

1

ISSN 1064–5624, Doklady Mathematics, 2009, Vol. 79, No. 1, pp. 1–3. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © A.A. Lazarev, E.R. Gafarov, 2009, published in Doklady Akademii Nauk, 2009, Vol. 424, No. 1, pp. 7–9.

For problems on graphs with

n

 vertices, an algo-
rithm of complexity

O

(

n

5

)

 is designed that transforms a
nonplanar graph into a planar one in a graph). The sum
of the number of vertices and edges in the resulting
graph is at most as large as in the original graph.

Suppose that we are Given a set of jobs

N

 = {1,
2, …,

n

}

 and

K

 renewable resources

k

 = 1, 2, …,

K

, let

Q

k

 units of resource

k

 be available at every time

t

. The
processing time

p

i

∈

�

+

 is specified for each job

i

 = 1,
2, …,

n

. While the job

i

 is processed,

q

ik

≤

Q

k

 units of
resource

k

 = 1, 2, …,

K

 are required. After the job is
accomplished, all the available resources volume can
be instantaneously allocated to other jobs.

Precedence constraints are specified between some
pairs of jobs:

i

→

j

 means that the job

j

 is processed
after the job

i

 has been accomplished. The resources are
available starting at the time

t

 = 0. The processing of the
jobs cannot be interrupted.

The goal is to determine the start times

S

i

 (

i

 = 1,
2, …,

n

) for processing the jobs that minimize the time
required for accomplishing the entire project:

C

max

 =

C

i

}, where

C

i

 =

S

i

 +

p

i

. The following con-

straints must be satisfied:

(i) At each time

t

, the total resource required does
not exceed the resource availability for each resource
type.

(ii) The given job precedence constraints are ful-
filled.

(iii) The makespan

C

max

 =

C

j

, where

C

j

 =

S

j

 +

p

j

is the completion time of job

j

, is minimized.

This problem is called the resource constrained
project scheduling problem (RCPSP). This problem

{
i 1 2 … n, , ,=

max

j 1=
max

n

can be reduced to the NP-hard multidimensional knap-
sack problem in polynomial time [2].

The structure of the project is represented by a
directed acyclic graph

G

 = (

V

,

E

)

, where each vertex
from

V

 = {1, 2, …,

n

}

 corresponds to some job from

N

 = {1, 2, …,

n

}

 and the arcs

E

 = {(

i

,

j

)

|

i

,

j

∈

V

;

i

→

j

}

correspond to the precedence constraints. Obviously, a
feasible solution exists only if the precedence graph is
acyclic. Such a directed graph is called a network
graph.

PLANARITY OF THE NETWORK GRAPH
FOR RCPSP AND ITS SPECIAL CASES

Two instances of RCPSP are called similar if one
instance is reduced to the other by adding “empty” jobs
(with zero duration) and deleting “redundant” connec-
tions, so that, if there was at least one path between the
vertices

i

 and

j

, then a path between them still persists.
If there was no path between the vertices, then no path
appears. Obviously, the optimal values of the objective
function for similar instances are equal to each other.

For several resource-constrained project scheduling
problems with precedence relations, we have the fol-
lowing theorem.

Theorem 1.

For any instance of RCPSP with n jobs
and

v

 relations, there exists an analogous instance with
a flat graph G

'

 with n

'

 jobs and

v

'

 relations, where
n +

v

≥

 n

'

 +

v

'

.

We obtain an analogous instance from the original
one by adding “dummy” jobs and deleting all the
unnecessary relations. The proof of the theorem follows
from Lemmas 1 and 2.

Lemma 1.

If there is a subgraph G

'

�

 G that is iso-
morphic to the special graph K

3, 3

, then we can trans-
form it into a flat subgraph by adding dummy jobs (with
p

j

 = 0) and deleting all the unnecessary relations.

Lemma 2.

If there is a subgraph G

'

�

 G that is iso-
morphic to the special graph K

5

,

 2

, then we can trans-
form it into a flat subgraph by deleting all the unneces-
sary relations.

MATHEMATICS

Transformation of the Network Graph of Scheduling Problems
with Precedence Constraints to a Planar Graph

A. A. Lazarev and E. R. Gafarov

Presented by Academician S.N. Vasil’ev March 19, 2008

Received March 19, 2008

DOI:

10.1134/S1064562409010013

Trapeznikov Institute of Control Sciences, Russian Academy
of Sciences, Profsoyuznaya ul. 65, Moscow, 117997 Russia;
e-mail: jobmath@mail.ru

2

DOKLADY MATHEMATICS

Vol. 79

 No. 1 2009

LAZAREV, GAFAROV

ALGORITHM FOR FINDING A NETWORK
GRAPH LAYOUT IN A PLANE

When elements are placed on a chip, an important
condition is that the corresponding graph is planar (the
connections between the elements do not intersect).
Moreover, in practice a network graph has to be repre-
sented in a convenient form according to a prescribed
design. In the most popular packages (MS Project, Spi-
der), network graphs are represented inconveniently:
arcs intersect or merge. In this section, we describe an
algorithm for the layout of a planar network graph in a
plane without arc intersection.

A well-known algorithm for the layout of a planar
graph in a plane was presented in [1]. An important dif-
ference between a network graph and a directed graph
is that the vertices of the former are arranged on some
virtual time axis (usually horizontal). A predecessor job
is always located to the left of its successors.

We briefly describe an algorithm for the layout of a
planar graph in a plane and show how it can be trans-
formed for the layout of a planar network graph.

The algorithm γ [1] for the layout of a graph G is a
process in which some laid out subgraph G' of G is con-
secutively supplemented with a new chain such that
both of its ends belong to G'. Thus, this chain divides a
face of G' into two. Any simple cycle of G' is used as an
initial planar graph G'. The process continues until a
planar graph isomorphic to G is constructed or a chain
fails to be added. In the latter case, G is not planar.

We introduce certain definitions. Suppose that a lay-
out of the subgraph G' of G has been constructed. A
segment S with respect to G' (or merely a segment) is a
subgraph of G of one of the following two forms:

(i) an edge e = uv ∈ EG such that e ∉ EG', and u,
v ∈ VG ', where EG is the edge set of G, VG is the ver-
tex set of G, EG' is the edge set of G', and VG' is the ver-
tex set of G';

310

11

12

9 2

41

7 6

58

10 3

111

7 6

1

2

3

4

5

6

9 2

12

8 5

9

12

8 5

6

7

11

10

3

2

1 4

3

4

58

12

10

29

11

7
1

6

Γ1 Γ2

S1

S2

(a)

(b)

(c) (d)

Fig. 1. Layout of the network graph in a plane.

DOKLADY MATHEMATICS Vol. 79 No. 1 2009

TRANSFORMATION OF THE NETWORK GRAPH OF SCHEDULING PROBLEMS 3

(ii) a connected component of G–G' supplemented
by all the edges of G incident to the vertices of this
component and to the ends of these edges.

A vertex v of S is called a contact vertex if v ∈ VG'.
An admissible face for S is a face Γ of G' that con-

tains all the contact vertices of S.
Γ(S) is the set of admissible faces for S. A simple

chain of S that joins two different contact vertices and
does not contain any other contact vertices is called an
α-chain.

Two segments S1 and S2 with respect to G' are called
conflicting if

(i) Γ(S1) ∩ Γ(S2) ≠ .
(ii) There exist two α-chains L1 ∈ S1 and L2 ∈ S2 that

cannot be simultaneously laid out without intersections
in any face.

It was shown in [1] that any α-chain in any segment
can be used in the algorithm γ and that chain can be
placed in any admissible face.

Figure 1a displays a network graph with an intersec-
tion of arcs. Figure 1b shows the initial chain (the
graph G') and its faces and segments S1 and S2. The seg-
ments are conflicting.

In the network graph layout algorithm, a face for the
current α-chain is chosen according to the following
rule: a predecessor is to the left of a successor. Accord-
ingly, the face Γ1 was chosen for the layout of the α-chain
corresponding to S2 and the face Γ2 was chosen for the
layout of S1.

A layout of the corresponding graph is presented in
Fig. 1c.

In this layout, successor vertex 1 (see the circled
index) is to the left of predecessor vertex 11, which con-

tradicts the design rules for the network graph. The
resulting layout can be stretched, as shown in Fig. 1d.
The edge (1, 2) then becomes arcwise.

A layout without intersections is frequently better to
transform to admit intersections. To minimize the num-
ber of intersections, it is better to apply such transfor-
mations to a planar layout.

Thus, while scheduling a project, we can construct a
planar network graph. Indeed, the dimension n + e of
the problem does not increase in this case. According to
the Euler theorem, the number of edges in a planar
graph is at most 3n – 6, which can be taken into account
in estimating the complexity of algorithms.

Any nonplanar graph G can be transformed into an
analogous planar graph G' in O(n5) operations. Here,
the sum of the numbers of vertices and edges does not
increase and the path from vertex i to vertex j is pre-
served, with the only difference being that “empty” ver-
tices are possibly added to the path. Moreover, a planar
network graph can be conveniently represented in a
plane, which is useful in practice.

ACKNOWLEDGMENTS

This work was supported by the program “Leading
Scientific Schools” (project no. NSh-5833. 2006.1) and
was partially supported by the Deutsche Akademische
Austrauschdienst (DAAD, grant AI206237/Ref. 325).

REFERENCES
1. V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and

R. I. Tyshkevich, Lectures on Graph Theory (Nauka,
Moscow, 1990) [in Russian].

2. P. Brucker and S. Knust, Complex Scheduling (Springer-
Verlag, Berlin, 2006).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

