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ESTIMATING THE INSTABILITY RADII OF POLYNOMIALS OF ARBITRARY DEGREE

A. V. Kraev and A. S. Fursov

We consider the determination of the instability radius of polynomials. Sufficient conditions are stated for
robust instability of a family of polynomials. A lower bound on the instability radius is given in the general
case and the exact value of the instability radius is obtained for polynomials of fifth degree. The proof
relies on the geometric properties of continuous curves in a plane combined with parametric properties of
the roots of a family of polynomials and the apparatus of the Tsypkin – Polyak hodograph. Applications
of the results are illustrated.

1. Introduction

One of the important problems of linear control is the problem of feedback stabilization, in particular sta-
bilization by a regulator of a given structure. In this setting, assuming that the characteristic polynomial of the
closed-loop system depends on parameters, we need to elucidate how these parameters should be chosen so that
the polynomial is stable. The parameter region can be specified in advance. In general, this is a fairly complex
problem and so far it has not been solved.

In the present study we consider a particular case of the problem, when the parameters are the coefficients of
the characteristic polynomial of a closed-loop system that may vary inside some region in the (n+1)-dimensional
real space, where n is the degree of the polynomial. The main result provides a bound on the distance from the
given unstable polynomial to the nearest stable polynomial in some metric in the parameter space.

2. Robust Instability of Polynomials

Consider the set Pn of polynomials of the form

p(s) = a0 + a1s + . . . + ans
n, ai ∈ R, a0 �= 0,

which are identified with the vector a = (a0, . . ., an) in the space R
n+1 with the norm ‖a‖ = max

i
|ai|. To link

the polynomial p(s) with a point in the space R
n+1 we denote it by p(s, a).

The polynomial p(s, a) ∈ Pn is called stable if all its root in the complex plane lie strictly in the left halfplane;
otherwise the polynomial is called unstable.

Given is a family of polynomials

Pn(A) =
{
p(s, a) = a0 + a1s + . . . + ans

n, a ∈ A
}
, (1)

whose coefficients vary in some admissible set A ⊂ R
n+1. This family is called robustly unstable if p(s, a) are

unstable for all a ∈ A.

Consider the value set of the family of polynomials (1)

I(A) =
{
p(jω, a) : a ∈ A, 0 � ω < ∞

}
.

The following theorem establishes sufficient conditions of robust instability of family (1).
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Theorem 1. Assume that the set A is connected and for some a0 ∈ A the polynomial p(s, a0) is unstable
and does not have purely imaginary roots. Moreover, let an �= 0 for all a ∈ A. Then the condition

0 /∈ I(A) (2)

is sufficient for robust instability of family (1).

Proof. Assume the contrary: condition (2) is satisfied, but there exists a stable polynomial p(s, a1), a1 ∈ A.

Since A is connected, we can construct a continuous curve a(t) ∈ A, 0 � t � 1, a(0) = a0, a(1) = a1. Let si(t)
be the roots of the polynomial p

(
s, a(t)

)
. Define the function ϕ(t) = max Re si(t). Since an �= 0 for all a ∈ A

and applying the theorem on continuous dependence of the roots of a polynomial of degree n on its coefficients,
we see that ϕ(t) is a continuous function. Here ϕ(1) < 0 (because all the roots of the polynomial p(s, a1) are in
the left halfplane), and ϕ(0) > 0 (by instability of the polynomial p(s, a0) and nonexistence of purely imaginary
roots). Thus, there exist 0 � t∗ � 1 and a∗ = a(t∗) ∈ A such that ϕ(t∗) = 0. But this implies that p(s, a∗) has
a purely imaginary root jω. We have thus obtained that p(jω∗, a∗) = 0 for some a∗ ∈ A and ω∗ � 0, which
contradicts condition (2). Q.E.D.

3. Robust Instability of Interval Family of Polynomials

Given is an interval family of polynomials

Pn

(
A(a0)

)
=

{
p(s, a) = a0 + a1s + . . . + ans

n, |ai − a0
i | � γ, i = 0, 1, . . ., n

}
,

a0 = (a0
0, a

0
1, . . ., a

0
n).

(3)

Assumption. a0 ∈ R
n+1
+ (i.e., a0

i > 0 for all i).

Consider the Tsypkin – Polyak hodograph [1] for the polynomial p(s, a0) :

z(ω, a0) = x0(ω) + jy0(ω), 0 � ω � ∞,

where

x0(ω) =
g0(ω)
r(ω)

, y0(ω) =
h0(ω)
q(ω)

, (4)

g0(ω) = a0
0 − a0

2ω
2 + a0

4ω
4 − . . ., h0(ω) = a0

1 − a0
3ω

2 + a0
5ω

4 − . . .,

r(ω) = 1 + ω2 + ω4 + . . ., q(ω) = 1 + ω2 + ω4 + . . .,

deg r(ω) = deg g0(ω), deg q(ω) = degh0(ω).

In this notation,

p(jω, a0) = g0(ω) + jωh0(ω).

Theorem 2. For robust instability of the family of polynomials (3) it is sufficient to have the following condi-
tions:

1. The polynomial p(s, a0) is without purely imaginary roots;
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2. a0
n > γ;

3. The hodograph z(ω, a0) does not cross the square with the vertices (±γ,±γ) as ω varies from 0 to ∞.

Proof. Note that if the value of every polynomial from the family (3) at the point jω is representable in the
form

p(jω, a) = g(ω) + jωh(ω),

g(ω) = a0 − a2ω
2 + a4ω

4 − . . ., h(ω) = a1 − a3ω
2 + a5ω

4 − . . .,

then for ω � 0 we have the inequalities

g(ω) � g(ω) � ḡ(ω), h(ω) � h(ω) � h̄(ω),

where

g(ω) = (a0
0 − γ) − (a0

2 + γ)ω2 + (a0
4 − γ)ω4 − . . .,

ḡ(ω) = (a0
0 + γ) − (a0

2 − γ)ω2 + (a0
4 + γ)ω4 − . . .,

h(ω) = (a0
1 − γ) − (a0

3 + γ)ω2 + (a0
5 − γ)ω4 − . . .,

h̄(ω) = (a0
1 + γ) − (a0

3 − γ)ω2 + (a0
5 + γ)ω4 − . . ..

Thus, p(jω, a) for every fixed ω may vary in the rectangle with the vertices

z1 = g(ω) + jωh(ω), z2 = g(ω) + jωh̄(ω),

z3 = ḡ(ω) + jωh̄(ω), z4 = ḡ(ω) + jωh(ω).

Therefore, the value set of the family (3) for each ω is the rectangle

I
(
ω;A(a0)

)
=

{
z = x + jy : |x− g0(ω)| � γr(ω), |y − ωh0(ω)| � γωq(ω)

}
.

The condition that the hodograph z(ω, a0) does not cross the square with the vertices (±γ,±γ) is equivalent to
the condition 






|x0(ω)| > γ,

|y0(ω)| > γ,




|x0(ω)| > γ,

|y0(ω)| � γ,




|x0(ω)| � γ,

|y0(ω)| > γ,

for all ω � 0. (∗)
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At the same time, the condition 0 ∈ I
(
A(a0)

)
is equivalent to the existence of ω∗ > 0 such that 0 ∈ I

(
ω∗;A(a0)

)
.

But then for ω∗ we have 


|g0(ω∗)| � γr(ω∗),

|h0(ω∗)| � γq(ω∗),

or 


|x0(ω∗)| � γ,

|y0(ω∗)| � γ.

Hence, condition (∗) is equivalent to 0 /∈ I
(
A(a0)

)
. But then by Theorem 1 the family (3) is robustly unstable.

Q.E.D.

4. Lower Bound for Instability Radii

Denote by S and U the sets of points in the space R
n+1 corresponding to stable and unstable polynomials,

respectively. For an unstable polynomial p(s, a) the instability radius is defined as

RU (a) = inf
b∈S

‖a− b‖.

Theorem 2 not only establishes sufficient conditions for robust instability of family (3), but also leads to a
bound for the instability radius RU (a0) of the polynomial p(s, a0) with positive coefficients.

For the polynomial p(s, a0) consider the function

ψ(ω) = max
{
|x0(ω)|, |y0(ω)|

}
, (5)

defined for ω � 0 (the functions x0(ω) and y0(ω) are defined by (4)). Denote by ω1, . . ., ωk all the positive
roots of the following equations:

g0(ω)q(ω) − h0(ω)r(ω) = 0, g0(ω)q(ω) + h0(ω)r(ω) = 0, (6a)

g′0(ω)r(ω) − g0(ω)r′(ω) = 0, h′0(ω)q(ω) − h0(ω)q′(ω) = 0. (6b)

Let

Φ(a0) = min
1�i�k

ψ(ωi).

Theorem 3. Let p(s, a0) = a0
0 + a0

1s + . . . + a0
ns

n be an unstable polynomial with positive coefficients and
without purely imaginary roots. Then we have the bound

RU (a0) � γ(a0), (7)

where

γ(a0) = min
{
a0

0, a
0
1, a

0
n−1, a

0
n, Φ(a0)

}
.
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Proof. Theorem 2 gives the following lower bound for the instability radius of the polynomial p(s, a0) :

RU (a0) � min {γ∗, a0
n},

where γ∗ is the size (side half-length) of the largest square {|x| � γ∗, |y| � γ∗} inscribed in the Tsypkin – Polyak
hodograph z(ω, a0) for the polynomial p(s, a0).

Define the following metric in the complex plane:

ρ(z1, z2) = max
{
|Re z1 − Re z2|, |Im z1 − Im z2|

}
.

Then the number γ∗ can be determined as the distance from the origin to the nearest point of the hodograph
z(ω), i.e.,

γ∗ = min
0�ω�∞

ρ
(
0, z(ω)

)
.

Since z(ω) = x(ω)+ iy(ω), we determine γ∗ by finding the minimum of the function ψ(ω) = max{|x0(ω)|,
|y0(ω)|} on the interval [0, ∞). Note that ψ(ω) is bounded, because it is continuous and

lim
ω→∞

ψ(ω) = max
{
a0

n, a
0
n−1

}
.

The function ψ(ω) is differentiable everywhere, possibly with the exception of points where |x0(ω)| = |y0(ω)|.
Therefore

min
0�ω�∞

ψ(ω) = min
{
ψ(0), ψ(∞), ψ(ω1), . . ., ψ(ωk)

}
,

where ψ(∞) = lim
ω→∞

ψ(ω), ω1, . . ., ωk are the roots of Eqs. (6). Note that one of the following two conditions

holds at the points ωi :

1. x0(ω) = y0(ω) or x0(ω) = −y0(ω) (i.e., |x0(ω)| = |y0(ω)|);

2. x′0(ω) = 0 or y′0(ω) = 0.

Case 1 corresponds to Eqs. (6a), case 2 corresponds to Eqs. (6b). Noting that ψ(0) = max {a0
0, a

0
1}, we obtain (7).

Q.E.D.

5. Instability Radii for Polynomials of Degree Not Higher Than 5

Using the example of polynomials of degree not higher than 5 we will show that bounds for instability radii
can be found for some sets of polynomials. Note that for polynomials of first and second degree a necessary and
sufficient condition of stability is positivity of all their coefficients. We should therefore consider polynomials of
degree higher than 2.

We consider unstable polynomials with positive coefficients

p(s, a) = a0 + a1s + . . . + ans
n, 3 � n � 5. (8)

For these polynomials, using the function (5), we introduce the notation

Ψ(a) = min
{
ψ(ω1), . . ., ψ(ωl)

}
,
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where ω1, . . ., ωl are the roots of Eqs. (6a),

Λ(a) = min
{
ψ(ωl+1), . . ., ψ(ωk), a0, a1, an−1, an

}
,

where ωl+1, . . ., ωk are the roots of Eqs. (6b).

Theorem 4. Assume that the following conditions hold for the unstable polynomial (8) with positive coeffi-
cients:

1. a1 > a0;

2. an−1 > an;

3. γ(a) = Ψ(a) < Λ(a);

4. Re p(iω, a) �= 0, Im p(iω, a) �= 0, ω > 0.

Then

RU (a) = γ(a).

Proof. For polynomials of third and fourth degree, the assertion of the theorem follows from [2]. We will
prove the theorem for polynomials of degree 5.

Consider the Tsypkin – Polyak hodograph z(ω, a) = x(ω) + jy(ω) for the unstable polynomial

p(s, a) = a0 + a1s + a2s
2 + a3s

3 + a4s
4 + a5s

5, ai > 0.

Note that by condition 4 the hodograph lies in the first quadrant of the complex plane (i.e., Re z(ω, a) = x(ω) > 0,
Im z(ω, a) = y(ω) > 0). Now, by conditions 1, 2, the hodograph crosses the bisector of the first quadrant, because

z(0, a) = a0 + ja1, z(∞, a) = a4 + ja5, a1 > a0, a4 > a5. (9)

This means that the hodograph starts above the first-quadrant bisector and ends below the bisector. The hodograph
crosses the bisector at a unique value ω∗ (x(ω∗) = y(ω∗)). Indeed, the intersection with the bisector may occur
only for positive ω which are the roots of the equation

(a1 − a0) − (a3 − a2)ω2 + (a5 − a4)ω4 = 0.

But given conditions 1, 2 this equation has only one positive root ω∗ :

ω∗ =

√
(a3 − a2) −

√
(a3 − a2)2 − 4(a1 − a0)(a5 − a4)

2(a5 − a4)
.

Thus,

γ(a) = Re z(ω∗, a) = Im z(ω∗, a).
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Now consider the polynomial

p(s, ã) =
(
a0 − γ(a)

)
+

(
a1 − γ(a)

)
s +

(
a2 + γ(a)

)
s2

+
(
a3 + γ(a)

)
s3 +

(
a4 − γ(a)

)
s4 +

(
a5 − γ(a)

)
s5.

By condition 3 all its coefficients are positive. Note that the hodograph z(ω, ã) may be obtained from the hodograph
z(ω, a) by parallel translation along the first-quadrant bisector. We will show that ã ∈ ∂S (i.e., the polynomial
p(s, ã) is contained in the boundary of the region of stable polynomials).

Indeed, the Tsypkin – Polyak hodograph z(ω, ã) passes through the point z = 0 of the complex plane by
condition 3 and the equalities

Re z(ω, ã) = Re z(ω, a) − γ(a),

Im z(ω, ã) = Im z(ω, a) − γ(a),

which imply that

Re z(ω∗, ã) = 0, Im z(ω∗, ã) = 0.

Let γ̃ = γ(a) + ε (ε > 0 is a sufficiently small number) and consider the polynomial

p(s, a∗) = (a0 − γ̃) + (a1 − γ̃)s + (a2 + γ̃)s2

+ (a3 + γ̃)s3 + (a4 − γ̃)s4 + (a5 − γ̃)s5.

For the hodograph z(ω, a∗) of this polynomial we have the equalities

Re z(ω, a∗) = Re z(ω, a) − γ̃,

Im z(ω, a∗) = Im z(ω, a) − γ̃.

By condition 3 ε may be chosen sufficiently small so that

Re z(0, a∗) = a0 − γ(a) − ε > 0,

Im z(0, a∗) = a1 − γ(a) − ε > 0,

Re z(∞, a∗) = a4 − γ(a) − ε > 0,

Im z(∞, a∗) = a5 − γ(a) − ε > 0.

But

Re z(ω∗, a∗) = −ε < 0, Im z(ω∗, a∗) = −ε < 0,

because the hodograph z(ω∗, a∗) may be obtained from the hodograph z(ω, ã) by parallel translation along the
first-quadrant bisector. Therefore, using condition (9) and noting the uniqueness of the intersection point of the
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hodograph z(ω, a) with the first-quadrant bisector, we obtain that the Tsypkin – Polyak hodograph of the polyno-
mial p(s, a∗) crosses five quadrants as ω varies from 0 to ∞. Moreover, all the coefficients of the polynomial
p(s, a∗) are positive. Therefore, ã ∈ ∂S and RU (a) = γ(a). Q.E.D.

Example 1. Given is an unstable polynomial of degree 7,

p(s) = s7 + 2s6 + 6s5 + s4 + 6s3 + s2 + 3s + 1.

Denoting a = (1, 2, 6, 1, 6, 1, 3, 1), we obtain by Theorem 3 the following bound for the instability radius:

RU (a) � 0.5.

Example 2. Given is an unstable polynomial of degree 5:

p(s) = s5 + 3s4 + s3 + s2 + 2s + 1.

Denoting b = (1, 3, 1, 1, 2, 1), we obtain by Theorem 4

Ψ(b) = 0.8123 < 1 = Λ(b)

and thus

RU (a) = 0.8123.
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