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On linear extension operators

We construct a countably dimensional Hausdorff locally convex topological vector space E and a strat-
ifiable closed linear subspace F ⊂ E such that any linear extension operator from Cb(F ) to Cb(E) is

unbounded (Cb(X) is the Banach space of bounded real-valued functions on X).

I Introduction

By a space we always mean a Tychonoff topological space. All linear spaces are assumed to
be real. All topological vector spaces are assumed to be Hausdorff.

Let X be a space, Y ⊂ X, E be a locally convex topological vector space (LCS). We say
that the Dugundji theorem is valid for the triple (X,Y,E) if there exists a linear operator
Φ : C(Y,E) → C(X,E) such that Φ(f)

∣

∣

Y
= f and Φ(f)(X) is contained in the convex hull of

f(F ) for any f ∈ C(Y,E) (here and below C(X,E) is the space of all continuous maps from X
to E). We say that Dugundji theorem is valid for the space X if for any closed set Y ⊂ X and
any LCS E, Dugundji theorem is valid for the triple (X,Y,E).

Dugundji theorem is valid for any metrizable space [1], [2]. Borges [3] introduced the class of
stratifiable spaces, which contains metrizable spaces and proved that Dugundji theorem is valid
for any stratifiable space. Different equivalent definitions of stratifiability can be also found in
[4, 5, 11]. In [11] it is shown that the majority of non-metrizable LCS’s, naturally appearing in
analysis (such as the space D(Rn) of infinitely differentiable functions with compact support,
the space D′(Rn) of generalized functions on R

n the space S(Rn)) of Schwarz distributions etc.),
are stratifiable.

Let Cb(X) be the Banach space of bounded real-valued continuous functions on a space X
with the norm ‖f‖ = sup |f |. If Y ⊆ X then a map T : Cb(Y ) → Cb(X) is called an extension

operator if Tf
∣

∣

Y
= f for all f ∈ Cb(Y ).

Definition 1. Let X be a space, Y ⊂ X, c ∈ [1,+∞). We say that Y is Dc-embedded into
X and write Y ⊂

Dc

X if there exists a linear extension operator Φ : Cb(F ) → Cb(X) such that

‖Φ‖ 6 c. Let also

λ(Y,X) = inf{c > 1 : Y ⊂
Dc

X}, (1)

λ(X) = sup{λ(Y,X) : Y is a closed subset of X}. (2)

Evidently Y ⊂
D1

X and λ(Y,X) = 1 if Dugundji theorem is valid for the triple (X,Y,R). In

particular λ(X) = 1 for any stratifiable space X.
Remind that the network [6] in a space X is a family F of subsets of X such that any open

set U ⊆ X is a union of a subfamily of F . Any space with countable network is perfectly normal
and Lindelöf [6]. Dimension of a linear space is the cardinality of a Hamel basis [7] of this space.
Evidently, any countably dimensional topological vector space has a countable network.

Tietze–Urysohn theorem [6] implies that any bounded continuous function on a closed sub-
space Y of a normal space X admits a bounded continuous extension to whole X. More-
over, as it was observed by Heath and Lutzer [8], there exists a linear extension operator
T : Cb(Y ) → Cb(X) (apply Tietze–Urysohn theorem to elements of the Hamel basis of Cb(Y )).

Van Dowen [9] constructed a space X with countable network and a closed subset Y of X
such that λ(Y,X) = ∞, i.e. any linear extension operator T : Cb(Y ) → Cb(X) is unbounded.

We prove a stornger statement:

Theorem 1. There exists a countable space X and a closed stratifiable subspace Y of X
such that λ(Y,X) = ∞.

Using this example we prove
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Theorem 2. There exists a countably dimensional LCS E and a stratifiable closed linear

subspace F ⊂ E such that λ(F,E) = ∞.

Remark 1. For E and F of Theorem 2 we have that Dugundji theorem is invalid for the
triple (E,F,R). This gives a negative solution of one problem, posed by A. V. Arkhangel’skii,
who asked whether Dugundji theorem is valid for any triple (E,F,R), where E is a LCS with
countable network and F is its closed linear subspace.

Remind that a subspace Y of a space X is said to be P -embedded if any continuous pseu-
dometric on Y admits an extension to a continuous pseudometric on X. The following fact is
proved in [10].

Lemma 1. Let a space X be collectionwise normal [6] and Y be its closed subspace. Then

Y is P -embedded into X.

Remark 2. Let E be a LCS, X be a collectionwise normal space and Y be its closed
metrizable Gδ subspace. Then Dugundji theorem is valid for the triple (X,Y,E) and hence
Y ⊂

D1

X. Indeed, Lemma 1 implies the existence of a continuous metric ρ on X such that its

restriction to Y defines the initial topology of Y . Since Y is a Gδ set, ρ can be chosen in such
a way that Y is closed with respect to ρ. Then the usual Dugundji theorem and the fact that
the initial topology is stronger then the ρ-topology imply the validity of Dugundji theorem for
the triple (X,Y,E).

Remark 3. Theorems 1 and 2 show that metrizability condition is essential in the last
statement (any space with countable network is collectionwise normal and perfect [6]).

II (k,n)-embeddings

Let (X, τX) be a space, Y ⊆ X and y ∈ Y . By i(y, Y,X) we denote the least n ∈ N for which
there exists κ : τY → τX such that

κ(U) ∩ Y = U for all U ∈ τY ; (3)
n
⋂

j=0

κ(Uj) = ∅ for any U0, . . . , Un ∈ τY , y ∈ U0

such that Ui ∩ Uj = ∅ for 0 6 i, j 6 n, i 6= j.

(4)

If such an n does not exist, we put i(y, Y,X) = ∞.
Definition 2. Let (X, τX) be a space, Y ⊆ X, k, n ∈ N, k 6 n. We say that Y is

(k, n)-embedded into X (Y ⊂
k,n

X), if there exists κ : τY → τX satisfying (3) and the following

condition
n
⋂

j=0

κ(Uj) = ∅ for any U0, . . . , Un ∈ τY

such that
k
⋂

j=0

Uij = ∅ for 0 6 i0 < i1 < · · · < ik 6 n.

(5)

Proposition 1. 1) The number i(y, Y,X) is a local invariant, i.e. if y1 ∈ Y1 ⊂ X1,

y2 ∈ Y2 ⊂ X2, and there exist neighborhoods U1 and U2 of y1 and y2 in X1 and X2 respectively

and a homeomorphism h : U1 → U2 such that h(Y1 ∩ U1) = Y2 ∩ U2 and h(y1) = y2 then

i(y1, Y1, X1) = i(y2, Y2, X2).
2) If Y is dense in X then Y ⊂

k,n
X for all k, n ∈ N, k 6 n.

3) If Y is a retract of X then Y ⊂
D1

X.

4) If k, n ∈ N, k 6 n, c ∈
[

1, 2n+2
k

− 1
)

and Y ⊂
Dc

X, then Y ⊂
k,n

X.
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5) If n > m > k, then Y ⊂
k,m

X =⇒ Y ⊂
k,n

X and Y ⊂
m,n

X =⇒ Y ⊂
k,n

X.

6) Z ⊂
k,m

Y ⊂
m,n

X =⇒ Z ⊂
k,n

X.

7) If Y ⊂
1,n

X, then i(y, Y,X) 6 n for all y ∈ Y .

8) Y ⊂
Da

Z ⊂
Db

X =⇒ Y ⊂
Dab

X.

9) If Y ⊂
Da

X and Y ⊂ Z ⊂ X then Y ⊂
Da

Z.

10) If Y ⊂
k,n

X and Y ⊂ Z ⊂ X then Y ⊂
k,n

Z.

P r o o f. Statements 1), 5), 7), 9) and 10) are obvious.
2) If Y is dense in X then any map κ : τY → τX , satisfying (3), satisfies also (5) for any

k, n ∈ N, k 6 n.
3) Let r : X → Y be a retraction. Then the operator Φ : Cb(Y ) → Cb(X), Φ(f)(x) = f(r(x))

is a linear extension operator with norm 1.
4) Since c ∈

[

1, 2n+2
k

− 1
)

, we can pick q, δ > 0 such that

k(c+ 1)

2(n+ 1)
< q < 1, δ > 0 and 2q(n+ 1) > k(c+ 1 + δ). (6)

Let Φ : Cb(Y ) → Cb(X) be a linear extension operator and ‖Φ‖ 6 c. Let also e ∈ Cb(Y ),
e(y) = 1 for all y ∈ Y and

W = {x ∈ X : |Φe(x)− 1| < δ}.

Clearly W is open in X and Y ⊆ W . For any open set U ⊆ Y let

FU = {f ∈ Cb(Y ) : f(Y ) ⊆ [0, 1], f(Y \ U) ⊆ {0} },

∀x ∈ X gU (x) = sup{Φf(x) : f ∈ FU},

κ(U) = {x ∈ X : gU (x) > q} ∩W.

First, we shall prove that κ(U) is open in X and κ(U)∩ Y = U for any U ∈ τY . Let x ∈ κ(U).
Then gU (x) > q. Hence there exists f ∈ FU such that Φf(x) > q. Since Φf is continuous the
set V = {y ∈ X : Φf(y) > q} is open. By definition of κ(U) we have x ∈ V ∩W ⊆ κ(U). Thus,
κ(U) is open. Let x ∈ U . Since Y is a Tychonoff space there exists f ∈ FU such that f(x) = 1.
Hence, gU (x) > 1 > q. Therefore x ∈ κ(U). Let x ∈ Y \ U . Then Φf(x) = f(x) = 0 for any
f ∈ FU . Hence gU (x) = 0 < q, i.e., x /∈ κ(U). The equality κ(U) ∩ Y = U is proved.

Let now U0, . . . , Un ∈ τY and
n
⋂

j=0

Uj = ∅. It remains to verify that
n
⋂

j=0

κ(Uj) = ∅. Suppose

that there exists x ∈
n
⋂

j=0

κ(Uj). Then for any j, 0 6 j 6 n there exists fj ∈ FUj
such that

Φfj(x) > q. Let f =

n
∑

j=0

fj . Then

Φf(x) =
n
∑

j=0

Φfj(x) > q(n+ 1). (7)

Formula (5) implies that 0 6 f(y) 6 k for all y ∈ Y (all fj(y) belong to [0,1] and at most k of
these numbers differ from 0). Hence, ‖2f −ke‖ 6 k. Using (7) and the inclusion x ∈ W we have

2q(n+ 1) < Φf(x) = Φ(2f − ke)(x) + kΦe(x) 6 ‖Φ‖‖2f − ke‖+ k(1 + δ) 6 ck + k + kδ.

This inequality contradicts (6).
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6) Let κ1 : τZ → τY be a map satisfying conditions (3) and (5) with m instead of n,
κ2 : τY → τX be a map satisfying the same conditions with m instead of k and κ : τZ → τX ,
κ(U) = κ2(κ1(U)). It is straightforward to verify that κ satisfies (3) and (5).

8) Let Φ1 : Cb(Y ) → Cb(Z), Φ2 : Cb(Z) → Cb(X) be extension operators such that ‖Φ1‖ 6 a,
‖Φ2‖ 6 b. Then Φ = Φ2 ◦ Φ1 : Cb(Y ) → Cb(X) is an extension operator and ‖Φ‖ 6 ab.

Recall that a space (Y, τ) is called monotonically regular in y0 ∈ Y (see e.g. [11]), if there
exists a mapping Ψ, which maps any (open) neighborhood U of y0 to another neighborhood
Ψ(U) of y0 such that

∀U Ψ(U) ⊆ U ;

U ⊆ V =⇒ Ψ(U) ⊆ Ψ(V ).

The space Y is called monotonically regular if it is monotonically regular in all points.

Lemma 2 (see [11]). A space (Y, τ) is monotonically regular at y0 ∈ Y if and only if there

exists a map Λ : Y \ {y0} → τ such that

∀ y ∈ Y \ {y0} y ∈ Λ(y), (8)

y0 ∈ U ∈ τ =⇒ y0 /∈
⋃

y∈Y \U

Λ(y). (9)

Let Z =
∏

α∈A

Zα be a Tychonoff product of spaces Zα. A set W ⊂ Z is said to be factorizable

through B ⊆ A if W = π−1
B (πB(W )), where πB : Z →

∏

α∈B

Zα is the natural projection.

Proposition 2. Let Z =
∏

α∈A

Zα, where Zα are separable and metrizable, n ∈ N, X ⊂
n,n

Z,

Y be a countable subspace of X monotonically regular in y0 ∈ Y , B = {y ∈ Y : i(y, Y,X) > n}.
Let also the space B ∪ {y0} be non-first-countable in y0. Then i(y0, Y,X) > n+ 1.

P r o o f. Suppose that i(y0, Y,X) 6 n. Let κ1 : τX → τZ be a map satisfying (3) and (5)
with k = n and κ2 : τY → τX be a map satisfying (3) and (4). According to Lemma 2 there
exists a map Λ : Y \ {y0} → τY satisfying (8) and (9). Since i(y, Y,X) > n for any y ∈ B, we
have that for any y ∈ B \ {y0}, the set

Uy =
{

(Uy
1 , . . . , U

y
n) ∈ τnY : y ∈ Uy

1 , Uy
i ∩ Uy

j = ∅ for i 6= j, Uy
j ⊆ Λ(y),

n
⋂

j=1

κ2(U
y
j ) 6= ∅

}

is nonempty. Moreover, y belongs to the closure in X of the set
⋃

(Uy
1
,...,U

y
n)∈Uy

n
⋂

j=1

κ2(U
y
j ). Let

Wy =
⋃

(Uy
1
,...,U

y
n)∈Uy

n
⋂

j=1

κ1(κ2(U
y
j )).

Clearly Wy is open in Z. Since closure of any open subset of a product of a family of separable

metrizable spaces is factorizable through a countable set [6], the set Wy is factorizable through

a countable set Ay ⊂ A. Let A′ =
⋃

y∈Y \{y0}

Ay. Since Y is countable, A′ is also countable. Let

y0 ∈ U ∈ τY , V = Y \
⋃

y∈Y \U

Λ(y). According to Lemma 2 y0 ∈ V ∈ τY .
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Consider

W = Z \
⋃

y∈B\U

Wy.

Evidently, W is an open subset of Z. Let us show that
(Q) W is factorizable through A′, V ⊂ W and W ∩B ⊂ U ∩B.

Since Wy are factorizable through A′ ⊃ Ay we have that the sets
⋃

y∈B\U

Wy are also factor-

izable through A′. Hence, the set
⋃

y∈B\U

Wy =
⋃

y∈B\U

Wy, is factorizable through A′. There-

fore W is also factorizable through A′. Since y ∈ Wy for any y ∈ B \ {y0}, we have that

B \ U ⊂
⋃

y∈B\U

Wy. Hence, W ∩ B ⊂ U ∩ B. It remains to show that V ⊂ W . Suppose that

V 6⊂ W . Then V ∩
⋃

y∈B\U

Wy 6= ∅. Since V is open, we have V ∩
⋃

y∈B\U

Wy 6= ∅. Hence, there

exists y ∈ B \ U such that

V ∩Wy = V ∩





⋃

(Uy
1
,...,U

y
n)∈Uy

n
⋂

j=1

κ1(κ2(U
y
j ))



 6= ∅.

Thus, there exists (Uy
1 , . . . , U

y
n) ∈ Uy such that

V ∩
n
⋂

j=1

κ1(κ2(U
y
j )) 6= ∅.

Therefore

κ1(κ2(V )) ∩
n
⋂

j=1

κ1(κ2(U
y
j )) 6= ∅.

Since κ1 satisfies (3) and (5) with k = n, we obtain

κ2(V ) ∩
n
⋂

j=1

κ2(U
y
j ) 6= ∅.

By definition of κ2, the family {V } ∪ {Uy
j : 1 6 j 6 n} of open sets is not (pairwise) disjoint.

According to the definition of Uy the family {Uy
j : 1 6 j 6 n} is disjoint. Hence, there exists

j ∈ N, 1 6 j 6 n such that Uy
j ∩V 6= ∅. This contradicts the relations Uy

j ⊂ Λ(y), Λ(y)∩V = ∅.

Thus, (Q) is proved.
Since the set of open subsets of Z factorizable through A′ is a base of a (non-Hausdorff)

topology defined by one pseudometric, the condition (Q) implies that there exists a countable
base of neighborhoods of y0 in B ∪ {y0}, which is a contradiction.

Corollary 1. Let n ∈ N, Z =
∏

α∈A

Zα, where all Zα are separable and metrizable, X ⊂
m,m

Z

for any m ∈ N, 1 6 m 6 n and Y ⊂ X be countable, monotonically regular and non-first-

countable in any point y ∈ Y . Then Y is not (1, n)-embedded into X and is not Dc-embedded

into X for any c < 2n+ 1.

P r o o f. According to Proposition 1 (statements 4 and 7) it suffices to show that there exists
y0 ∈ Y for which i(y0, Y,X) > n+ 1.

Using induction with respect to n, we shall prove that i(y, Y,X) > n for any y ∈ Y . First, let
n = 1. The set B from Proposition 2 in this case coincides with Y . According to Proposition 2,
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i(y, Y,X) > 2 for all y ∈ Y . Let now n > 2 and for n− 1 our statement is already proved. This
means that i(y, Y,X) > n for all y ∈ Y . Hence, the set B from Proposition 2 coincides with Y .
According to Proposition 2, i(y, Y,X) > n+ 1 for all y ∈ Y .

Corollary 2. Let n ∈ N, Z =
∏

α∈A

Zα, where all Zα are separable and metrizable, X ⊂
m,m

Z

for any m ∈ N, 1 6 m 6 n and Y ⊂ X be countable, monotonically regular homogeneous and

non-metrizable. Then Y is not (1, n)-embedded into X and is not Dc-embedded into X for any

c < 2n+ 1.

P r o o f. Since Y is countable and non-metrizable, there exists a point y0 ∈ Y such that Y is
non-first-countable in y0 (otherwise Y has a countable base and therefore is metrizable according
to the Alexandrov theorem [6]). Since Y is homogeneous, Y is non-first-countable in any y ∈ Y .
It remains to apply Corollary 1.

III Auxiliary Lemmas

Lemma 3. Let Z = [−1, 1][0,1] (with Tychonoff product topology), Y is a countable space.

Then there exists a dense countable set X ⊂ Z and a closed (in X) set Y1 ⊂ X such that Y is

homeomorphic to Y1.

P r o o f. Let Z1 = {x ∈ Z : x(0) = 1}. Evidently Z1 is also homeomorphic to a product of
continuum (2ω) of closed intervals. Hence, there exists a countable set Y1 ⊂ Z1 such that Y1 is
homeomorphic to Y (the weight of Y does not exceed 2ω and hence Y admits a homeomorphic
embedding into a product of 2ω closed segments [6]). From the other hand Z \Z1 is homeomor-
phic to [0, 1) × Z and therefore is separable as a product of 2ω of separable spaces [6]. Thus,
there exists a countable dense set X1 ⊂ Z \ Z1. Let X = X1 ∪ Y1. Since Z1 is closed in Z and
Y1 = X ∩ Z1, we have that Y1 is closed in X. Since X1 is dense in Z \ Z1 and Z \ Z1 is dense
in Z we have that X is dense in Z.

Definition 3. Let X be a space Xn ⊂ X be closed, Xn ⊆ Xn+1 for all n ∈ N and

X =
∞
⋃

n=1

Xn. The space X is said to be the inductive limit of Xn if the topology of X is the

strongest topology inducing the initial topology on any Xn (equivalently: a set U ⊆ X is open
if and only if U ∩Xn is open in Xn for any n ∈ N).

Lemma 4 (see e.g. [12]). Inductive limits of sequences of stratifiable spaces are stratifiable.

Definition 4. Free abelian topological group A(X) over a space X is the free abelian group
over the set X endowed with the strongest group topology inducing the initial topology on X
(see [13,14]).

Definition 5. Free locally convex space L(X) over a space X is the free linear space over
the set X (i.e. the space of formal linear combinations of elements of X) endowed with the
strongest locally convex topology inducing the initial topology on X (see [13,14]).

The following lemma is proved by Uspenskii [13,14].

Lemma 5. Let X be a space, Y ⊂ X. Then

(1) The topology of A(X) coincides with the topology induced from L(X).
(2) The topology of

L0(X) =

{

∑

j

λjxj :
∑

j

λj = 0

}

is defined by the family of seminorms

qd(µ) = inf

{

∑

j

|λj |d(uj − vj) : µ =
∑

j

λj(uj − vj)

}

, d ∈ D, d ∈ D, (10)

where D is the set of all continuous pseudometrics on X.
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(3) The topology of L(Y ) coincides with the topology induced from L(X) if and only if Y is

P -embedded into X.

Remind that L(X) can be naturally interpreted as the space of all measures on X with finite
support (x ∈ X in this interpretation is identified with the probability measure with the support
{x}). We’ll use this interpretation without additional comments.

Lemma 6. Let X be a space with countable network, x0 ∈ X. Then topological group

A(X) is (Weyl) complete, L(X) is naturally isomorphic to the space of all σ-additive Borel

real-valued (not necessarily positive) measures on X supported on metrizable compact subsets

of X, endowed with the topology defined by the family of seminorms

pd(µ) = sup
f∈Fd

∫

X

f dµ, d ∈ D,

where D is the set of all continuous pseudometrics on X and Fd is the set of all f ∈ Cb(X) such
that |f(x0)| 6 1 and |f(x)− f(y)| 6 d(x, y) for all x, y ∈ X.

P r o o f. Completeness of A(X) for Dieudonne complete spaces [6] X had been proved by
V. V. Uspenskii [13,14]. Since any space with countable network is Dieudonne complete [6],
we have that A(X) is complete. The description of the completion of free LCS’s obtained by
V. V. Uspenskii [13,14] also implies that the space L(X) for Dieudonne complete X is naturally
isomorphic to the space of functionals from C∗

b (X), which admit a representation as inegration
with respect to a σ-additive Borel measure on X supported on compact subsets of X. Since
any compact space with countable network is metrizable, this implies the required description
of L(X).

Let L0(X) be the space of Lemma 5, i.e., the set of elements of L(X) with zero integral.
Evidently L0(X) is a closed hyperplane in L(X). Let qd be seminorms defined by (10).

For any µ =
∑

j

λj(uj − vj) ∈ L0(X), d ∈ D and f ∈ Fd we have

∣

∣

∣

∣

∣

∣

∫

X

f dµ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

j

λj(f(uj)− f(vj))

∣

∣

∣

∣

∣

∣

6
∑

j

|λj |d(uj , vj) =⇒

∣

∣

∣

∣

∣

∣

∫

X

f dµ

∣

∣

∣

∣

∣

∣

6 qd(µ).

Hence, pd(µ) 6 qd(µ).
According to the definition of topology of L(X) a linear functional on L(X) is continuous

if and only if its restriction to X is continuous. Therefore the dual of L(X) is C(X) and the
action of f ∈ C(X) on L(X) is given by

〈µ, f〉 =

∫

X

f dµ.

The dual of L0(X) then can be naturally identified with C0(X) = {f ∈ C(X) : f(x0) = 0}.
Let Ud be the set of f ∈ C0(X) such that |〈µ, f〉| 6 1 for all µ ∈ L0(X) such that qd(µ) 6 1.
For any x, y ∈ X consider µ = (x − y)/d(x, y) ∈ L0(X). Then qd(µ) = 1. Therefore |〈µ, f〉| =
|f(x) − f(y)|/d(x, y) 6 1 for all f ∈ Ud. Hence |f(x) − f(y)| 6 d(x, y) for all f ∈ Ud. On
the other hand if f ∈ C0(X) and |f(x) − f(y)| 6 d(x, y) for all x, y ∈ X then (as we have
already verified) |〈µ, f〉| 6 qd(µ) for any µ ∈ L0(X). Thus, f ∈ Ud if and only if f ∈ C0(X) and
|f(x) − f(y)| 6 d(x, y) for all x, y ∈ X. Therefore Ud = Fd. Hence, polars in C0(X) of closed
unit balls with respect to qd and the restriction of pd to L0(X) are equal. Both seminorms are
continuous (qd due to Lemma 5 and the restriction of pd to L0(X) because of the inequality
pd(µ) 6 qd(µ)). Therefore qd coincides with the restriction of pd to L0(X). It remains to use
the facts that L0(X) is a closed hyperplane in L(X) and that seminorms qd define the topology
of L0(X).
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Lemma 7. Let X be an inductive limit of a sequence of metrizable compact spaces Kn ⊆ X.

Then A(X) and the closure L(X) of the free LCS over X are also inductive limits of sequences

of metrizable compact spaces.

P r o o f. In [13,14] it is proved that the topology A(X) coincides with the topology induced
from L(X). According to Lemmas 5 and 6 A(X) is complete and therefore is closed in L(X).
Since a closed subspace of an inductive limit of a sequence of metrizable compact spaces is itself
an inductive limit of a sequence of metrizable compact spaces, it suffices to show that L(X) is
an inductive limit of metrizable compact spaces.

Let Kn be metrizable compact subspaces of X such that X is the inductive limit of the
sequence Kn. Let

Mn = {µ ∈ L(X) : suppµ ⊆ Kn and ‖µ‖ 6 n},

where ‖µ‖ is the complete variation of the measure µ and the inclusion suppµ ⊆ Kn means
that µ(A) = 0 if A ∩Kn = ∅.

According to Lemma 6
∞
⋃

n=1

Mn = L(X). It remains to verify that Mn are compact and

metrizable and that L(X) is the inductive limit of Mn. According to Alaoglu theorem [7]
and Riesz theorem on the general form of continuous linear functionals on C(K) for compact
metrizable K we have that Mn are metrizable and compact with respect to the weak topology
σ(L(Kn), C(Kn)). According to Arceli–Ascoli theorem [7] the set Fn

d = {f
∣

∣

Kn
: f ∈ Fd} is

compact in C(Kn) for any continuous pseudometric d on X (Fd are sets of functions from
Lemma 6). According to Lemmas 1, 5 and 7 the topology of L(Kn) coincides with the topology
induced from L(X) and coincides with the topology t(L(Kn), C(Kn)) of uniform convergence [7]
over compact subsets of the Banach space C(Kn). According to Banach–Dieudonné theorem [17]
the compact subsets of L(Kn) with respect to topologies t(L(Kn), C(Kn)) and σ(L(Kn), C(Kn))
are the same and the restrictions of these topologies to compact subsets coincide. Hence, Mn

are compact and metrizable in L(X). Let τ1 be the inductive limit topology of the sequence Mn

and τ2 be the natural topology of L(X). We have to show that τ1 = τ2. By definition of the
inductive limit topology τ2 ⊆ τ1. On the other hand, since X ∩ Mn = Kn, the restrictions of
τ1 and τ2 on X coincide. Since τ2 is the strongest locally convex topology, inducing the initial
topology on X, it suffices to verify that the topology τ1 is locally convex. Let ξ be the topology
on C(X) with the basis {Un = M◦

n : n ∈ N} of neighborhoods of zero. Then (C(X), ξ) is a
metrizable LCS. Using Banach–Dieudonné theorem [17] again, we obtain that the topology τ3 on
L(X) of uniform convergence over precompact subsets of (C(X), ξ) coincides with the inductive
limit topology of the sequence of sets U◦

n = Mn endowed with the topology σ(L(X), C(X)).
Since (as we have already shown) the restrictions of τ2 and σ(L(X), C(X)) to Mn coincide, we
obtain that τ1 = τ3 and τ1 is locally convex, since τ3 is obviously locally convex.

IV Proof of Theorems 1 and 2

Let S be an infinite countable compact space (such a space is automatically metrizable [6]),
G = A(S). Then G is a countable abelian topological group. Lemma 3 implies the existence
of Y ⊂ X ⊂ Z = [−1, 1][0,1] such that X is countable and dense in Z, Y is closed in X and
homeomorphic to G.

A free abelian topological group over an infinite space is always non-metrizable [15,16]. Ac-
cording to Lemma 7 G is an inductive limit of a sequence of metric compact spaces and therefore
is stratifiable due to Lemma 4. Any stratifiable space is monotonically regular [11]. Hence, Y
(which is homeomorphic to G) is countable, homogeneous, monotonically regular and non-
metrizable. Statement 2 of Proposition 1 implies that X ⊂

nn
Z for any n ∈ N. According to

Corollary 2 Y is not (1, n)-embedded into X for any n ∈ N and is not Dc-embedded into X for
any c > 1. This proves Theorem 1 (the pair (X,Y ) is the desired example).
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Let now E = L(X) and F be the linear hull of Y in E. Clearly E is a countably dimensional
LCS and F is its closed linear subspace. For the proof of Theorem 2 it suffices to verify that F
is not Dc-embedded into E for any c > 1 (then the pair (E,F ) is the desired example).

According to Lemmas 1 and 5, F is naturally isomorphic to L(Y ), which is stratifiable (see
Lemmas 7 and 4). Borges theorem [3] then implies that Y ⊂

D1

F . Suppose that F ⊂
Dc

E for some

c > 1. Then according to Proposition 1 (Statements 8 and 9) Y ⊂
Dc

E and hence Y ⊂
Dc

X, which

is a contradiction. Theorem 2 is proved.

V. Open problems

Problem 1. For which c ∈ [1,+∞) there exists a countable space (or at least a space with
a countable network) with λ(X) = c?

Problem 2. For which c ∈ [1,+∞) there exist a countable Hausdorff topological group
(or at least a Hausdorff topological group with a countable network) X and a closed subgroup
Y ⊂ X with λ(Y,X) = c?

Problem 3. For which c ∈ [1,+∞) there exist a countably dimensional LCS (or at least a
LCS with a countable network) X and a closed linear subspace Y ⊂ X with λ(Y,X) = c?

Remark 4. For c = 1 and for c = ∞ the desired spaces do exist for all three problems.
Indeed, for c = 1 one has to apply the Dugundji–Borges theorem. For c = ∞ it follows from
Theorems 1 and 2 (for Problem 2 one have to consider free abelian topological groups over Y
and X from Theorem 1).

Acknowledgments. The authors would like to thank Professor A. V. Arkhangel’skii, who
posed the problem. S. A. Shkarin would like to thank the Alexander von Humboldt foundation
for support.
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