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Abstract—The problem of simultaneous calibration of an accelerometer unit and a nominally high-
precision test bench is considered. In contrast to the traditional formulations of calibration problems,
it is assumed that the scale factor errors depend on the signs of the accelerometer input signals. A guar-
anteed approach is applied to the corresponding estimation problem. The optimal calibration design
is obtained numerically, and the optimal guaranteed estimates for the required parameters are con-
structed.
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INTRODUCTION

Inertial navigation systems [1, 2] are widely used in engineering. A unit of three accelerometers is one
of the main sensors of an inertial navigation system. This unit needs to be calibrated before the navigation
system can function. Numerous publications are devoted to the calibration of an accelerometer unit (see,
e.g., [3–24]). For a long time, it was assumed that the angular and geometric errors of precision test
benches are small enough to be neglected. However, analysis of experiments shows that, in addition to the
errors of the unit itself, it is reasonable to include in the estimated parameters possible geometric errors of
the nominally high-precision test bench (skewing of the rotation axes, nonhorizontality of the base due to
subsidence of the foundation) and its instrumental errors (systematic errors in measuring the rotation
angles). In this case, the estimation problem becomes multiparametric, then the choice of the experimen-
tal design is not obvious [8]. The use of a guaranteed approach to calibration makes it quite easy to find
the optimal angular positions of the test bench and construct the optimal algorithms for calibrating an
accelerometer unit (see, e.g., [3, 4, 8, 9]).

However, traditional linear models of readings from an accelerometer unit are not always completely
satisfactory. In some cases, it is assumed that a unit’s scale factor errors depend on the sign of the signal
arriving at the accelerometer input. This paper considers an asymmetric (piecewise linear) model of an
accelerometer unit. When the guaranteed approach to parameter estimation is used, the optimal experi-
mental design is determined and the corresponding estimation algorithms are constructed.

1. STATEMENT OF THE ESTIMATION PROBLEM

Let us briefly describe a two-degree test bench [8]. We assume that the base of the test bench is motion-
less relative to the Earth and that due to inaccuracy in the base installation, the outer axis of the test bench
deviates from the horizontal plane by a small angle . The outer frame of the test bench can rotate relative
to the base around the outer axis; we denote the angle of the corresponding rotation by ; the inner frame
can rotate relative to the outer frame around the inner axis; and we denote the angle of the corresponding
rotation by . The specified angles of rotation of the frames are measured against the noise background:

where (α, β) are the measurement results, Δα and Δβ are unknown constants identical for all measure-
ments, and  and  are unknown nonparametric (f luctuation) components, which are different for
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CALIBRATION OF AN ACCELEROMETER 241
different angle measurements. For high-precision test benches, we further neglect the f luctuation com-
ponents  and , considering them sufficiently small (on the order of 1 arcsec).

At , the inner axis is directed (almost) along the geographic vertical; the deviation of the inter-
nal axis from the vertical plane formed by the external axis and the geographic vertical, due to the nonho-
rizontal nature of the base, is denoted by a small angle α*. We assume that the outer and inner axes inter-
sect at point Mb, but may not be exactly orthogonal; the small angle of their nonorthogonality will be
denoted by . We rigidly fix the coordinate system to the inner frame  as follows. The third axis 
is directed along the internal axis. The  axis at  lies in the plane formed by the external and
internal axes, orthogonal to  and close to the outer axis. The  axis forms a right orthogonal ref-
erence system with  and .

Let us connect the right orthogonal reference system with the accelerometer unit Mz, along the axes of
which (in the absence of unit errors) the sensitivity axes of accelerometers should be located (point M is
the center of the unit). Reference system Mz is called the instrumental reference system. The accelerom-
eter unit is installed on the inner frame so that the axes of the instrumental reference system Mz are
directed as accurately as possible along the axes of the reference system Mf, which is connected to the inner
frame and laid out relative to  in the prescribed manner. Let this rotation be determined by the known
orthogonal orientation matrix : , where  and  are the projections of an arbitrary vector on

the  and  axes, respectively. The installation error Mz along the Mf axes is described by an
unknown small rotation vector . The error in determining gravity acceleration at the test-
ing point is denoted by .

The structural model of readings of the accelerometer unit has the form

(1.1)

where  are the readings of the accelerometer unit,  is the identity matrix,  is the
unit error matrix (in which the diagonal elements characterize the scale factor errors, and the off-diagonal
elements characterize the angular misalignments of the accelerometers),  is the vector of the spe-
cific force acting on the sensitive mass of the accelerometer in projections onto the axis of the instrumental
reference system (in our static experiments, this specific force is equal to gravity acceleration with the
opposite sign),  are the systematic biases of the unit’s readings, and  are the f luctuation
errors (the influence of which is significantly reduced by averaging to the level of the residual unmodeled
signal of the electromechanical circuit of the accelerometer unit).

Let us assume  are the known averaged readings of the accelerometer unit in a certain angular posi-
tion fixed relative to the Earth, (α, β) are the result of measuring the angles of rotation of the outer and
inner frames of the test bench, and  are the unit readings predicted by direct measurement of the
angles of rotation of the frames of the test bench (they are known exactly). Then the measurements for the
corresponding estimation problem are formed as the normalized difference between the average readings
of the accelerometer unit and their predicted values from measurements of the test bench angles. In a lin-
ear approximation, the vector of these measurements has the form

(1.2)

where  is the model value of gravity acceleration,  is the true value of the gravity acceleration
vector in projections onto the axis of the reference system  (referenced to the inner frame), q =
(κ,  is the vector of the error parameters of the test bench,  is the

predicted gravity acceleration vector in projections onto the axes of the reference system , calculated
exactly from measurements of the angles, and  is the vector of the f luctuation components of the
measurement errors [3, 8].
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After simple but cumbersome calculations, it is easy to show that in a linear approximation

Then, from (1.2) we obtain

(1.3)

Let us represent (1.3) in a more standard form:

(1.4)
where

(here the indices over F denote the column numbers) has the form

(here  is the symbol for the Kronecker product of the matrices), ,

In contrast to the standard approaches, in this study, it is considered that the scale factor error of the
pth accelerometer  depends on the sign of the accelerometer’s input signal ; i.e., it is asymmetric
(piecewise constant) at the input:

(when the input signal is zero, the value of the scale factor is insignificant).
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However, since the input signals of accelerometers  are not directly accessi-
ble, we construct estimates for them. The following relation holds:

(1.5)

It is clear that the input signal is described by formula (1.1), in which the scale factors, systematic
biases, and fluctuation noise component should be set to zero:

Then, obviously,

(1.6)
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where 0n is the zero column vector of dimension n.
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and ; we introduce upper bounds for the vector components :
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then the sign of the input of the pth accelerometer is determined. Otherwise, there is no reliable informa-
tion about the sign of the input signal, and such measurements should be excluded from consideration.
We deem admissible the angular positions for which for the pth group of measurements condition (1.9) is
satisfied.
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Thus, the measurement model should be modified such that, while remaining linear in the estimated
parameters, it reflects the ambiguity of the scale factors

This can be done by introducing extended vectors from :

(1.10)

in which

Then, the measurements for the case of the scale factor errors depending on the sign of the input signal
can be represented in the following extended form:

(1.11)

where ,
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CALIBRATION OF AN ACCELEROMETER 245
bias in measuring the angle of rotation of the inner frame), and (e) systematic biases of the accelerometer
readings.

During calibration, one of two conventions (either of which) is accepted: (A1) matrix  is lower trian-
gular, and (A2) matrix  is symmetrical. In case (A1), this corresponds to estimating the following param-
eters: (a) , , ; (b) , , ; (c) , , ; (d) , , ;
and (e) , , . In case (A2), sets of estimated parameters (a), (b), and (e) are the same as those for
case (A1), and sets (c) and (d) are replaced by (c) , ,  and
(d) , , .

We set the grid for numerical calculations on a  square. The set of grid elements for
which condition (1.9) is satisfied will be denoted by .

2. GUARANTEED ESTIMATION METHOD
Let us briefly describe the guaranteed estimation method [3, 25–32]. We consider three groups of

measurements (1.11) and assume that the measurement errors can be arbitrary numbers, bounded by the
known value :

(2.1)

We emphasize that model (2.1) is entirely consistent with the problem of calibrating an accelerometer
unit, since after obligatory averaging of the accelerometer readings, the measurement errors consist of the
sum of the residual signal of the electromechanical circuit of the accelerometer unit and discarded small
quadratic terms. These measurement errors have neither a clear parametric model nor a stable spectrum.

It is required to estimate the scalar quantity , where  is the given vector. Let us denote
by  the basis vector from  with a unit on the th place. Then, to solve the calibration problems, we
need to solve 18 tasks. Moreover, in the case of a lower triangular matrix , the following holds: ,

 and , , , and ; and in the case of
symmetric matrix , the following holds: ,  and , a =
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mators of form (2.2) does not lead to a decrease in the guaranteed estimation error [32]; i.e., we can restrict
ourselves to linear estimators.

It is easy to verify that

(2.3)

Explicitly calculating the guaranteed estimation error, taking into account the previous formula, we
can show that this problem reduces to a variational problem of the form

(2.4)

subject to

(2.5)

The value of functional (2.4) determines the guaranteed estimation error. Conditions (2.5) are called
unbiasedness conditions, because if they are satisfied in the absence of measurement errors, the esti-
mate  coincides with l.

The following statement holds [26, 31, 33].
Statement. A solution to problem (2.4) and (2.5) exists, and at least one solution contains at most 18

nonzero components.
This means that the solution to the optimal guaranteed estimation problem (for each estimated param-

eter) from all elements of the grid  selects not more than 18 required angular positions of the
test bench; i.e., it simultaneously delivers the optimal measurement design. This makes the guaranteed
approach very effective for solving the accelerometer unit calibration problem and test bench diagnosis.

A nonsmooth variational problem is reduced to the following canonical linear programming problem
[26, 31]:

(2.6)

subject to

(2.7)

If  is its solution, then  =   is
the solution of the original variational problem (2.4) and (2.5). Problem (2.6) and (2.7) can be solved
numerically by the simplex method or the interior point method [33–36].

3. NUMERICAL SOLUTION
To numerically solve problem (2.4) and (2.5) (or (2.6), (2.7)), we consider the case when the instru-

mental reference system is installed along the axes of the inner frame, i.e., at . Then these expres-
sions for the regression vectors are simplified and take the form

(3.1)

α β ∈ α β ∈

  − α β Φ α β − + Φ α β α β 
  
   � �

& &

^ -

T3 3( ) ( ) ( ) ( )

=1( , ) =1( , )
= ( , ) ( , ) ( , ) ( , ).

p p

p p p p

p p

l l a

Φ α β α β ∈
σ Φ α β 

&

3 ( )

( , ) =1( , )
| ( , )|min

p

p

p

α β ∈
α β Φ α β 

3 ( ) ( )

=1( , )
( , ) ( , ) = .

p

p p

p

a
&

^

�l

∪& &
3

=1= p p

−+

Φ α β α β ∈

 
σ Φ α β + Φ α β 

 
 

 
&

3 ( ) ( )

( , ) =1( , )
( , ) ( , )min

p

p p

p

+ − + −

α β ∈

 
α β Φ α β − Φ α β Φ α β ≥ Φ α β ≥ 

 
 

 
&

^

3 ( ) ( ) ( ) ( ) ( )

=1( , )
( , ) ( , ) ( , ) = , ( , ) 0, ( , ) 0.

p

p p p p p

p

a

+ −
α β ∈Φ α β Φ α β° ° &

( ) ( )
=1,2,3

( , ){ ( , ), ( , )}
p

p p
p

α β ∈Φ α β° &

( )
=1,2,3

( , ){ ( , )}
p

p
p +Φ α β −°

( )

{ ( , )
p

−
α β ∈Φ α β° &

( )
=1,2,3

( , )( , )}
p

p
p

3=Q I

+ −− β − α β − α β α β α β α β α^

(1)

1 1 2 3 3 2= col( cos , cos sin , cos cos , ( , ), ( , ),0 ,sin cos ,0 ,cos ,0 ,1,0 ),s s

+ −β − α β α β α β α β α β α^

(2)

2 2 2 2 2 3= col(sin , cos cos ,cos sin ,0 ,sin sin ,0 , ( , ), ( , ),0 ,cos ,0 ,1,0),s s

+ −α α β α β α β α β^

(3)

4 3 2 3 3 2= col(0,sin ,0 ,sin sin ,0 ,sin cos ,0 , ( , ), ( , ),0 ,1),s s
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 61  No. 2  2022



CALIBRATION OF AN ACCELEROMETER 247
where

Here , , are determined by formula (1.7), in which  is the maximum value of the
sth element of the vector

and

When calculating on the initial square of all values , a grid with a step of 1° on both angles was
taken. With some roughness, it was assumed that , , and , .
The calculations were performed using the IBM ILOG CPLEX Optimization Studio package. Two
numerical methods were used: the interior point method and the simplex method, which both yielded the
same results.

The figure shows the range of allowable grid values , corresponding to the accepted values  and
, and the optimal positions of the angles for estimating the component . Domains  and  are

very close to . The calculation results are presented in Tables 1 and 2, where the following values are
indicated: in the first column, the estimated parameters; in the second column, the values of the test
bench’s pairs of angles of rotation (in degrees)  and the numbers of the accelerometers used to con-
struct the corresponding estimate; in the third column, the values of the weight coefficients of the estima-
tor; and in the fourth column, the optimal guaranteed accuracies (the values of the functionals).

4. SUBOPTIMAL ANGULAR POSITIONS

Let us denote the optimal angular positions for the pth measurement group  (corresponding to

the nonzero components ) by . In some cases, it is not technically easy to exactly real-
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Fig. 1. Domain  of admissible angles (in degrees).
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When the angles are set with errors, unbiasedness conditions (2.5), generally speaking, will no longer

be satisfied:

(4.1)

If the set  consists of 18 elements and the corresponding set  is linearly

independent, then, due to the smallness of , the set  will also be linearly
independent. The unbiased suboptimal estimator is found from the unbiasedness conditions. Clearly, the
guaranteed estimation error of the suboptimal estimator will be close to the optimal one.

Let us now consider the case where the set  contains less than 18 elements. Let it be additionally
known that ,  (for brevity, we denote these conditions as ). Then, given (2.3),
the guaranteed value of the parameter estimation error l takes the form

If

then the inaccuracy in the setting of the angles of the test bench is acceptable. Otherwise, it is necessary
to use the compensation scheme described and substantiated in [9]. Let us assume the quantities to be esti-
mated are , , and the vectors  are linearly independent (in our case, this
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Table 1. Results of calculations of parameter estimates (a) and (b) for case (A1)

Parameter Angular positions, degrees Weight coefficients Accuracy

p = 1: (87.178); (89.2); (120.182); 0.113004; –0.153208; 0.091198; 1.00

(124.2); (279.2); (288.182); –0.066789; –0.079964; 0.219288;
(294.358) –0.123528

p = 2: (56.88); (122.88); (124.268); 0.000111; 0.044698; –0.038232;
(260.268); (262.88) –0.038584; 0.032007

p = 3: (92.45); (268.225) 0.500305; –0.500305 1.00

p = 1: (10.170); (170.190); (190.10) 0.257773; –0.257773; 0.257773 1.00

(350.350) –0.257773;
p = 1: (2.310); (90.270); (178.230); –0.256867; 0.027469; –0.256867; 2.05

(182.50); (270.270); (358.130); –0.256867; 1.000000; – 0.256867;
p = 1: (182.130); (182.310); (270.90); 0.256867; 0.256867; –1.013734 2.05

(270.270); (358.50); (358.230); –0.013734; 0.256867; 0.256867
p = 2: (182.40); (182.320); (270.180); –0.256867; –0.256867; 1.000000 2.05

(270.360); (358.40); (358.320); 0.027469; –0.256867; –0.256867
p = 2: (182.140); (182.220); (270.180); 0.256867; 0.256867; –0.027469; 2.05

(270.360); (358.140); (358.220); –1.000000; 0.256867; 0.256867
p = 3: (92.53); (92.225); (180.277); –0.447556; –0.070525; 0.036162; 2.07

(268.1); (268.89); (360.2); –0.214207; –0.303874; 1.000000
p = 3: (88.45); (88.200); (180.5); 0.436524; 0.081556; –1.000000; 2.07

(272.19); (272.114); (360.274) 0.327419; 0.190662; –0.036162

-1 σ

-2 σ

-3 σ

-4 σ

-5 σ

-9 σ

-10 σ

-14 σ

-15 σ
is obviously the case). Then the suboptimal estimates  of parameters ,  should be con-
structed using a formula similar to the corresponding formula in [9]:

(4.2)
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Table 2. Results of calculations of parameter estimates (c)–(e) for case (A1)

Parameter Angular positions, degrees Weight coefficients Accuracy

p = 1: (90.178); (270.182) –0.500305; 0.500305 2.00

p = 2: (90.88); (90.272); (270.88); 0.250152; –0.250152; –0.250152;
(270.272) 0.250152

p = 1: (2.68); (2.251); (182.50); 0.036440; 0.041929; –0.051752; 2.00

(182.245); (182.270); (358.263); –0.078714; –0.369839; 0.343043;
(358.302) 0.078892

p = 3: (88.270); (92.90); (92.270); –0.407391; 0.092914; –0.092914;
(272.270) 0.407391

p = 2: (2.13); (2.166); (2.179); 0.020308; 0.125096; 0.275617; 2.00

(178.15); (178.153); (178.332); –0.006597; –0.099269; –0.015193;
(182.354); (358.330) –0.379245; 0.079284

p = 3: (272.180); (272.360) 0.500305; –0.500305
p = 1: (90.178); (270.182) –0.500305; 0.500305 1.00

– p = 1: (2.56); (2.233); (178.90); –0.011289; –0.097459; 0.302084; 1.00

(178.124); (182.55); (182.257); 0.093598; 0.095018; 0.009606;
(358.268); (358.292) –0.230376; –0.161180

p = 2: (2.194); (2.350); (178.177); 0.053382; 0.062675; –0.215213; 1.00

(178.193); (182.146); (182.341); –0.155860; –0.074451; –0.054781;
(358.14); (358.336) 0.277628; 0.106621

p = 1: (2.230); (178.310); (182.230); 0.256867; 0.256867; 0.256867; 1.05

(270.90); (270.270); (358.310) –0.013734; –0.013734; 0.256867
p = 2: (182.140); (182.320); (270.180); 0.256867; 0.256867; –0.013734; 1.05

(270.360); (358.140); (358.320) –0.013734; 0.256867; 0.256867
p = 3: (88.84); (92.161); (180.5); 0.061464; 0.456617; –0.015936; 1.07

(272.153); (272.317); (360.274) 0.495707; 0.022374; –0.020226

+- -6 8 σ

+- -7 12 σ

+- -11 13 σ

-8 σ

-12 σ

-13 σ

-16 σ

-17 σ

-18 σ
variational problem (2.4) and (2.5) for , . Similarly to [9], it can be shown that for suffi-

ciently small , a matrix inverse to  exists, the obtained suboptimal estimates are unbiased, and
their guaranteed estimation errors are close to optimal.

5. BRIEF DESCRIPTION OF PROCESSING OF EXPERIMENTS

The developed theory was applied to calibrate a real accelerometer unit on a high-precision test bench.
At the start, the correctness of the raw data obtained in the experiments was checked. First, the stability
of the angular positions of the accelerometer unit was confirmed. For this, the time-averaged values and
spread of readings of the angle sensors in each angular position were calculated. In addition, the angular
data were tested for a linear trend. The calculations showed the almost complete absence of a linear trend
and high level of stability of the angular positions. Therefore, the positions of the unit for each pair of
angles can be considered rigidly fixed relative to the Earth.

Second, for each accelerometer in all positions, the time-averaged values and the spread of their read-
ings were calculated; in addition, the corresponding linear trend was estimated. The experimental data
showed the presence of a large initial time interval of temperature instability of the readings of the accel-
erometers and made it possible to determine the instants from which the average readings of the acceler-
ometers could be considered reliable. The results of the experiments also confirmed the need for averaging
the accelerometer readings in each position and indicated the presence of a slight residual linear (appar-

ν( )=a a ν = 1,18

δα δβ
( ) ( )

( , )
p p

0
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ently temperature) trend. In this case, the variations in the average values of the readings of the acceler-
ometers, treated as measurement errors, obviously belonged to the required accuracy range.

The calibration technique described above used the linearization of the corresponding relations and
thus assumed the smallness of the values of the estimated parameters. At the same time, the initial read-
ings of the unit were noticeably affected by the excessively large errors in the scale factors, which cast
doubt on the accuracy of the linearization and thus prevented the direct application of the theory devel-
oped in this article. Therefore, the accelerometer unit was preliminarily roughly calibrated, for which both
the asymmetry of the scale factor errors and accelerometer misalignments were ignored. After that, the
initial unit reading model was adjusted as necessary to fit the proposed methodology. Thus, the solution
to the estimation problem was preceded by a laborious stage of initial data processing to prepare them for
exact calibration. As a result, using the precision calibration procedure, estimates of the errors of the
accelerometer unit were obtained, which, in particular, revealed significant asymmetry of the scale factor
error in one accelerometer of the unit.

CONCLUSIONS
The guaranteed approach was used to calibrate an accelerometer unit in the case of asymmetry of scale

factor errors. This made it possible to quite simply obtain the optimal design of the angular calibration
positions. The effectiveness of the guaranteed approach is confirmed by real experiments on a test bench.
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