
ISSN 0005-1179, Automation and Remote Control, 2007, Vol. 68, No. 4, pp. 583–592. c© Pleiades Publishing, Ltd., 2007.
Original Russian Text c© A.A. Lazarev, 2007, published in Avtomatika i Telemekhanika, 2007, No. 4, pp. 13–23.

DETERMINATE SYSTEMS

Graphic Approach to Combinatorial Optimization1

A. A. Lazarev

Dorodnitsyn Computer Center, Russian Academy of Sciences, Moscow, Russia
Received July 17, 2006

Abstract—Consideration was given to a graphic realization of the method of dynamic program-
ming. Its concept was demonstrated by the examples of the partition and knapsack problems.
The proposed method was compared with the existing algorithms to solve these problems.

PACS numbers: 07.05.Kf, 02.10.Ox, 07.05.Fb

DOI: 10.1134/S0005117907040029

1. INTRODUCTION

The classical partition and knapsack problems of combinatorial optimization that are NP -hard
in the ordinary sense were considered in [1, 2]. We discuss here their following formulations.

Partition problem. Given is an ordered set B = {b1, . . . , bn}, b1 ≥ . . . ≥ bn of n positive integers.
Needed is to partition the set B into two subsets B1 and B2 so as to minimize

∣
∣
∣
∣
∣
∣

∑

bi∈B1

bi −
∑

bi∈B2

bi

∣
∣
∣
∣
∣
∣

−→ min . (1)

One-dimensional knapsack problem is representable as the following problem of integer linear
programming:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(x) =
n∑

i:=1

cixi −→ max

n∑

i:=1

aixi ≤ A

xi ∈ {0, 1}, i = 1, . . . , n.

(2)

Problems (1) and (2) are equivalent if ci = ai = bi, i = 1, . . . , n, and A =
1
2

n∑

j=1
bj.

2. GRAPHIC ALGORITHM FOR THE PARTITION PROBLEM

At steps α = 1, . . . , n the algorithm successively considers the following functions:

F 1
α(t) =

∣
∣
∣
∣
∣
∣

∑

bj∈B1(t−bα)

bj −
∑

bj∈B2(t−bα)

bj

∣
∣
∣
∣
∣
∣

;

F 2
α(t) =

∣
∣
∣
∣
∣
∣

∑

bj∈B1(t+bα)

bj −
∑

bj∈B2(t+bα)

bj

∣
∣
∣
∣
∣
∣

.

1 The work was executed within the framework of the scientific school of Acad. Yu.I. Zhuravlev, NSh-5833.2006.1.

583

584 LAZAREV

In the function B1(t), as well as in B2(t), a set of elements B1 (correspondingly, B2) is associated

with each point t from the interval

[

−
α∑

j:=1
bj ,

α∑

j:=1
bj

]

under consideration. It deserves noting that

at each step α of the algorithm B1(t)
⋃

B2(t) = {b1, . . . , bα−1} = B1
⋃

B2, ∀ t.

2.1. Concept of the Graphic Algorithm

The current number bα, where α = 1, . . . , n, is included successively in the set B1(t) or B2(t). At

each point t, the number bα is included so as to minimize the function

∣
∣
∣
∣
∣

∑

bj∈B1(t)
bj + t − ∑

bj∈B2(t)
bj

∣
∣
∣
∣
∣
,

where t = t1 − t2 and t1 and t2 are added, respectively, to B1(t) and B2(t). The parameter t
characterizes the sum of numbers that will be added to B1(t) at the subsequent steps. If t < 0,
then −t is equal to the sum that will be added to B2(t) at the subsequent steps. At the current

step α, the following function is constructed from the function Fα−1(t) =

∣
∣
∣
∣
∣

∑

bj∈B1(t)
bj − ∑

bj∈B2(t)
bj

∣
∣
∣
∣
∣

obtained at the preceding step α − 1:

Fα(t) := min{Fα−1(t − bα), Fα−1(t + bα)} = min{F 1
α(t), F 2

α(t)},

where F0(t) := 0, ∀ t. If F 1
α(t) < F 2

α(t), then B1(t) := B1(t − bα)
⋃ {bα}; otherwise, B2(t) :=

B2(t + bα)
⋃{bα}. The piecewise-linear function Fα(t) may be represented (and stored) in the tab-

ular form at the “break” points: t0; t1; . . . ; tmα . Over the interval
[

ti − ti − ti−1

2
, ti +

ti+1 − ti
2

)

,

i = 1, . . . ,mα − 1, the piecewise-linear function Fα(t) obeys the equation Fα(t) = |t − ti|, that
is, its graph intersects the axis t at the point ti. Some fixed partition (B1;B2) corresponds

to each time interval
[

ti − ti − ti−1

2
, ti +

ti+1 − ti
2

)

, that is, B1(t1) = B1(t2) = B1, ∀t1, t2 ∈
[

ti − ti − ti−1

2
, ti +

ti+1 − ti
2

)

(similarly for B2(t)). Let a tabular function Fα−1(t) be obtained at

the preceding step α − 1. At the step α, consideration is given to the two functions Fα−1(t − bα)
and Fα−1(t + bα) defined, respectively, by two tables at the “break” points: t0 − bα, . . . ti − bα, . . . ,
tmα−1 − bα and t0 + bα, . . . , ti + bα, . . . , tmα−1 + bα.

By comparing the graphs of both functions, we consider the time intervals [t1, t2], t1, t2 ∈
{t0−bα, . . . , tmα−1−bα, t0+bα, . . . , tmα−1+bα} where the function Fα−1(t−bα) (and, correspondingly,
Fα−1(t + bα)) is defined by a single equation of the piecewise-linear function. The piecewise-linear
functions |t − a| and |t − b| intersect (or coincide) over this interval at most at one point.

Obviously, the function Fα(t) can be defined by a table consisting of a set of points {t0 −
bα, . . . , tmα−1 − bα, t0 + bα, . . . , tmα−1 + bα} arranged in nondescending order, and part of points can

be eliminated. Consideration is given to the intervals [t1, t2] ∈
[

−
n∑

j:=1
bj ,

n∑

j:=1
bj

]

. Consequently,

the function Fα(t) will be defined at most by mα = 2 × mα−1 points. The partition (B1(0),
B2(0)) obtained at the last step α = n is the solution of the problem. The objective function is
equal to Fn(0).

2.2. Reduction of the Considered Intervals

Since at the step n one has to calculate the value of the objective function and determine its
partition only at the point t = 0, at the step n − 1 it suffices to calculate the values at the points
t ∈ [−bn, bn]. Similarly, at the step n− 2, it suffices to consider the interval [−bn − bn−1, bn + bn−1],

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

GRAPHIC APPROACH TO COMBINATORIAL OPTIMIZATION 585

and so on. Consequently, it suffices to consider at each step α the interval

[

−
n∑

j:=α+1
bj,

n∑

j:=α+1
bj

]

instead of the interval

[

−
n∑

j:=1
bj ,

n∑

j:=1
bj

]

.

When constructing the function Fα(t), consideration is given only to the points t ∈
[

−
n∑

j:=α+1
bj ,

n∑

j:=α+1
bj

]

. For the interval to shrink as fast as possible, it is required to arrange bj in nonascending

order. If one takes into account that Fα(t), α = 1, . . . , n, is an even function, then only half of the
table suffices for practical realization of the algorithm.

2.3. Example

Let us consider the example of B = {100, 70, 50, 20}, n = 4. The numbers are numerated in
nonascending order.

Step 0. F0(t) := 0, B1(t) = ∅, B2(t) = ∅, ∀t.

Step 1. Arrangement for b1 = 100. Two points 0 + 100 and 0 − 100 are considered. The func-
tions are compared over three intervals [−240,−100], [−100, 100], and [100, 240] (or, owing to the

reduction of the intervals, over [−140,−100], [−100, 100], and [100, 140]), where 240 =
n∑

j=1
bj .

Over the interval [−240, 0] we get the optimal partition B1(t) = {b1}, B2(t) = ∅; over the
interval [0, 240], the optimal partition B1(t) = ∅, B2(t) = {b1}. The results of calculations and the
(extended) objective function F1(t) are shown in Fig. 1. The following information is stored:

−100 100
(100;) (; 100) .

As was already noted, it suffices to store only “half” of the table.

Step 2. Arrangement for b2 = 70. Consideration is given to four points −100 − 70 = −170;
−100 + 70 = −30; 100 − 70 = 30; and 100 + 70 = 170. Calculations are carried out over five in-
tervals [−240,−170], [−170,−30], [−30, 30], [30, 170], and [170, 240], but owing to the reduction it
suffices to consider only three intervals [−70,−30], [−30, 30], and [30, 70]. We get the optimal par-
tition B1(t) = {b1}, B2(t) = {b2} over the interval [−70, 0] and the optimal partition B1(t) = {b2},
B2(t) = {b1} over the interval [0, 70]. In fact, we do not consider the intervals, but immediately
construct the function F2(t), that is, include in the table the points −30 and 30 and their corre-
sponding partitions. The partitions B1(t) = {b1}, B2(t) = {b2} and B1(t) = {b2}, B2(t) = {b1}
correspond, respectively, to the points −30 and 30. Figure 2 shows transformation of the function
F1(t) to the functions F 1(t) and F 2(t). The results of calculations and the (extended) objective
function F2(t) are shown in Fig. 3. Therefore, to execute the next algorithmic step, it suffices to
store information only at one point t = 30:

30
(70; 100) .

Step 3. Arrangement for the number b3 = 50. The four points −30− 50 = −80; −30 + 50 = 20;
30 + 50 = 80; and 30 − 50 = −20 are considered. Owing to the interval reduction, it suffices

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

586 LAZAREV

100

100

F

t

–100

30

F

t

70 707070

–170 –30 170

Fig. 1. Function F1(t). Fig. 2. Transformation of the function F1(t).

100

F

2

t

30–30 170–170 –100

t

F

3

–80 12080–20–120 20

Fig. 3. Function F2(t). Fig. 4. Function F3(t).

to consider only one interval [−20, 20]. The results of calculations and the (extended) objective
function F3(t) are depicted in Fig. 4. The following information is stored for one point t = 20:

20
(70, 50; 100) .

At Step 4 we obtain two optimal “symmetric” solutions B1(0) = {b1, b4}, B2(0) = {b2, b3} and
B1(0) = {b2, b3}, B2(0) = {b1, b4}.

We have, thus, considered 2(−100&100)+2(−30&30)+2(−20&20)+1(0) = 7 points, whereas the
dynamic programming algorithm [3] (with reduction of intervals) would require 280+140+40+0 =
460 points. The best of the exact partition algorithms, the Balsub algorithm [2, p. 83] requires
O(nbmax) operations and establishes the solution in 2 × n

2
× bmax = 400 operations.

Since Fα(t) is an even function, it suffices to store only “half” of the table. It also deserves noting
that with “scaling with small parameter modifications” in the example, that is, with b′j = Kbj +εj,
where |εj | � K, j = 1, . . . , n, and K is a sufficiently great positive constant, laboriousness of
the dynamic programming-based algorithm is O(Kn

∑
bj) operations, whereas that of the graphic

algorithm remains the same. For the Balsub algorithm with laboriousness of O(nbmax) operations,
this “scaling” also leads to a K-fold increase in laboriousness. Therefore, the graphic algorithm de-
termines solution by the same number of operations for all points of some cone in the n-dimensional
space, provided that the parameters of the example are represented as the point (b1, . . . , bn) in the
n-dimensional space. The parameters may be both negative and noninteger.

2.4. Algorithm Laboriousness

Theorem 1. At the step α = n, the graphic algorithm determines the optimal partition B1(0)
and B2(0).

Proof. We demonstrate that the algorithm determines the optimal partial partition B1(t) and

B2(t) of the numerical subset {b1, . . . , bα} at each point t ∈
[

−
n∑

j:=α+1
bj ,

n∑

j:=α+1
bj

]

of each step

α = 1, . . . , n.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

GRAPHIC APPROACH TO COMBINATORIAL OPTIMIZATION 587

The proof is carried out by induction.
(1) Obviously, at the step α = 1 we get the optimal partition B1(t) and B2(t) at each point

t ∈
[

−
n∑

j:=2
bj ,

n∑

j:=2
bj

]

.

(2) Let us assume that at step α we get some optimal partition B1(t) and B2(t) at each point

t ∈
[

−
n∑

j:=α+1
bj ,

n∑

j:=α+1
bj

]

.

(3) We demonstrate that at step α + 1 the algorithm provides the optimal partition B1(t) and

B2(t) at each point t ∈
[

−
n∑

j:=α+2
bj ,

n∑

j:=α+2
bj

]

.

Ex adverso. Let at the point t the algorithm construct two partitions (B1(t − bα+1); B2(t −
bα+1)

⋃{bα+1}) and (B1(t + bα+1)
⋃{bα+1}; B2(t + bα+1)).

The algorithm takes the partition which provides the least value of

∣
∣
∣
∣
∣

∑

bj∈B1

bj + t − ∑

bj∈B2

bj

∣
∣
∣
∣
∣
.

Let at the point t there be a partition (B1; B2) such that
∣
∣
∣
∣
∣
∣
∣

∑

bj∈B1(t+bα+1)
⋃

{bα+1}
bj + t −

∑

bj∈B2(t+bα+1)

bj

∣
∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

∑

bj∈B1

bj + t −
∑

bj∈B2

bj

∣
∣
∣
∣
∣
∣
∣

and
∣
∣
∣
∣
∣
∣
∣

∑

bj∈B1(t−bα+1)

bj + t −
∑

bj∈B2(t−bα+1)
⋃

{bα+1}
bj

∣
∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

∑

bj∈B1

bj + t −
∑

bj∈B2

bj

∣
∣
∣
∣
∣
∣
∣

are satisfied. Let bα+1 ∈ B1. Then,

∣
∣
∣
∣
∣
∣

∑

bj∈B1(t+bα)

bj + bα+1 + t −
∑

bj∈B2(t+bα)

bj

∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

∑

bj∈B1\{bα+1}
bj + bα+1 + t −

∑

bj∈B2

bj

∣
∣
∣
∣
∣
∣
∣

,

but the partition (B1(t + bα); B2(t + bα)) obtained at the step α at the point t + bα is not optimal
because the partition (B1\{bα+1};B2) is “better,” and we encounter a contradiction. Similar proof
is possible for the case of bα+1 ∈ B2. �

Analysis of the graphic algorithm suggests the following.
(1) There exists a class of integer examples where the number of points grows exponentially

from step to step. For example, B = {b1, . . . , bn} = {M,M − 1,M − 2, . . . , 1, 1, . . . , 1}; M is a
sufficiently great number, and the sum of unities in the example is equal to M(M + 1)/2, that is,
n = M + M(M + 1)/2.

(2) There exists a class of noninteger examples B = {b1, . . . , bn} where the number of points
grows exponentially from step to step. For example, if there exists no set of numbers λi = ±1,
i = 1, . . . , n such that λ1b1 + . . . + λnbn = 0 is satisfied, then the number of points in this example
grows as O(2n).

2.5. Experimental Estimation of the Algorithm Laboriousness

The algorithms described in the well-known book [2] were compared with the above graphic
algorithm, and two groups of experiments were run.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

588 LAZAREV

Table 1

1 2 3 4 5 6 7 8 9 10
4 123 410 9 307 328 20 443 640 2 63 684
5 1 086 008 16 444 512 40 564 1000 2 337 077
6 8 145 060 29 542 738 60 687 1440 4 1 140 166
7 53 524 680 48 633 1004 140 811 1960 11 2 799 418
8 314 457 495 76 725 1312 212 933 2560 23 5 348 746
9 1 677 106 640 115 814 1660 376 1053 3240 83 8 488 253
10 8 217 822 536 168 905 2050 500 1172 4000 416 11 426 171

Table 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
4 8 1463 1591 16 2196 3080 4 2 6 1310 1604 20 2207 3200 10 504 8970
5 16 2191 2490 40 2797 44 675 8 3 17 2482 3102 40 2811 5000 6641 3642
6 29 2700 3586 60 3401 6570 12 4 26 2884 3932 60 3418 7176 3000 3170
7 50 3145 4881 140 4006 8729 15 6 54 3353 6794 136 4029 9800 1101 88
8 87 3600 6362 216 4617 11 056 19 8 82 3849 7039 220 4645 12 112 333 377
9 149 4050 8059 464 5241 13 644 52 21 144 4109 11 803 476 5232 16 200 86 1
10 245 4499 9930 656 5815 16 730 24 10 240 4732 12 410 676 5854 18 840 18 3

(1) In the first group, for all integer values the parameters meet the constraints 40 ≥ b1 ≥
. . . ≥ bn ≥ 1, for n = 4, 5, . . . , 10. The results obtained are compiled in Table 1 where the first
column shows problem dimensionality n, the second column, the total number of the examples
solved for the given n (the number of combinations of bmax + n − 1 numbers n at a time, where
bmax = 40); the columns three to five show the mean laboriousness, respectively, of the graphic,
Balsab, and dynamic programming-based algorithms, the columns six to eight show the maximum
laboriousness, respectively, of the graphic, Balsab, and dynamic programming-based algorithms,
the ninth column shows the number of examples for which laboriousness of the Balsub algorithm
is smaller than that of the graphic algorithm, and the tenth column, the number of examples
for which laboriousness of the dynamic programming-based algorithm is smaller than that of the
Balsub algorithm.

(2) In the second group of experiments, for n = 4, 5, . . . , 10, constructed were groups of 20 000
examples with uniformly selected parameters bi ∈ [1, 200], i = 1, . . . , n. Then 1000n examples
{b′1, . . . , b′n} were solved for each example in the n-dimensional space in the neighborhood of r =
100 + n so that bi − (100 + n) ≤ b′i ≤ bi + (100 + n), i = 1, . . . , n. At that, if a highly laborious
example existed in the neighborhood, then “we pass to this example.” The process stopped when
one fails to find “more complex examples” in the neighborhood. The following results were obtained
(see Table 2).

Column one shows the problem dimensionality n, columns two to four show the mean labori-
ousness of, respectively, the graphic, Balsub, and dynamic programming-based algorithms at the
“initial point,” columns five to seven show the maximum values of the algorithm at the “initial
point,” columns eight and nine show the maximum and mean numbers of passages from the initial
to the final point,” columns ten to twelve show the mean laboriousness of the algorithms under con-
sideration at the “final points,” columns thirteen to fifteen show the maximal laboriousness of the
algorithms under study at the “final points,” and columns sixteen and seventeen show the number
of examples for which laboriousness of the dynamic programming-based algorithm is smaller than
that of the Balsub algorithm, respectively, at the initial and final points.

With the exception of 38 examples for n = 4 and two examples for n = 5 of the 20 000 “final”
examples, in all (Sic!) “initial” and “final” examples laboriousness of the Balsub algorithm exceeded
that of the graphic system.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

GRAPHIC APPROACH TO COMBINATORIAL OPTIMIZATION 589

3. GRAPHIC APPROACH TO THE PROBLEM OF ONE-DIMENSIONAL
KNAPSACK (0 − 1 knapsack)

3.1. Dynamic Programming Algorithm for the Knapsack Problem

The dynamic-programming algorithm based on the Bellman optimality principle [1, 3] is con-
sidered as the most efficient one. It works only if the parameters A, ai ∈ Z+, i = 1, . . . , n. The
function

gα(t) = max
xα∈{0,1}

(cαxα + gα−1(t − aαxα)), t ≥ aαxα,

is constructed at each step α = 1, . . . , n at each point 0 ≤ t ≤ A. For each point t, a corresponding
xα = arg max gα(t) is fixed. At the step α = n, the optimal solution is determined at the point
t = A.

The algorithm is illustrated by way of the example from [4, p. 125–129].
⎧

⎪⎨

⎪⎩

f(x) = 5x1 + 7x2 + 6x3 + 3x4 −→ max
2x1 + 3x2 + 5x3 + 7x4 ≤ 9
xi ∈ {0, 1}, i = 1, . . . , 4.

(3)

Its operation is representable as Table 3.

Table 3

t g1(t) x(t) g2(t) x(t) g3(t) x(t) g4(t) x(t)
0 0 (0,,,) 0 (0,0,,) 0 (0,0,0,) 0 (0,0,0,0)
1 0 (0,,,) 0 (0,0,,) 0 (0,0,0,) 0 (0,0,0,0)
2 5 (1,,,) 5 (1,0,,) 5 (1,0,0,) 5 (1,0,0,0)
3 5 (1,,,) 7 (0,1,,) 7 (0,1,0,) 7 (0,1,0,0)
4 5 (1,,,) 7 (0,1,,) 7 (0,1,0,) 7 (0,1,0,0)
5 5 (1,,,) 12 (1,1,,) 12 (1,1,0,) 12 (1,1,0,0)
6 5 (1,,,) 12 (1,1,,) 12 (1,1,0,) 12 (1,1,0,0)
7 5 (1,,,) 12 (1,1,,) 12 (1,1,0,) 12 (1,1,0,0)
8 5 (1,,,) 12 (1,1,,) 13 (0,1,1,) 13 (0,1,1,0)
9 5 (1,,,) 12 (1,1,,) 13 (0,1,1,) 13 (0,1,1,0)

Therefore, we get the optimal solution (0, 1, 1, 0) and the corresponding value of the objective
function g4(9) = 13. Laboriousness of the algorithm is O(nA) operations.

3.2. Graphic Approach

The function gα(t) is representable as

t t0 t1 . . . tmα

g f0 f1 . . . fmα

that is, for t ∈ [tj , tj+1) we get gα(t) = fj, j = 0, 1, . . . ,mα − 1.
The function gα+1(t) can be obtained from the function gα(t) in the following way:

g1(t) = gα(t), xα+1(t) = 0,

g2(t) = cα+1 + gα(t − aα+1), xα+1(t) = 1, aα+1 ≤ t,

g2(t) = g1(t), xα+1(t) = 0, aα+1 > t,

gα+1(t) = max{g1(t), g2(t)}.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

590 LAZAREV

5

0 2

g

t

93 5

7

12

Fig. 5. The functions g1(t) and g2(t) (dashed line).

The graph of g2(t) is constructed from the graph of gα(t) by an “upward” shift by cα+1 and
“right” shift by aα+1. The function g2(t) is representable as

t t0 + aα+1 t1 + aα+1 . . . tmα + aα+1

g f0 + cα+1 f1 + cα+1 . . . fmα + cα+1 .

The graph g1(t) repeats completely that of gα(t). Consequently, in order to construct gα+1(t) =
max{g1(t), g2(t)} one has to consider at most 2mα intervals made up by the points from the set
{t0, t1, . . . , tmα , t0 + aα+1, t1 + aα+1, . . . , tmα + aα+1} belonging to the interval [0, A]. The number
of points does not exceed A for ai ∈ Z+, i = 1, . . . , n. For the integer example, laboriousness of
the graphic algorithm, therefore, does not exceed min{O(nA), O(nfmax)}, as it is the case for the
dynamic programming-based algorithm. It also deserves noting that the parameters of the problem
may be both noninteger and negative. In this case, the graph of g2(t) is constructed from that
of gα(t) by “downward” shift by |cα+1| (if cα+1 < 0) and “left” shift by |aα+1| (aα+1 < 0).

The same example (3) is used below to illustrate the graphic algorithm.

Step 1. As the result, we get the following values:

t 0 2
g 0 5

x(t) (0, , ,) (1, , ,) .

Step 2. The dashed lines in Fig. 5 depict the functions g1(t) and g2(t). One has to consider the
intervals made up by the points 0, 2, 0 + 3, 2 + 3 in order to construct the function g2(t).

The results of calculations and the objective function g2(t) are shown in Fig. 6. As the result:

t 0 2 3 5
g 0 5 7 12

x(t) (0, 0, ,) (1, 0, ,) (0, 1, ,) (1, 1, ,) .

Step 3. To construct the function g3(t), one has to consider the intervals made up by the points
0, 2, 3, 5, 0 + 5, 2 + 5, 3 + 5. The point 5 + 5 > 9 is not considered. Many fragments g2(t) (shown by
the dashed line) are “absorbed” and do not participate in g3(t). The third step of the algorithm
results in

t 0 2 3 5 8
g 0 5 7 12 13

x(t) (0, 0, 0,) (1, 0, 0,) (0, 1, 0,) (1, 1, 0,) (0, 1, 1,) .

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

GRAPHIC APPROACH TO COMBINATORIAL OPTIMIZATION 591

5

0 2

g

2

t

93 5

7

12

5

0 2

g

4

t

93 5

7

12

3

7 8

Fig. 6. The objective function g2(t). Fig. 7. The objective function g4(t).

Step 4. The results of calculations and the objective function g4(t) are depicted in Fig. 7.
One should consider the intervals made up by the points 0, 2, 3, 5, 8, 0 + 7, 2 + 7 in order to

construct the function g4(t). The points 3 + 7, 5 + 7, 8 + 7 are disregarded. Therefore, it suffices to
consider five points. As the result, we obtain

t 0 2 3 5 8
g 0 5 7 12 13

x(t) (0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (0, 1, 1, 0) .

3.3. Efficiency of the Graphic Algorithm

In the course of its operation the algorithm looked though 17 points: 2 at first step, 3 at the
third step, 7 at the third step, and 5 at the fourth step. The dynamic programming algorithm
would consider 4 × 9 = 36 points. Consequently, for the example at hand we reduce substantially
the pseudopolynomial component of algorithm’s laboriousness.

It deserves noting that the graphic algorithm works even if ai /∈ Z, ∀i, A /∈ Z.
One can easily see that at steps 3 and 4 the number of the “stored” intervals is not doubled.

Presumably, laboriousness of the graphic algorithm will be polynomial for a greater number of
examples.

To minimize the number of new “stored” intervals appearing at the step α, the source data must
be ordered as

c1

a1
≥ c2

a2
≥ . . . ≥ cn

an
. Then, the function g2(t) will be “absorbed” more effectively.

The algorithm takes indirectly into consideration the specificity of the problem. The algorithm
of dynamic programming disregards the fact that the least preferable object in the above example
is that with the number 4 (see

c4

a4
). In the graphic algorithm, one can see at step 4 that the

function g2(t) does not affect g4(t), that is, some heuristic distinction of the problem was taken
into account.

4. CONCLUSIONS

The concept of the graphic approach is a natural continuation of the method of dynamic pro-
gramming. This approach can be applied to the problems with both noninteger and negative
parameters.

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

592 LAZAREV

It also deserves noting that for ci = 2, i = 1, . . . , n, and n ≥ 4, the example [5, p. 289]
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i:=1

cixi −→ max

n∑

i:=1

2xi ≤ 2
[
n

2

]

+ 1,
(4)

can be solved by the graphic approach in O(n) operations. In the general case, for arbitrary ci,
i = 1, . . . , n, the proposed algorithm solves example (4) in O(n log n) operations. The algorithms
based on the branch-and-bound method need O(2

n
2) operations to solve this example.

The proposed approach undergoes now an experimental verification with “highly-dimensional”
benchmarks. It also will be compared with the algorithms based on the branch-and-bound method
(the number of the branching points on the tree compared with the number of the “stored” inter-
vals).

ACKNOWLEDGMENTS
The author would like to thank E.R. Gafarov for valuable discussions of the results obtained.

REFERENCES

1. Papadimitrou, Ch. and Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity, Engle-
wood Cliffs: Prentice Hall, 1982. Translated under the title Kombinatornaya optimizatsiya: algoritmy i
slozhnost’ , Moscow: Mir, 1985.

2. Keller, H., Pferschy, U., and Pisinger, D., Knapsack Problems , New York: Springer, 2004.

3. Bellman, R., Dynamic Programming, Princeton: Princeton Univ. Press, 1957. Translated under the title
Dinamicheskoe programmirovanie, Moscow: Inostrannaya Literatura, 1960.

4. Sigal, I.Kh. and Ivanova, A.P., Vvedenie v prikladnoe diskretnoe programmirovanie (Introduction to Ap-
plied Discrete Programming), Moscow: Fizmatlit, 2002.

5. Moiseev, N.N., Ed., Sovremennoe sostoyanie teorii issledovaniya operatsii (State-of-the-Art of the Oper-
ation Research Theory), Moscow: Nauka, 1979.

This paper was recommended for publication by P.Yu. Chebotarev, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007

