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Abstract This note presents an implicit function theorem for generalized
equations, simultaneously generalizing Robinson’s implicit function theorem
for strongly regular generalized equations and Clarke’s implicit function theo-
rem for equations with Lipschitz-continuous mappings.
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1 Introduction and the main result

Consider the generalized equation (GE)

Φ(x) + N(x) 3 0, (1)

where Φ : IRn → IRn is a (single-valued) mapping, and N is a set-valued
mapping from IRn to the subsets of IRn (i.e., N(x) ⊂ IRn for each x ∈ IRn).
This problem setting is a very general framework including the most important
cases of variational problems [6]. In particular, the case of usual nonlinear
equation

Φ(x) = 0, (2)

corresponds to (1) with N(·) ≡ {0}.
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In this note, we prove a stability result for solutions of GE (1), unifying
two classical facts of variational analysis. The first fact belongs to Robinson;
it is a particular case of the implicit function theorem proved in [10], and it
relies on the following fundamental concept assuming that Φ is differentiable
at the solution in question (its Jacobian will be denoted by Φ′).

Definition 1 ([10]) GE (1) is said to be strongly regular at a solution x̄ if
there exist neighborhoods U of x̄ and V of 0 such that for every η ∈ V , the
perturbed (partially) linearized GE

Φ(x̄) + Φ′(x̄)(x− x̄) + N(x) 3 η

has in U a unique solution x(η), and the mapping η → x(η) : V → U is
Lipschitz-continuous.

Theorem 1 ([10]) Let Φ : IRn → IRn be differentiable in a neighborhood of
x̄ ∈ IRn, with its derivative being continuous at x̄. Let N be a multifunction
from IRn to the subsets of IRn. Assume that x̄ is a strongly regular solution of
the GE (1).

Then there exist neighborhoods U of x̄ and V of 0 such that for every y ∈ V
there exists a unique x(y) ∈ U satisfying the perturbed GE

Φ(x) + N(x) 3 y, (3)

and the mapping y → x(y) : V → U is Lipschitz-continuous.

The second result is Clarke’s inverse function theorem [2] (see also [1,
Theorem 7.1.1]), which is concerned with the case of a usual nonlinear equation
(2), but which assumes local Lipschitz continuity of Φ rather than smoothness.
In order to state this result, we need to recall the related terminology.

The B-differential of Φ at x̄ ∈ IRn is the set

∂BΦ(x̄) = {J ∈ IRn×n | ∃ {xk} ⊂ SΦ such that {xk} → x̄, {Φ′(xk)} → J},
where SΦ is the set of points at which Φ is differentiable. Then the Clarke
generalized Jacobian of Φ at x̄ is given by

∂Φ(x̄) = conv ∂BΦ(x̄),

where conv stands for the convex hull.

Definition 2 ([9]) The mapping Φ : IRn → IRn is referred to as CD-regular
at x̄ ∈ IRn if each matrix J ∈ ∂Φ(x̄) is nonsingular.

Theorem 2 ([2]) Let Φ : IRn → IRn be Lipschitz-continuous in a neighbor-
hood of x̄ ∈ IRn. Assume that x̄ is a solution of (2), and that Φ is CD-regular
at x̄.

Then there exist neighborhoods U of x̄ and V of 0 such that for every y ∈ V
there exists a unique x(y) ∈ U satisfying

Φ(x) = y,

and the mapping y → x(y) : V → U is Lipschitz-continuous.
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In order to state our main result, we introduce the following concept ex-
tending Definition 1 to the nonsmooth case, and at the same time, extending
Definition 2 to the setting of GE. Observe that the single-valued part of GE
(4) below is affine, and hence differentiable, with the Jacobian identically equal
to J .

Definition 3 A solution x̄ of GE (1) is said to be CD-regular if for each
J ∈ ∂Φ(x̄) the GE

Φ(x̄) + J(x− x̄) + N(x) 3 0 (4)

is strongly regular at the solution x̄.

Theorem 3 (main result) Let Φ : IRn → IRn be Lipschitz-continuous in a
neighborhood of x̄ ∈ IRn. Let N be a multifunction from IRn to the subsets of
IRn. Assume that x̄ is a CD-regular solution of GE (1).

Then there exist neighborhoods U of x̄ and V of 0 such that for every
y ∈ V there exists a unique x(y) ∈ U satisfying the perturbed GE (3), and the
mapping y → x(y) : V → U is Lipschitz-continuous.

This theorem extends Theorem 1 to the case of a nonsmooth mapping Φ,
and at the same time, it extends Theorem 2 from usual equations to GEs.

The proof of Theorem 1 in [10] relies on the classical contraction mapping
principle. Theorem 2 can be proven in many ways, but perhaps one of the most
prominent is the following: one only needs to show that Φ is locally injective,
and then apply Brouwer’s invariance of domain theorem (see, e.g., [6, Theo-
rem 2.1.11]) in order to show the existence of solutions. However, apparently,
neither the contraction mapping principle nor the invariance of domain theo-
rem are applicable in our general context, and we employ Brouwer’s fixed-point
theorem in the proof given in the next section.

The property asserted in Theorem 3, as well as in Theorems 1 and 2, is
referred to as strong metric regularity of the multifinction Φ + N at x̄ for
0 in the terminology of [4], or the existence of Lipschitzian localization of
the solution mapping in the terminology of [11]. Note that strong regularity
in Definition 1 can be regarded as strong metric regularity for the partially
linearized multifunction Φ(x̄) + Φ′(x̄)(· − x̄) + N(·) at x̄ for 0.

Strong metric regularity has multiple applications, e.g., in numerical vari-
ational analysis; see [3, Chapter 6], where it appears as an assumption in the
analysis of conditioning issues, and of local convergence and rate of convergence
of some iterative schemes for GEs and of their particular instances. Therefore,
Theorem 3 says that in the case of local Lipschitz continuity of Φ, strong
metric regularity is implied by CD-regularity. In its turn, the latter prop-
erty has verifiable characterizations in some more specific problem settings,
and in particular, for the Karush–Kuhn–Tucker systems of mathematical pro-
gramming problems with Lipschitzian first derivatives but possibly without
second derivatives. Specifically, in [8, Proposition 3, Remark 1] it was demon-
strated that in this case, CD-regularity is implied by the linear independence
constraint qualification and the strong second-order sufficient optimality con-
dition for all (infinitely many, in general) matrices in the generalized Hessian
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(that is, the generalized Jacobian of the gradient) of the Lagrangian. Note,
however, that it is evidently sufficient to verify the latter assumption only for
matrices in the B-differential of the gradient of the Lagrangian, and the latter
set can be much smaller and even finite. For instance, it is always finite in the
important case when the derivatives of the problem data are piecewise smooth.
In [7], these results are further applied to the very general Newton-type scheme
for GEs, and to augmented Lagrangian and linearly constrained Lagrangian
methods for optimization problems with specified smoothness properties.

The rest of the paper is organized as follows. In Section 2 we give a proof
of Theorem 3. In Section 3 we provide the implicit function counterpart of
Theorem 3, allowing for arbitrary Lipschitzian perturbations rather than right-
hand side perturbations only.

2 Proof of the main result

The following observations will be used in the proof below.

Remark 1 Assuming Lipschitz continuity of Φ in a neighborhood of x̄, due to
the fact that the generalized Jacobian of a mapping with this property is com-
pact [1, Proposition 2.6.2], and that strong metric regularity is stable subject
to small Lipschitzian perturbations of Φ (see, e.g., [4, Theorem 1.4]), CD-
regularity of the solution x̄ implies the following: there exist neighborhoods O
of x̄ and W of 0, and ` > 0, such that for all J ∈ ∂Φ(x̄) and all η ∈ W there
exists the unique ϕJ(η) ∈ O satisfying the GE

Φ(x̄) + J(x− x̄) + N(x) 3 η, (5)

and the mapping ϕJ(·) : W → O is Lipschitz-continuous on W with the
constant `. This is demonstrated, e.g., in [8, Proposition 2]. Observe that by
necessity

ϕJ(0) = x̄ ∀ J ∈ ∂Φ(x̄). (6)

Remark 2 If Φ is Lipschitz-continuous in a neighborhood of x̄, then the fol-
lowing approximation property is valid: for any ε > 0 there exists δ > 0 such
that the inequality

min
J∈∂Φ(x̄)

‖Φ(x1)− Φ(x2)− J(x1 − x2)‖ ≤ ε‖x1 − x2‖ (7)

holds for all x1, x2 ∈ Bδ(x̄). Here and throughout Br(x) stands for the closed
ball of radius r > 0 centered at x ∈ IRn.

Indeed, by the mean-value theorem [1, Proposition 2.6.5], for any x1, x2 ∈
IRn close enough to x̄ there exists

M ∈ conv
⋃

t∈[0, 1]

∂Φ(tx1 + (1− t)x2) (8)

such that
Φ(x1)− Φ(x2) = M(x1 − x2). (9)
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By upper semicontinuity of generalized Jacobian [1, Proposition 2.6.2 (c)] it
follows that for any ε > 0 there exists δ > 0 such that

∂Φ(x) ⊂ ∂Φ(x̄) + Bε(0) ∀x ∈ Bδ(x̄),

and hence,

∂Φ(tx1 + (1− t)x2) ⊂ ∂Φ(x̄) + Bε(0) ∀x1, x2 ∈ Bδ(x̄), ∀ t ∈ [0, 1].

By convexity of generalized Jacobian (and hence, of the set ∂Φ(x̄) + Bε(0)) it
further follows that

conv
⋃

t∈[0, 1]

∂Φ(tx1 + (1− t)x2) ⊂ ∂Φ(x̄) + Bε(0) ∀x1, x2 ∈ Bδ(x̄).

Therefore, according to (8), for any x1, x2 ∈ Bδ(x̄) there exists J ∈ ∂Φ(x̄)
such that ‖M − J‖ ≤ ε, and according to (9),

‖Φ(x1)− Φ(x2)− J(x1 − x2)‖ = ‖(M − J)(x1 − x2)‖ ≤ ε‖x1 − x2‖.
Since ε is arbitrary, this proves (7), taking into account that ∂Φ(x̄) is compact
[1, Proposition 2.6.2 (a)] (and hence, minimum in (7) is attained).

When for some J it holds that for every ε > 0 there exists δ > 0 such that
(7) holds without the minimum, then Φ is strictly differentiable at x̄, and J
is its true Jacobian, by necessity. The point here is that in (7), J moves with
x1 and x2, as it depends on them through this minimum operation, and of
course, (7) does not subsume any differentiability of Φ at x̄.

Apparently, the property discussed in this remark was for the first time
explicitly observed in [5]. This property might suggest to pick up any J =
Jx ∈ Φ(x̄) for which minimum in the left-hand side of (7) is attained, and to
consider the mapping h : IRn → IRn,

h(x) = Φ(x̄) + Jx(x− x̄),

as an estimator of Φ at x̄ (see [3, p. 37] for the definition of an estimator).
However, unfortunately, Theorem 2B.7 in [3] or similar results cannot be ap-
plied with this h. The problem is that this theorem requires the estimator to
be strict, that is, the error mapping Φ− h must be Lipschitz-continuous in a
neighborhood of x̄ with a small Lipschiz constant, which is not guaranteed by
the properties of Jx.

We proceed with the proof of Theorem 3.
For any J ∈ ∂Φ(x̄) and any y ∈ IRn, GE (3) is equivalent to (5) with

η = ηJ(x, y), where the continuous mapping ηJ : IRn × IRn → IRn is defined
by

ηJ(x, y) = −(Φ(x)− Φ(x̄)− J(x− x̄)) + y. (10)

Let O, W , ` > 0 and the family of mappings ϕJ(·) : W → O, J ∈ ∂Φ(x̄),
be defined according to Remark 1. Since ∂Φ(x̄) is compact, there exist δ > 0
and ρ > 0 such that for any x ∈ Bδ(x̄) ⊂ O and any y ∈ Bρ(0) it holds that
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ηJ(x, y) ∈ W for all J ∈ ∂Φ(x̄), and therefore, for such x, y and J , (3) is
further equivalent to the usual equation

x = ϕJ(ηJ(x, y)). (11)

The main part of the proof consists of showing that with an appropriate choice
of J (as a function of x!), equation (11) is solvable.

Fix any ε ∈ (0, 1/(3`)], and define the function ω : IRn → IR+,

ω(x) = min
J∈∂Φ(x̄)

‖Φ(x)− Φ(x̄)− J(x− x̄)‖. (12)

Then from Remark 2 it follows that by further reducing δ > 0, if necessary,
we can ensure that

ω(x) ≤ εδ ∀x ∈ Bδ(x̄). (13)

Now for each x ∈ Bδ(x̄) we will select the specific J = Jx ∈ ∂Φ(x̄) as
follows. Consider the parametric optimization problem

minimize ‖Φ(x)− Φ(x̄)− J(x− x̄)‖+ α‖J‖2∗
subject to J ∈ ∂Φ(x̄), (14)

where x ∈ IRn and α > 0 are parameters, and ‖ · ‖∗ is any norm defined by an
inner product in IRn×n (e.g., the Frobenius norm). Let v : IRn × IR+ → IR+

be the optimal-value function of this problem:

v(x, α) = min
J∈∂Φ(x̄)

(‖Φ(x)− Φ(x̄)− J(x− x̄)‖+ α‖J‖2∗). (15)

Then, according to (12), v(x, 0) = ω(x) for all x ∈ IRn, and since ∂Φ(x̄) is
compact, for any fixed ᾱ > 0 the function v is continuous on the compact
set Bδ(x̄)× [0, ᾱ]. Since a continuous function on a compact set is uniformly
continuous, this further implies the existence of α > 0 such that

v(x, α) ≤ ω(x) + εδ ∀x ∈ Bδ(x̄). (16)

Furthermore, with this positive α fixed, the objective function of problem
(14) is strongly convex, and therefore, this problem with a convex feasible set
has the unique solution Jx for any x ∈ IRn. This implies that the mapping
x → Jx : Bδ(x̄) → ∂Φ(x̄) is continuous. Moreover, according to (13), (15) and
(16),

‖Φ(x)− Φ(x̄)− Jx(x− x̄)‖ ≤ v(x, α) ≤ ω(x) + εδ ≤ 2εδ ∀x ∈ Bδ(x̄). (17)

For any y ∈ Bρ(0), define the mapping χy : Bδ(x̄) → IRn,

χy(x) = ϕJx(ηJx(x, y)). (18)
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By further reducing δ > 0 if necessary, so that εδ ≤ ρ, for any y ∈ Bεδ(0),
from (6), (10) and (17) we derive

‖χy(x)− x̄‖ = ‖ϕJx
(ηJx

(x, y))− ϕJx
(0)‖

≤ `‖ηJx(x, y)‖
≤ `(‖Φ(x)− Φ(x̄)− Jx(x− x̄)‖+ ‖y‖)
≤ `(2εδ + εδ)
= 3`εδ

≤ δ ∀x ∈ Bδ(x̄),

where the last inequality holds because ε ≤ 1/(3`). Therefore, χy continuously
maps Bδ(x̄) into itself, and hence, by Brouwer’s fixed-point theorem (see, e.g.,
[6, Theorem 2.1.18]), there exists x(y) ∈ Bδ(x̄) such that

x(y) = χy(x(y)).

According to (18), this means that for any y ∈ Bεδ(0) ⊂ Bρ(0) the point
x(y) ∈ Bδ(x̄) satisfies (11) with J = Jx(y), and as discussed above, this is
equivalent to saying that x(y) solves GE (3).

We thus proved that for any y ∈ Bεδ(0) GE (3) has a solution x(y) ∈
Bδ(x̄). It remains to show that this solution is unique, and the mapping x(·) is
Lipschitz-continuous on Bεδ(0), provided δ > 0 is small enough. Then setting
U = Bδ(x̄) and V = Bεδ(0), we will obtain the needed conclusion.

We first show uniqueness. Suppose that there exist sequences {x1, k} ⊂ IRn,
{x2, k} ⊂ IRn and {yk} ⊂ IRn such that both {x1, k} and {x2, k} converge to
x̄, {yk} converges to 0, and for any k it holds that x1, k 6= x2, k, and the points
x1, k and x2, k solve (3) with y = yk.

According to Remark 2, for any k we can select Jk ∈ ∂Φ(x̄) such that

‖Φ(x1, k)− Φ(x2, k)− Jk(x1, k − x2, k)‖ = o(‖x1, k − x2, k‖). (19)

Since ∂Φ(x̄) is compact, without loss of generality we can assume that {Jk}
converges to some J ∈ ∂Φ(x̄), and then (19) implies the estimate

‖Φ(x1, k)− Φ(x2, k)− J(x1, k − x2, k)‖ = o(‖x1, k − x2, k‖). (20)

Since x1, k ∈ Bδ(x̄), x2, k ∈ Bδ(x̄) and yk ∈ Bρ(0) for all k large enough,
we have that for such k both points x1, k and x2, k satisfy (11) with y = yk.
Employing (10) and (20), we then have that

‖x1, k − x2, k‖ = ‖ϕJ(ηJ (x1, k, yk))− ϕJ(ηJ(x2, k, yk))‖
≤ `‖ηJ(x1, k, yk)− ηJ(x2, k, yk)‖
≤ `‖Φ(x1, k)− Φ(x2, k)− J(x1, k − x2, k)‖
= o(‖x1, k − x2, k‖),

giving a contradiction.
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We proceed with demonstrating Lipschitz continuity of the solution map-
ping. Suppose that there exist sequences {x1, k} ⊂ IRn, {x2, k} ⊂ IRn, and
{y1, k} ⊂ IRn, {y2, k} ⊂ IRn, such that both {x1, k} and {x2, k} converge to x̄,
both {y1, k} and {y2, k} converge to 0, and for all k it holds that y1, k 6= y2, k,
the point xi, k solves (3) with y = yi, k for i = 1, 2, and

‖x1, k − x2, k‖
‖y1, k − y2, k‖ → ∞ as k →∞. (21)

Repeating the argument used to establish uniqueness, we then obtain the
estimate

‖x1, k − x2, k‖ = ‖ϕJ(ηJ(x1, k, y1, k))− ϕJ(ηJ (x2, k, y2, k))‖
≤ `‖ηJ(x1, k, y1, k)− ηJ(x2, k, y2, k)‖
≤ `(‖Φ(x1, k)− Φ(x2, k)− J(x1, k − x1, k)‖+ ‖y1, k − y2, k‖)
= `‖y1, k − y2, k‖+ o(‖x1, k − x2, k‖),

giving a contradiction with (21). This completes the proof.

3 The implicit function theorem

The implicit function theorem in [10] is formally more general than Theorem 1:
it allows for more general parametric perturbations. Theorem 2 also allows for
an implicit function counterpart; see [1, Corollary of Theorem 7.1.1]. In this
section, we present the corresponding extension of Theorem 3, covering both
implicit function theorems by Robinson and Clarke.

Following [1], for a mapping Φ : IRs × IRn → IRn and a point (σ̄, x̄) ∈
IRs × IRn, by πx∂Φ(σ̄, x̄) we denote the projection of the set ∂Φ(σ̄, x̄) in
IRn×s × IRn×n onto IRn×n: the set πx∂Φ(σ̄, x̄) consists of matrices J ∈ IRn×n

such that the matrix (S J) belongs to ∂Φ(σ̄, x̄) for some S ∈ IRn×s.

Definition 4 A solution x̄ of GE

Φ(σ, x) + N(x) 3 0 (22)

for σ = σ̄ is said to be parametrically CD-regular if for each J ∈ πx∂Φ(σ̄, x̄)
the solution x̄ of the GE

Φ(σ̄, x̄) + J(x− x̄) + N(x) 3 0

is strongly regular.

Theorem 4 Let Φ : IRs×IRn → IRn be Lipschitz-continuous in a neighborhood
of (σ̄, x̄) ∈ IRs× IRn. Let N be a multifunction from IRn to the subsets of IRn.
Assume that x̄ is a parametrically CD-regular solution of GE (22) for σ = σ̄.

Then there exist neighborhoods U of σ̄ and U of x̄ such that for every σ ∈ U
there exists a unique x(σ) ∈ U satisfying the GE

Φ(σ, x) + N(x) 3 0, (23)

and the mapping σ → x(σ) is Lipschitz-continuous in U .
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Theorem 4 can be derived from Theorem 3 by means of a well-known trick
commonly used to derive implicit function theorems from inverse function
theorems. In particular, this trick was employed in [1].

Define the auxiliary mapping Ψ : IRs × IRn → IRs × IRn by

Ψ(u) = (z, Φ(z, x)),

and the multifunction M from IRs × IRn to the subsets of IRs × IRn by

M(u) = {−σ̄} ×N(x),

where u = (z, x). Then ū = (σ̄, x̄) is a solution of the GE

Ψ(u) + M(u) 3 0. (24)

Moreover, the perturbed GE

Ψ(u) + M(u) 3 v

with v = (σ − σ̄, 0), σ ∈ IRs, takes the form of the system

z = σ, Φ(z, x) + N(x) 3 0,

which is further equivalent to (23). Therefore, Theorem 4 will readily follow
from Theorem 3 if we will show that ū is a CD-regular solution of GE (24).

Evidently, ∂Ψ(ū) consists of matrices of the form

Λ =
(

I 0
S J

)
,

where I ∈ IRs×s is the unit matrix, and (S J) belongs to ∂Φ(σ̄, x̄). The GE

Ψ(ū) + Λ(u− ū) + M(u) 3 w

with such matrix Λ, and with w = (ζ, ν) ∈ IRs × IRn, takes the form of the
system

σ = σ̄ + ζ, Φ(σ̄, x̄) + S(σ − σ̄) + J(x− x̄) + N(x) 3 ν,

which is further equivalent to the GE

Φ(σ̄, x̄) + J(x− x̄) + N(x) 3 η

with η = ν − Sζ. From Definitions 1, 3 and 4, and from the inclusion J ∈
πx∂Φ(σ̄, x̄) it now evidently follows that parametric CD-regularity of the so-
lution x̄ of GE (22) for σ = σ̄ implies CD-regularity of the solution ū of GE
(24). This completes the proof.
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