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Abstract Cadherins are a family of cellular adhesion proteins
mediating homotypic cell-cell binding. In contrast to classical
cadherins, T-cadherin does not possess the transmembrane and
cytosolic domains known to be essential for tight mechanical
coupling of cells, and is instead attached to the cell membrane by
a glycosylphosphatidylinositol (GPI) anchor. This study explores
the hypothesis that T-cadherin might function as a signal-
transducing protein. Membranes from human and rat vascular
smooth muscle cells were fractionated using Triton X-100
solubilization and density gradient centrifugation techniques.
We demonstrate that T-cadherin is enriched in a minor
detergent-insoluble low-density membrane domain and co-
distributes with caveolin, a marker of caveolae. This domain
was enriched in other GPI-anchored proteins (CD-59, uPA
receptor) and signal-transducing molecules (GKKs protein and
Src-family kinases), but completely excluded cell-cell and cell-
matrix adhesion molecules (N-cadherin and LL1-integrin). Cou-
pling of T-cadherin with signalling molecules within caveolae
might enable cellular signal transduction.
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1. Introduction

We have previously demonstrated the existence of atypical
lipoprotein-binding proteins in vascular smooth muscle cells
which may be involved in signalling e¡ects of lipoproteins
[1,2]. The ligand selectivity of these proteins of 105 and 130
kDa (p105/p130) is distinct from those of all other recognized
lipoprotein receptor [3]. Puri¢cation and sequencing of the
105 kDa protein from human aortic media enabled identi¢ca-
tion of p105 as T-cadherin, an unusual member of the cad-
herin family of cell adhesion molecules [4]. Unlike the classical
cadherin-family members T-cadherin does not have trans-
membrane and cytosolic domains and is anchored to mem-
branes by means of a glycosylphosphatidylinositol (GPI) an-
chor [5]. The classical and desmosomal cadherins should be
anchored to intracellular ¢laments in order to function prop-
erly [6,7]. In vivo and in vitro studies have shown that defects
in structure or expression of either cytosolic cadherin domains
or the proteins linking cadherins and desmogleins/desmocol-

lins to their corresponding types of ¢lament result in impaired
cell-cell adhesion, tissue disintegration and acquisition of in-
vasive properties by cells [8^11]. Although T-cadherin has
been demonstrated to mediate cell-cell adhesion in vitro, it
was noted that in contrast to classical cadherins, T-cadherin
was not concentrated to sites of cell-cell contact in monolayer
cultures of transfected cells [12]. Further studies showed that
in polarized epithelial cells T-cadherin localized on apical cell
surfaces, while classical cadherins were present on the baso-
lateral pole [13]. These data support the view that the lack of
the cytosolic domain in T-cadherin might endow this molecule
with intracellular targeting properties and speci¢c function(s)
that are distinct from classical and desmosomal cadherins.

A large number of GPI-anchored proteins have been impli-
cated in signal transduction processes [14^20], and it therefore
seems plausible that T-cadherin may be a signalling-coupled
receptor. T-cadherin has been shown to negatively regulate
axon growth in neurons, and to reduce neurite growth by
repulsing growth cones rather than by arresting their growth
through increased adhesion [21]. T-cadherin has also been
shown to mediate contact growth inhibition in breast cancer
cells [22]. These data suggest that in addition to some function
in mechanical coupling of cells, T-cadherin may possess sig-
nalling functions and mediate intercellular communication.

The mechanisms of putative T-cadherin-mediated signalling
events may be similar to those of other GPI-anchored pro-
teins, some of which are known as signal-transducing recep-
tors [14^20]. Signal transduction by GPI-anchored proteins
has been hypothesized to involve their clustering in low-den-
sity, detergent-insoluble plasma membrane domains in which
a variety of signalling proteins such as, among others, growth
factor receptors, G-proteins, kinases of the Src family, and
Ras proteins are co-localized [23^29]. In some cell types, in-
cluding vascular smooth muscle cells, these detergent-resistant
membrane domains are enriched with a speci¢c protein, cav-
eolin, and form morphologically conspicuous plasma mem-
brane invaginations known as caveolae [30]. This study
explores a possible function for T-cadherin as a signal-trans-
ducing molecule. We demonstrate a co-localization of T-cad-
herin, caveolin and some signal-transducing molecules in
detergent-insoluble low-density membrane domains of
vascular smooth muscle cells (VSMC).

2. Materials and methods

2.1. Materials
Electrophoresis reagents were obtained from Bio-Rad Laboratories

(Hercules, CA, USA). Delipidated dry milk, Rapilait, was from
Migros (Basel, Switzerland). Cell culture reagents were from Gibco
BRL (Life Technologies AG, Basel, Switzerland). Triton X-100, bu¡-
ers and other chemicals were purchased from Sigma (St. Louis, MO,
USA).
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2.2. Isolation of detergent-insoluble, low-density membrane domains
Triton-insoluble, low-density membrane domains were puri¢ed

from human or rat VSMC and human aortic media tissue by ultra-
centrifugation in stepwise sucrose density gradients as described pre-
viously [30]. VSMC were isolated, characterized and propagated as
described [31]. VSMC were cultured in Dulbecco's modi¢ed Eagle's
medium containing 10% fetal bovine serum and antibiotics as de-
scribed [31]. Con£uent VSMC monolayers were rinsed with PBS
and scraped into MES bu¡er saline (MBS, 25 mM 2-(N-morpholi-
no)ethanol sulfonic acid, pH 6.5 at 4³C, 0.15 M NaCl, 2 Wg/ml leu-
peptin, 2 Wg/ml aprotinin and 1 mM PMSF) containing 1% Triton X-
100. Membranes from human aortic media were isolated from tho-
racic aortae obtained within 5^8 h of accidental death as described
before [1] and solubilized in MBS/Triton X-100. After homogeniza-
tion with 10^15 strokes of a Dounce homogenizer extracts were ad-
justed to 40% sucrose (w/v) and placed in the bottom of centrifuge
tubes. A stepwise gradient (5 and 30% sucrose in MBS without Triton
X-100) was formed above the lysates and the tubes were centrifuged at
35 000 rpm for 18 h at 4³C in an SW 40 rotor (Beckman Instruments).
A single turbid band was harvested from the interface between the 30
and 5% sucrose layers, diluted with 5 volumes of MBS without Triton
X-100 and pelleted by centrifugation at 35 000 rpm for 2 h in an SW
40 rotor. The pellets were frozen in liquid nitrogen and stored at
370³C for later use. For ligand- and immunoblotting experiments
Triton-insoluble pellets or starting membranes were solubilized by
incubation for 2 h. at 4³C with Tris-bu¡ered saline (50 mM Tris-
HCl, pH 8.0 at 4³C, 150 mM NaCl, 2 Wg/ml leupeptin, 2 Wg/ml
aprotinin and 1 mM PMSF) containing 1% SDS. In several experi-
ments protein distribution over the whole sucrose gradient was
studied. In these cases, sucrose gradients after ultracentrifugation
(12 ml per tube) were fractionated into 1-ml fractions for rat samples
or into 230-Wl fractions for human samples and analyzed for turbidity
(optical density at 560 nm), protein content (bicinchoninic acid assay,
Pierce, Zurich) and subjected to immuno- and ligand-blotting.

2.3. Generation of anti-T-cadherin peptide antibody
Peptide corresponding to human T-cadherin precursor amino acid

positions 161^179 was prepared by solid phase synthesis on an Ap-
plied Biosystems 431A Synthesizer using Fmoc-amino acyl polymers
(Bachem, Switzerland). Conjugation of peptide, immunization of ani-
mals, characterization of antisera and puri¢cation of IgG fraction
were performed as described previously [4,32].

2.4. Ligand- and immunoblotting
The method of immuno- and ligand-blotting with LDL has been

fully described previously [1,3]. Brie£y, samples were electrophoresed
in 8% SDS polyacrylamide gels and electroblotted onto nitrocellulose
membranes. A molecular mass standard mixture (Rainbow high range
labelled markers, Amersham, Zurich, Switzerland, Cat# RPN 756)
consisting of myocin (200 kDa), phosphorylase B (97.4 kDa), bovine
serum albumin (66 kDa), ovalbumin (46 kDa), carbonic anhydrase
(30 kDa), trypsin inhibitor (21.5 kDa) and lysozyme (14.3 kDa) was
used for calibration. LDL for ligand blotting assays (1.019^1.063 g/
ml) were isolated from the plasma of healthy male humans using
sequential buoyant density centrifugation technique with the use of
sodium bromide for density adjustments as described [33]. LDL was
biotinylated using D-biotin-N-hydroxysuccinimide (0.15 Wmol/mg
LDL) [34]. LDL-binding protein bands were detected after sequential
incubation of blots with biotinylated LDL, streptavidin-horseradish
peroxidase conjugate and the Amersham ECL detection system, with
¢nal exposure to Kodak Biomax ¢lm. Immunoblotting procedures
were essentially the same except that detection of bound primary anti-
bodies was performed using anti-mouse, anti-rabbit or anti-goat sec-
ondary antibody conjugated to horseradish peroxidase (Transduction
Laboratories, Zurich, Switzerland) and 0.1% Tween 20 was included
in all incubating and washing solutions. The following commercially
available primary antibodies were used for immunoblotting: anti-cav-
eolin pAB (0.025 Wg/ml, Transduction Lab., Cat# C13630), anti-cla-
thrin heavy chain mAB (0.025 Wg/ml, Transduction Lab., Cat#
C43820), anti-integrin L1 mAB (0.025 Wg/ml, Transduction Lab.,
Cat# I41720), anti-c-Src pAB (0.05 Wg/ml, Santa Cruz Biotechnology,
Cat# sc-18), anti-GKs pAB (0.2 Wg/ml, Santa Cruz Biotechnology,
Cat# sc-823), anti-N-cadherin pAB (0.2 Wg/ml, Santa Cruz Biotech-
nology, Cat# sc-1502), anti-urokinase receptor pAB (1 Wg/ml, Amer-
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Fig. 1. Separation of Triton X-100 extract of VSMC by ultracentrifugation in a stepwise sucrose gradient: centrifugation pro¢les. Membranes
of human aortic media and cultured rat VSMC were solubilized in MES-bu¡ered solution containing 1% Triton X-100, adjusted to 40% su-
crose, transferred to centrifuge tubes and overlaid with 30 and 5% sucrose solutions. After ultracentrifugation the gradients were fractionated
and analyzed for turbidity, protein content and also subjected to immuno- and ligand-blotting. S = starting lysates; P = pellets. A: Optical den-
sity at 560 nm, human aorta; B: Coomassie R-250 staining, human aorta; C: anti-caveolin pAB, human aorta; D: anti-T-cadherin pAB, hu-
man aorta; E: LDL binding, human aorta; F: anti-caveolin pAB, rat VSMC; G: LDL binding, rat VSMC.
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ican Diagnostica, Cat# 3920). Anti-human CD59 mAB was a gener-
ous gift from Dr. A. Shamshiev, Laboratory for Experimental Immu-
nology, Basel University Hospitals.

3. Results and discussion

3.1. Distribution of T-cadherin and other membrane-associated
proteins in VSMC membrane fractions

In contrast to classical cadherins, desmosomal cadherins
and protocadherins, T-cadherin is a GPI-anchored protein.
A characteristic of GPI proteins is their enrichment in choles-
terol and glycolipid-rich detergent-insoluble low-density mem-
brane domains, which in most cell types form morphologically
evident membrane invaginations known as caveolae [30]. In
order to determine whether T-cadherin also localizes to the
detergent-insoluble, low-density domains we applied a centrif-
ugation-based technique widely used for isolation of caveolae
[30]. After ultracentrifugation of Triton X-100-treated human
aortic media membranes the low-density membrane domain
insoluble in Triton X-100 was clearly visible as a turbid band
at the interphase between 30% and 5% sucrose (Fig. 1A).
Analysis of proteins in the centrifugation pro¢le by SDS gel
electrophoresis demonstrated that the bulk of protein was
present in the lower, high-density sucrose fractions (Fig.
1B). A well-known marker for caveolae, the 21-kDa protein
caveolin, was highly enriched in the low-density fractions cor-
responding to the turbid interphasic band (Fig. 1C). Immuno-
blotting with anti-T-cadherin pAB and LDL-blotting analysis
revealed that T-cadherin (Fig. 1D) was co-distributed with
caveolin (Fig. 1C). The LDL-binding protein p130 was also

recognised by anti-T-cadherin pAB and exhibited a distribu-
tion that was identical to the p105 LDL-binding and anti-T-
cadherin immunoreactive protein (Fig. 1D,E). Some of our
recent data (manuscript in preparation) would suggest that
p130 is a partially processed form of T-cadherin precursor
that is expressed on the cell surface simultaneously with the
mature protein. Low-density membrane fractions from rat
VSMC also displayed co-distribution of LDL-binding pro-
teins p105 and p130 and caveolin (Fig. 1F,G).

3.2. Co-localization of T-cadherin and signalling molecules
within caveolae

In order to compare enrichment of T-cadherin in low-den-
sity fractions with the distribution of other membrane-associ-
ated proteins, we performed ligand- and immunoblotting ex-
periments on starting membranes and `caveolae' fractions
from human aortic media and cultures of human and rat
VSMC. In each case low-density `caveolae' fractions were
enriched in both caveolin (Fig. 2A) and T-cadherin/LDL-
binding (Fig. 2B,C). `Caveolae' were signi¢cantly enriched
with the GPI-anchored proteins CD-59 and uPA receptor
(Fig. 2D,E) as well as with other lipid-anchored proteins,
GKs and Src-family kinases (Fig. 2F,G). In contrast, the
typical transmembrane proteins L1-integrin and classical
N-cadherin were excluded from the low-density `caveolae'
compartment (Fig. 2H,J). Clathrin, a membrane-associated
protein involved in receptor-mediated endocytosis [35], was
also excluded from `caveolae' (Fig. 2I). These data support
that T-cadherin, like some other GPI proteins, is directed
by means of a lipid anchor to the detergent-insoluble,
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Fig. 2. Enrichment of T-cadherin and other lipid-anchored proteins in detergent-insoluble, low-density membrane domains of VSMC. Starting
membrane (M) and `caveolae' preparations (C) from human aortic media and cultures of human and rat VSMC were solubilized in Tris-
bu¡ered solution containing 1% SDS, loaded on 8% SDS-PAGE (15 Wg of protein per lane), electroblotted onto nitrocellulose membrane and
analyzed by ligand blotting with LDL (C) or by immunoblotting with anti-caveolin (A), anti-T-cadherin (B), anti-CD-59 (D), anti-uPA receptor
(E), anti-GKs (F), anti-c-Src kinases (G), anti-integrin L1 (H), anti-clathrin heavy chain (I) or anti-N-cadherin (J) antibodies. Numbers to the
right of each panel indicate molecular weights.
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cholesterol- and glycolipid-rich, low-density membrane do-
mains.

3.3. T-cadherin as a signal-transducing protein
Cadherins are known to participate in cell-cell adhesion,

establishment of cell polarity and morphogenesis in a variety
of organs [36^41]. Emerging data suggest that their function is
not limited to physical adhesion between cells, but may in-
volve generation of intracellular signals [42,43]. While some
data supporting an important role of signalling in cadherin
function have been obtained [44,45], the mechanisms of signal
transduction by cadherins are still obscure.

While possessing the general extracellular domain structure
typical of classical type I cadherins, T-cadherin lacks the cy-
tosolic domain and is anchored to the plasma membrane by a
GPI anchor. The present study has demonstrated that a fur-
ther peculiarity of T-cadherin is its localization to the deter-
gent-resistant, low-density domains of plasma membrane.
These results are in agreement with recent data demonstrating
a similar distribution of T-cadherin in sheep ventricular sar-
colemma [46]. Caveolae and caveolin-free low-density mem-
brane lipid `rafts' have been proposed to function as plasma
membrane signal transduction centers that compartmentalize
receptors with downstream e¡ectors [23,30,47]. Our data show
a distinct co-localization of T-cadherin and some recognized
signal-transducing e¡ectors such as non-receptor tyrosine kin-
ases and G protein subunits within caveolae. Furthermore, we
have shown that T-cadherin is located in membrane domains
which exclude classical transmembrane cell adhesion mole-
cules. Thus we may suppose that, rather than serving merely
adhesive functions, T-cadherin may also function as a signal-
transducing protein. The mechanisms whereby T-cadherin
transduces the initial signal and the signalling e¡ectors to
which T-cadherin might couple are, however, completely un-
known. At present we cannot assess whether T-cadherin may
use signal transduction pathways similar to those utilized by
other GPI proteins. Further investigations should be directed
toward a search for signalling `adaptor' molecules which may
be either common or distinct between T-cadherin and other
GPI-anchored proteins localized in caveolae.
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