using VAPOR [57–59]. The normalised pressure P∗ for the vφ0/v0
values equal to 9.34, 14.0 and 18.7 are shown in Figure 2. Note that for other finite values
of velocity ratios, these plots do not change qualitatively. Figure 3 shows radius–height
plot of isobars. Figures 4 and 5 illustrate the radius–height contour plots of dimensionless
magnitude of the toroidal velocity, vφ = vφ/vφ0 and stream function (angular momentum
M surfaces) ψ = ψ/v0r2

0.

Figure 1. The normalised three-dimensional stream lines of the vortex velocity field. On the left panel
only four stream lines are shown. The light blue and green colours of the stream lines correspond to
the internal structure of the vortex. The red and amber colours correspond to the external part of
the vortex. On the right panel more than forty velocity stream lines are shown. The red, green and
blue orthogonal vectors colours indicate the x, y and z axis, correspondingly. The visualisation was
computed for r0 = 1 and L = 10.
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Figure 2. The behaviour of the normalised pressure
(

P∗ = p−pat

ρv2
0

)
across the vortex at different

heights Z = z/L for the values of vφ0/v0 equal to 9.34, 14.0 and 18.7 (solid, dash and dash-dot plots,
correspondingly).

Figure 3. The radius–height plot of dimensionless isobars for vφ0/v0 = 9.34. Axis labels given by
Z = z

L and X = x
r0

, where x ∈ [−r, r].
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Figure 4. The radius–height contour plots of dimensionless toroidal velocity, vφ = vφ/vφ0. Axis
labels given by Z = z

L and R = r
r0

.

Figure 5. The dimensionless stream functions (or angular momentum surfaces) ψ = ψ/v0r2
0. Axis

labels given by Z = z
L and X = x

r0
, where x ∈ [−r, r].

4. Conclusions

In this paper, the new axially-symmetric model of a steady state vortex localised in
the radial and vertical directions vortices with incompressible and inviscid flow which is a
solution to the Euler equations has been proposed. In the framework of the model, the vor-
tex is exponentially localised, not only in the radial direction, but also in height. Unlike
previous theoretical models, the vortex velocity, vorticity and pressure are characterised
not only by a characteristic vortex radius r0, but also by a characteristic vortex height L.

According to observations [2,6] and numerical simulations [5,60], the behaviour of the
toroidal velocity of vortices is similar to that in a stationary Rankine or Burgers vortices.
However, for the description of poloidal motion in vortices, the models Burgers and Sulli-
van have a number of essential shortcomings that limit their applicability to concentrated
vortices. In the Burgers and Sullivan models, the vertical velocity and pressure increase
without bound with increasing altitude. The vertical velocity in the Burgers model is only
a linear function of z, which means that the vertical velocity is not confined to any region,
but is the same everywhere, i.e., it is not a concentrated vortex. The new low-parametrical
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model presented here, as well as having characteristic radial and vertical scales, also has
characteristic poloidal and toroidal speeds. Furthermore, the pressure can be compared
with observation and experiment, not only in the inner part of the vortex at r < r0, but also
in the outer region at r > r0, and at heights comparable to the height of the vortex L.
In this new model, when the vertical and radial mass flows are equal to zero, Mz = 0
and Mr = 0, the condition of mass conservation is not required in contrast to Burgers
and Sullivan models where there is an non-physical assumption about the source of mass.
Recently, the new similarity criteria for the terrestrial and Martian convective structures
were introduced in [61]. These criteria are fully applicable to the model developed in the
present paper and can be used for obtaining the relationship between characteristic values
of poloidal velocities and the spatial scales of vortex structures in the atmospheres of the
Earth and Mars.

The vortex model developed here, as with the Burgers and Sullivan models, only sat-
isfies inviscid boundary conditions and so falls far short of an adequate vortex description
at a boundary. In fact, at a rigid boundary, the balanced centrifugal pressure field of the
vortex core is disrupted in a thin terminating boundary layer in which a large radial inflow
is driven by the unbalanced pressure field. These models are strictly only applicable above
the frictional boundary layer, where the flow evolves approximately via balance dynamics
effects [54,62]. It has been shown that the proposed new analytical model of concentrated
vortices is in good agreement with field observations of typical dust vortices in the Earth’s
atmosphere. This model can be also expanded on the magnetised plasma. This modifica-
tion may be useful for interpretation of vortex behaviour in the solar atmosphere, but this
is subject of future studies.
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