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Abstract

We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It
consists of a single partial differential equation that reproduces, at a qualitative level, the essential proper-
ties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate
the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state
solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the
well-known numerical difficulties associated with the presence of a sonic point. By using unsteady
numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or
quasi-steady solutions.
� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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Introduction

A gaseous detonation is a phenomenon exhibit-
ing rich dynamical features. One-dimensional pla-
nar detonations propagate with a velocity that can
be steady, periodic, or chaotic [1]. In multiple
dimensions, the detonation front includes complex
structures resulting in cellular patterns formed by
triple-point trajectories [2,3]. Quasi-steady curved
detonations, characteristic of condensed explo-
sives, possess multiple-valued solutions at a given
curvature [4]. The same multiplicity of solutions
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exists in one-dimensional detonations in the pres-
ence of heat and momentum losses [5–8]. This
range of complex dynamical properties of detona-
tions poses a challenge in terms of theoretical
understanding of conditions in which they arise
and of features they exhibit. The linear stability
theory for idealized systems, asymptotic theories
of weakly curved detonation, and other asymp-
totic models have significantly advanced our
understanding of the detonation phenomenon
(see recent reviews in [9]). However, many prob-
lems still require further theoretical study, includ-
ing the mechanism of detonation cell formation,
the nature of critical conditions of detonation
propagation in systems with losses, the linear and
nonlinear instability in systems described by com-
plex reactions and equations of state, and others.
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Elucidation of key physical mechanisms of the
complex phenomena of detonation dynamics is
greatly facilitated by simplified models, including
those of ad hoc nature [10]. Such models can high-
light in the clearest possible way the processes
responsible for a particular qualitative trait in
the observed dynamics. A wide range of dynami-
cal properties of one-dimensional detonations,
including chaotic solutions, is reproduced in
[11,12] with a simple extension of Fickett’s analog
[10] to model the chemical reaction with a well-
defined induction zone followed by a heat-release
zone. In [13,14], it was shown that a model
consisting of just a single scalar equation is also
capable of qualitatively capturing the dynamics
of one-dimensional detonations in the reactive
Euler equations, including instability and chaos.
The most important implication of these simpli-
fied models is that the true nature of the complex
dynamics of detonations appears to be governed
by a simple mechanism, thus providing a strong
indication that a rational reduction of the reactive
Euler equations that retains the same essential
physical ingredients as the simple models may be
feasible.

The model in [13] is given by the following
equation:
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where x � 0 is the reaction zone behind the shock
propagating from left to right. Equation (1) is
written in a shock-attached frame; the shock loca-
tion is hence at x ¼ 0 at all times, t. The unknown,
u x; tð Þ, plays the role of, e.g., pressure, while us is
the solution u evaluated at the shock, and it is
related to the shock speed through shock condi-
tions. The forcing function, f, is chosen to mimic
the behavior of the reaction rate in the reactive
Euler equations. In particular, it is taken to have
a maximum at some distance away from the
shock, xf ¼ xf usð Þ, with function xf chosen to
depend sensitively on the shock state, us. The fol-
lowing choice,

f ¼ affiffiffiffiffiffiffiffi
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where a ¼ 4 1þ erf u�a
s =2

ffiffiffi
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, is used in
numerical calculations below, as in [14]. In this
form, the model is dimensionless with u scaled
so that us ¼ 1 in the steady state. Parameters a
and b are analogous to the activation energy in
the reactive Euler equations with Arrhenius kinet-
ics and to the ratio of the reaction-zone length to
the induction-zone length, respectively. Note that
the total chemical energy released corresponds toR 0

�1 f ðx; usðtÞÞdx, which is constant for the forcing
term (2) regardless of the value of usðtÞ. This fol-
lows from f � kx, as discussed in [13,14]. Thus,
the total energy released is always the same even
in the presence of instabilities.

Equation (1) can be shown to be closely related
to the asymptotic model [15] derived from the reac-
tive Euler equations. From a physical point of
view, an important ingredient of the model is that
it represents the nonlinear interaction of two wave
families: one moving slowly toward the shock and
one moving infinitely quickly away from the shock.
The former is simply the wave evolving along the
Burgers characteristic. The wave moving infinitely
fast is implied by the presence of the shock state, us,
directly in (1), such that the solution, u x; tð Þ, at any
given time, t, at any location, x, depends on the
shock state at that particular time. This non-local-
ity is a result of taking to an extreme the asymptotic
idea that the waves reflecting from the shock prop-
agate much faster than the waves moving toward
the shock from the reaction zone. Another element
of the model that is of physical significance is that
when f has a maximum at some distance away from
the shock, and the position of this maximum
depends sensitively on the shock state, the system
represents a kind of a resonator that amplifies the
waves moving back and forth between the shock
and the region around xf . This resonant amplifica-
tion is a real mechanism for instability as observed
in the simulations of pulsating solutions of (1) [14].
A model with generic losses

Our focus here is to explore the effect of generic
losses on the solutions of (1). For this purpose, we
modify the forcing in (1) to add a damping term,
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Here, D ¼ us=2 is the detonation speed, which is
obtained using the Rankine–Hugoniot conditions
with the state upstream of the shock taken to be
u ¼ 0 [14], u is a parameter of the problem, which
may be time dependent, and g is a function that
represents the loss. Friction losses are modeled
by taking g ¼ cf ujuj, with the friction coefficient
cf , while the effects of curvature are modeled by
taking g ¼ ju2= 1þ jxð Þ, where j is the shock
curvature, generally dependent on time.

Steady and quasi-steady solutions

If u is a constant, then we can find steady-state
solutions of (3). If u is time-dependent, but slowly
varying in time, then we can find quasi-steady solu-
tions of (3). In both cases, the problem requires
solving the ordinary differential equation (ODE),

u� Dð Þu0 ¼ f x;Dð Þ � gðx; u;uÞ; ð4Þ
on x 2 a; 0½ � with uð0Þ ¼ 2D as the shock condi-
tion. Here and below, primes denote the deriva-
tive, d=dx. The left end of the integration region



L.M. Faria, A.R. Kasimov / Proceedings of the Combustion Institute 35 (2015) 2015–2023 2017
is either a ¼ �1 or the sonic locus, a ¼ x�, where
u� D ¼ 0. The main problem is to determine the
detonation speed, D, such that the corresponding
solution, u x; tð Þ, of (4) is a smooth function of x.
This is a nonlinear eigenvalue problem for D
because such smooth solutions do not necessarily
exist for every D at a given u. For physically inter-
esting choices of f and g, there usually exists a
sonic point where u ¼ D, which is a singular point
of (4). For smoothness of u, it is necessary that the
right-hand side of (4) vanishes at the sonic point.
These conditions constitute the generalized Chap-
man–Jouguet conditions of detonation theory and
serve to determine the eigenvalue relation,
HðD;uÞ ¼ 0, that yields D for a given u. Typi-
cally, D uð Þ is a multiple-valued function having
a turning-point shape.

The nonlinear ODE (4) cannot, in general, be
solved analytically. Therefore, a numerical inte-
gration method is required. In one such method,
for a trial value of D, (4) is integrated from
x ¼ 0 toward x ¼ a. The correct value of D has
to correspond to u� D ¼ 0 and f � g ¼ 0 at
x ¼ x�. These conditions are not satisfied in most
cases, and, therefore, Eq. (4) is very stiff as
u! D, making the numerical integration prohib-
itively expensive and/or inaccurate. As an alterna-
tive to this method, the sonic locus, x�ðD;uÞ, is
found first for a trial value of D. Then, the solu-
tion of (4) is found analytically in the neighbor-
hood of x� in order to get out of the sonic point
by a small step to x� þ Dx, with a subsequent
numerical integration from x� þ Dx toward the
shock. For the correct value of D, the Rankine–
Hugoniot conditions at x ¼ 0 must be satisfied.
This algorithm is more robust numerically. How-
ever, its drawback is that it requires the knowl-
edge of the sonic state and the ability to solve
the equation (or the system of equations, in
general) in the neighborhood of the sonic locus
analytically. Even though, in our case, it is
straightforward to do so, in more complicated
problems, this approach is not feasible [8].

Here, we propose a different algorithm that is
much simpler, more robust, and easier to general-
ize (see Appendix A for the general version of the
algorithm). The key idea of the method is a
change of the dependent variable that eliminates
the singularity from the governing ODE. Specifi-
cally, we introduce z ¼ u� Dð Þ2 as a new variable
instead of u. Then, (4) becomes

z0 ¼ 2 f x;Dð Þ � gðx; u;uÞð Þ; ð5Þ
which has a regular right-hand side. Notice that
the inverse of the transformation from u to z is
double-valued, u ¼ D� ffiffi

z
p

. At the shock,
uð0Þ ¼ 2D > D, and, therefore, between the shock
and the sonic point, we have u ¼ Dþ ffiffi

z
p

. Hence

z0 ¼ 2 f x;Dð Þ � gðx;Dþ
ffiffi
z
p
;uÞ

� �
: ð6Þ
Downstream of the sonic point, the square root
changes its branch. Therefore, u ¼ D� ffiffi

z
p

. The
sonic condition in the new variable is very simple:
z0 ¼ 0 at z ¼ 0. These conditions are clearly inde-
pendent of the specific form of the right-hand side
of (4). The main advantages of the new algorithm
are that the equations are no longer stiff and that
the sonic conditions are very simple. If the solu-
tion beyond the sonic point is required, then
z0 ¼ 2 f x;Dð Þ � gðx;D� ffiffi

z
p
;uÞð Þ must be solved

at x < x�.
The substitution employed here is applicable to

a wide range of problems [8]. For example, the
problem of finding a quasi-steady solution of a
curved expanding detonation leads to the ODE
for the flow velocity (e.g., [4]):

du
dk
¼ U

u2 � c2

u
x
; ð7Þ

where x ¼ k 1� kð Þ expð�c#=c2Þ is the reaction
rate, # is the activation energy, U ¼
c� 1ð Þqx� jc2 uþ Dð Þ, j is the shock curvature,

q is the heat release, and c2 ¼ cp0 þ c� 1ð Þ
D2 � u2
� �

=2þ qk
� �

. The integration domain is
0 6 k � 1 with uð0Þ ¼ usðDÞ given by the
Rankine–Hugoniot condition. The sonic singular-
ity here occurs at u ¼ c and hence we introduce
z ¼ u� cð Þ2 to obtain
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which is regular at the sonic point. After the cor-
rect branch of the inversion is obtained, the gener-
alized Chapman–Jouguet condition at the sonic
point in terms of the new variables is that
dz=dk ¼ 0 at the sonic point, k ¼ k�, where
zðk�Þ ¼ 0. This provides a much simpler and faster
way of solving the generalized Chapman–Jouguet
condition and allows for integration from the
shock toward the sonic point without any
difficulty.

On linear stability analysis

Once the steady or quasi-steady solutions are
obtained, the question of their linear stability
arises. The problem without losses is analyzed
extensively in [14], where it is shown that the anal-
ysis parallels that of the reactive Euler equations.

We begin with the stability of steady-state
solutions. Let u0ðxÞ be the solution of

d
dx

1

2
u2

0 � D0u0

� �
¼ f x;D0ð Þ � gðx; u0;uÞ; ð9Þ

where u is a constant and D0 is such that the gen-
eralized Chapman–Jouguet condition is satisfied.
Consider then a perturbation of this solution of



Fig. 1. The us � cf relation for the steady-state solution
of (17) for detonation with friction.
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the form D ¼ D0 þ �r expðrtÞ and u ¼ u0ðxÞþ
�u1ðxÞ expðrtÞ, where r is the growth rate to be
found. Inserting these expansions into (3) yields

ru1 þ u0u1 � D0u1 � ru0ð Þ0

¼ r
@f
@D

x;D0ð Þ � u1

@g
@u
ðx; u0;uÞ; ð10Þ

which can be solved exactly to yield the
eigenfunction,

u1 xð Þ¼ r
c0ðxÞ
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Z x
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are functions of f and g, which are known in terms
the steady-state solution, u0 xð Þ. Requiring bound-
edness of the eigenfunctions gives the dispersion
relationZ 0

x�

@f
@D

n;D0ð Þ þ u00
� �

e�pðn;rÞdn� 2D0 ¼ 0; ð11Þ

which is the same as in the ideal case with the only
change due to g appearing in the expression for p.
Hence, the stability analysis of the equation with
losses is very similar to the ideal case analyzed
in [14].

For quasi-steady problems, the stability analy-
sis is a bit subtler. Consider
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where u is a slowly varying function of time.
Then, the steady-state solution for u does not exist
in general. We then consider solutions that are
slowly evolving in time by considering a slow time
variable, s ¼ dt; 0 < d� 1, such that u ¼ u sð Þ.
Then,
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Let udðx; sÞ be the exact solution of (13) with
D ¼ DdðsÞ as the speed. Then, the spectral
stability of this solution requires looking at
the evolution of D ¼ DdðsÞ þ �r expðrtÞ and
u ¼ udðx; sÞ þ �ud1ðx; sÞ expðrtÞ. It is important to
observe that these expansions express O 1ð Þ
time-scale variations around the slow, O 1=dð Þ,
time-scale leading solution. Putting these expres-
sions into (13), we obtain, to first order,

d
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Next, we perform an asymptotic expansion in
d : ud¼u0þOðdÞ, ud1¼u1þOðdÞ;Dd¼D0þOðdÞ.
Then, to leading order, the quasi-steady solution
satisfies

d
dx
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2
u2
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� �
¼ f x;D0ð Þ � gðx; u0;uÞ; ð16Þ

which, together with the shock and sonic condi-
tions, gives the eigenvalue problem for D0. The
linear stability equation is, to leading order in d,
given by the same equation as (10) and hence
the dispersion relation is also given by (11). Notice
here that the implicit assumption @u0=@s ¼ Oð1Þ is
required for the validity of the asymptotic expan-
sion in d. This is seen to break down at a turning
point of the D0 � u curve if such a point exists.
Numerical results

In this section, we investigate numerically two
types of losses, frictional and those due to shock
curvature. For detonation with frictional losses,
we consider
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u2 � Du

� �
¼ f x;Dð Þ � cf ujuj; ð17Þ

where x 2 ð�1; 0� and cf is a constant friction
coefficient. The goal of the following calculations
is to determine the role of cf in the existence
and structure of the steady-state solutions of
(17). Figure 1 shows the computed dependence
of us ¼ 2D on cf , where we can see the character-
istic turning-point behavior with two solutions
coexisting at cf < cfc and steady-state solutions
no longer existing if cf > cfc.

Of particular interest is the question of stability
of these steady-state solutions. It is generally
believed that the lower branch of the steady-state
us-cf curve is always unstable while the top branch
can be stable or unstable. In order to explore the
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nature of these instabilities, we solve (17) numeri-
cally using a second-order finite volume Godu-
nov’s method with a min-mod limiter [16]. We
begin with a perturbation around the steady-state
solutions at different locations of the us-cf curve,
both on the top and bottom branches. We choose
a and b such that the corresponding ideal solution
is stable.

We find that as we increase cf along the top
branch, there is a critical value of cf above which
the detonation becomes unstable, indicating that
the losses have a destabilizing effect. Figure 2
shows the computed solutions at cf ¼ 0:1, corre-
sponding to a stable state on the upper branch,
and cf ¼ 0:125, corresponding to an unstable
state on the upper branch. Note that the instabil-
ity of the steady-state solutions on the top branch
is associated with a transition to a limit cycle,
likely arising through a Hopf bifurcation when
cf exceeds a critical value. These oscillations take
place around the steady-state solution.

As we solve the problem starting on the bot-
tom branch, we find that the steady-state solution
on the branch is indeed unstable, but, unlike the
solutions on the top branch, there is no oscillation
around the bottom branch. The solution tends in
fact toward the top branch with time, indicating
that the bottom branch is generally a repelling
equilibrium while the top branch is attracting.
The dynamics of this instability is quite different
from that on the top branch. It involves a genera-
tion of internal shock waves in the reaction zone
that overtake the lead shock and, eventually, after
multiple such overtakings, the solution settles on
the top branch. The discontinuous behavior of
the thick curves in Fig. 2 occurs precisely when
an internal shock wave catches up with the lead
shock. At that moment, there is a rapid increase
of us. The general trend of the solution appears
to be physically reasonable, reflecting the strong
instability of the lower branch of the D-cf curve
and the attracting character of the upper branch.
Fig. 2. Time evolution of solutions for detonation with frictio
cf ¼ 0:1, the top branch is stable, the integration is carried ou
bottom branch (thick curve); (b) the same, but at cf ¼ 0:125,
branch. The pulsating instability in (b) is due purely to the pr
It is interesting that very similar behavior was
observed in experiments on initiation of spherical
detonation in hydrocarbon–air mixtures [17].

Now, we look at spherically expanding detona-
tion solutions. The shock-frame version of (1) for
a diverging detonation is given by
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where rs tð Þ denotes the shock radius such that
drs=dt ¼ D ¼ us=2. When @u=@t is dropped, (18)
can be written as

du0

dx
¼ f x; usð Þ � ju2

0= 1þ jxð Þ
u0 � us=2

; ð19Þ

where j ¼ 1=rs is the mean curvature of the shock.
This equation must be solved subject to u0 0ð Þ ¼ us

and to some appropriate condition at x ¼ �rs, i.e.,
at r ¼ 0.

Equation (19) is solved using the algorithm
described earlier. In Fig. 3(a), we show the com-
puted dependence of us on j for various values of
a at b ¼ 0:1. The usual turning-point behavior is
seen with the critical curvature decreasing as a
increases. This is similar to that in the Euler detona-
tions wherein the activation energy leads to the
same effects [18,19]. One important difference is
that, in Fig. 3(a), there are only two branches, the
lower branch tending to us ¼ 0 and j ¼ 0, while
in the Euler equations, there are in general three
branches, the lower branch tending to D ¼ ca, the
ambient sound speed, and j!1. In Fig. 3(b),
we also show the solution profiles that correspond
to the us � j curves in Fig. 3(a) at a particular value
of j ¼ 0:1, but at two different values of us, one on
the upper branch and one on the lower. A notable
feature of these profiles is the existence of an inter-
nal maximum of u, which does not exist in the pla-
nar solution at the same parameters.

In order to understand better the role of the
curvature term in (18), we solve the equation
n starting with the middle curve of Fig. 1 at a ¼ 1: (a) at
t starting both from the top branch (thin curve) and the
which corresponds to unstable solutions around the top
esence of friction.



(a) (b)

Fig. 3. (a) Quasi-steady us � j curves at b ¼ 0:1 fixed and variable a. (b) The quasi-steady solution profiles u0 xð Þ on the
top and the bottom branches of the us � j curve in (a) at a ¼ 1 and j ¼ 0:1.
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simulating the direct initiation of gaseous detona-
tion. In the laboratory frame of reference, (18)
takes the form
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0; r > rs:

�
ð20Þ

We solve this equation using a fifth-order WENO
algorithm [20] and the initial conditions corre-
sponding to a localized source of the type
u r; 0ð Þ ¼ ui at 0 < r < ri and u r; 0ð Þ ¼ 0 at r > ri.
Here, ri is the radius of the initial hot spot and
ui is its “temperature”. The point-blast initiation
is simulated keeping ri fixed at some small value
and varying ui, a measure of the source energy.

Our findings are displayed in Fig. 4. We select
two sets of parameters for a and b such that one
corresponds to a stable planar solution and the
other to an unstable planar solution. For each
case, we vary ui to see if the detonation initiates
or fails. Exactly as in the Euler detonations [21],
(a)

Fig. 4. Initiation and failure of: (a) stable solutions at a ¼ 3:
b ¼ 0:1, the length of the computational domain is L ¼ 103, a
we observe that above a certain critical value,
uic, there is an initiation; below there is failure.
Moreover, the curvature in our model also plays
a destabilizing role. As one can see in Fig. 4(a),
the detonation that is stable in the planar case
oscillates in the presence of significant curvature.
The oscillations are large in magnitude and irreg-
ular at first, around rs ¼ 100 to about rs ¼ 150,
before settling down to regular decaying oscilla-
tions. A similar trend is seen in the unstable case,
shown in Fig. 4(b), where the range of the irregu-
lar oscillations extends from about rs ¼ 120 to
rs ¼ 400 before settling down to regular periodic
oscillations. When the curvature is significantly
diminished, the detonation dynamics is essentially
that of a planar wave. Hence, all the phenomena
observed in [13,14] carry over to the present study.
However, the destabilizing effect of curvature,
clearly seen in Fig. 4, requires further analysis in
order to reveal the underlying mechanisms. An
additional factor that contributes to the instability
of the solutions is b. For planar solutions, we have
(b)

9 and (b) unstable solutions at a ¼ 4:5. In both figures,
nd the number of grid points used is N ¼ 104.
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shown in [14] that smaller b leads to more unsta-
ble solutions, and we expect the same effect to be
preserved in the curved detonations as well.
Conclusions

A reactive Burgers equation with nonlocal
forcing and appropriate damping is shown to cap-
ture, at a qualitative level, the dynamics of deto-
nations with friction and of radially diverging
detonations. Using a new integration algorithm,
we have found that for curved detonations and
for non-ideal detonations, steady/quasi-steady
solutions exist, which have a characteristic turn-
ing-point shape in the plane of the shock speed
versus curvature or a friction coefficient.
Unsteady numerical simulations of our model
equation reproduce the dynamics of the point-
blast initiation, capturing the initiation/failure
phenomenon. The curvature or the presence of
friction are found to play a destabilizing role in
the dynamics of non-ideal detonation. The present
calculations together with our earlier study of the
planar model demonstrate that the reactive Bur-
gers equation is capable of reproducing, qualita-
tively, most of the dynamical properties of one-
dimensional detonations.
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Appendix A. Transonic integration of reactive
Euler equations

Here, we describe an algorithm for numerical
integration of the system of ordinary differential
equations (ODE) for the transonic structure of
traveling-wave solutions of reactive Euler equa-
tions in one spatial dimension. Because the algo-
rithm works for a general one-dimensional
system of hyperbolic balance laws, we begin with
such a system. Then we specialize to a system of
reactive Euler equations and provide an example
of a weakly curved detonation.

Consider a system of hyperbolic balance laws,

qt þ FðqÞx ¼ s qð Þ; ðA:1Þ
where q is the vector of unknowns, F is the flux
vector, and s is a source term. We look for travel-
ing wave solutions q ¼ qðx� DtÞ ¼ qðgÞ, consist-
ing of a shock followed by a smooth flow
downstream. The state upstream of the shock,
g > 0, is assumed to be uniform and steady,
q ¼ qa ¼ constant. Then, q, solves

FðqÞ � Dqð Þg ¼ s ðA:2Þ
in smooth parts of the flow, where g ¼ 0 is the
shock position and g < 0 is the downstream
region. At g ¼ 0, the following shock conditions
are satisfied:

�D q½ � þ F½ � ¼ 0; ðA:3Þ
with Z½ � ¼ Zþ � Z� denoting the jump in the
quantity Z across the shock. The solution of
(A.3) can be written as qð0�Þ ¼ qRH ðD; qaÞ. The
shock speed, D, is an unknown of the problem
and must be found together with the profiles of
q at g < 0.

A well-known difficulty in solving (A.2) arises
when one of the eigenvalues of the matrix,
Fq � DI, where Fq 	 @F=@q, vanishes at some
point g� < 0 (a sonic point), thus producing a
singular system of ODE, Fq � DI

� �
ug ¼ s [22].

This feature is an essential ingredient of any self-
sustained shock wave and is thus relevant in many
applications where such traveling shock-wave
solutions arise (e.g., traffic flow problems [23],
hydraulic jumps [24]). Should there be a vanishing
eigenvalue, a regularity condition is called upon
where, for boundedness of qg, it is required that

l� 
 s� ¼ 0 when k� ¼ 0; ðA:4Þ
where k� is the special eigenvalue of Fq � DI that
vanishes at g� and l� is the corresponding left eigen-
vector. Condition (A.4) serves as a closure condi-
tion that identifies admissible shock speeds, D.

Because analytic integration of (A.2) is rarely
possible, a numerical procedure is required. When
a vanishing eigenvalue exists somewhere in the
flow, we need a numerical algorithm to determine
the values of D for which (A.4) is satisfied. Impor-
tantly, the location of the critical point is
unknown a priori. A simple approach to solving
this problem is to make a guess for D and inte-
grate from g ¼ 0 up to the singular point, and
then check whether or not l� 
 s� ¼ 0 is satisfied.
This is a numerically ill-conditioned procedure
since the system becomes stiffer as one approaches
the singular point, the latter having a saddle-point
nature.

Our integration procedure avoids the numeri-
cal problems associated with the presence of a
sonic point. The key idea is based on the use of
a new dependent variable given by

z ¼ Gðq; DÞ ¼ F qð Þ � Dq: ðA:5Þ

The governing system of ODEs written in terms of
z becomes

zg ¼ sðqÞ; ðA:6Þ
and needs to be solved subject to the shock condi-
tions, zð0Þ ¼ F q0ð Þ � Dq0, with q0 denoting the
post-shock state. In order for this change of
variables to be successful, it must be invertible
so that q ¼ G�1ðz;DÞ. The inversion is guaranteed
to be well defined as long as the Jacobian,
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Gq ¼ Fq � DI, is not singular, which is the case
away from sonic points. It is important to note
that, in general, the inversion results in multiple
solution branches. In order to choose the correct
branch, we need to ensure that G�1 zð0Þð Þ ¼ q0.

The main advantage of the new variable is that
(A.6) is not stiff even as one approaches the singu-
lar point and thus the problem of finding the val-
ues of D such that (A.4) is satisfied becomes
regular. The analytical inversion of G may not
in general be possible as it depends on the specific
form of the equation of state. Nevertheless, the
general procedure remains valid and, once the
sonic points are found, the inversion can be done
numerically.

To specialize the previous analysis to one-
dimensional reactive Euler equations, we begin
with the equations written in conservation form:

qt þ quð Þx ¼s1; ðA:7Þ
quð Þt þ qu2 þ p

� �
x
¼s2; ðA:8Þ

qeð Þt þ queþ puð Þx ¼s3; ðA:9Þ
qkð Þt þ qukð Þx ¼s4: ðA:10Þ

We have chosen to keep s general for now. It can
account for such effects as curvature, heat and
momentum losses, area changes, etc. For simplic-
ity, we assume a perfect gas equation of state and
therefore e ¼ pv= c� 1ð Þ � Qkþ u2=2; p ¼ qRT ,
where Q is the heat of reaction, k is the
heat-release progress variable, and R is the univer-
sal gas constant. Now, let q1 ¼ q; q2 ¼ qu; q3 ¼ qe;

q4 ¼ qk. Then, p ¼ c� 1ð Þ q3 �
q2

2

2q1
þ Qq4

� 
. In

terms of these conserved quantities, we find that

F qð Þ ¼

q2

q2
2=q1 þ c� 1ð Þ q3 �

q2
2

2q1
� Qq4

� 
q2q3=q1 þ q2

q1
c� 1ð Þ q3 �

q2
2

2q1
� Qq4

� 
q2

q1
q4

0
BBBBBB@

1
CCCCCCA

ðA:11Þ
and the eigenvalues of Fq (which we do not write
for brevity) give the well-known characteristic
speeds of the Euler equations in the shock-
attached frame:

k1 ¼q2=q1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2

1 q2
2 � 2q1q3 þ 2Qq1q4ð Þðc� 1Þc

2q4
1

s

¼ u� c� D;

k2 ¼q2=q1 ¼ u� D;

k3 ¼q2=q1 ¼ u� D;

k4 ¼q2=q1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2

1 q2
2 � 2q1q3 þ 2Qq1q4ð Þðc� 1Þc

2q4
1

s

¼ uþ c� D;
where the sound speed is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q2

2
�2q1q3þ2Qq1q4ð Þðc�1Þc

2q2
1

r
¼

ffiffiffi
cp
q

q
. In order to

obtain the regularity condition at the sonic point,
we need to know the left eigenvector associated
with the forward characteristic. It is given by

l4 ¼ u2 c� 1ð Þ � uc; c� u c� 1ð Þ; c� 1ð Þ;Q c� 1ð Þ
� �

:

Thus, should there be a sonic point in the flow
k4 ¼ 0ð Þ, it is necessary that l4 
 s should vanish

at the sonic point in order for qg to be bounded.
Following the general procedure outlined

above, we define

z1 ¼q2 � Dq1;

z2 ¼q2
2=q1 þ c� 1ð Þ q3 �

q2
2

2q1

� Qq4

� �
� Dq2;

ðA:12Þ

z3 ¼q2q3=q1 þ
q2

q1

c� 1ð Þ q3 �
q2

2

2q1

� Qq4

� �
� Dq3;

z4 ¼
q2

q1

q4 � Dq4:

We obtain the inverse, q ¼ qðz1; z2; z3; z4Þ, as

q2 ¼z1 þ Dq1

q3 ¼
D2q2

1z1 þ 2Dq1z2
1 þ z3

1 � Dq2
1z2 � q1z1z2 þ q2

1z3

q1z1

q4 ¼
q1z4

z1

ðA:13Þ

with

q1 ¼
cz1ðz2�Dz1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1 D2z2
1�2Dz1z2þ c2z2

2�2 c2�1ð Þz1ðz3þQz4Þ
� �q

D2z1�2Dz2þ2ðc�1Þðz3þQz4Þ
:

ðA:14Þ

The choice of the inversion branch depends on
which branch of the square root in (A.14) is cho-
sen. We note that the expression under the square
root is

d	z2
1 D2z2

1�2Dz1z2þ c2z2
2�2z1ðz3þQz4Þ c2�1

� �� �
¼ q4k2

1k
2
3k

2
4; ðA:15Þ

i.e., it is a perfect square that vanishes only when
one of the eigenvalues of the Jacobian, Fq � DI,
becomes zero. One can thus simplify q1 as

q1 ¼
q cðu�DÞ2þ c2
� 

� signðu�DÞq u�Dþ cð Þ u�D�cð Þj j

ðc�1Þ ðu�DÞ2þ 2
c�1

c2
�  :

ðA:16Þ
The correct branch of the transformation is
selected by requiring that qðzð0ÞÞ ¼ qð0Þ, which
can be seen to be the negative branch. Across
the sonic point, the solution branch changes.

In order to illustrate the previous calculation
with a well-known example, we consider the small
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curvature approximation of the reactive Euler
equations, which can be written in a shock-
attached frame as (see, e.g., [24]),

q u� Dð Þð Þg ¼� jqu; ðA:17Þ
p þ qu u� Dð Þð Þg ¼� jqu2; ðA:18Þ

q u� Dð Þeþ puð Þg ¼� j queþ puð Þ; ðA:19Þ
qðu� DÞkð Þg ¼qx� jquk: ðA:20Þ

Here, x ¼ x p; q; kð Þ is a general rate function, not
necessarily of Arrhenius form. As before, we
define new dependent variables as in (A.12) and
the inverse as in (A.13). The system written in
terms of the new variable is simply zg ¼ sðzÞ. In
this particular case, the total enthalpy,

H ¼ cp
c�1ð Þqþ

u�Dð Þ2
2
� kQ, can be shown to be a con-

served quantity. Therefore, using the upstream
state to rescale the variables with respect to

pa; qa, and
ffiffiffiffiffiffiffiffiffiffiffiffi
pa=qa

p
, we find that

H ¼ D2z1�2Dz2þ2z3

2z1
¼ H 0 ¼ c

c�1
þ D2

2
. Then, we elimi-

nate z3 in favor of the remaining variables,
z3 ¼ c

c�1
z1 þ Dz2, to arrive at the following system:

z1ð Þg ¼� jq2; ðA:21Þ

z2ð Þg ¼� j
q2

2

q1

; ðA:22Þ

z4ð Þg ¼
�jq2q4 þ x

q1

; ðA:23Þ

which is free from singularity. It should be inte-
grated numerically from the shock to the sonic
point with the negative branch in (A.14) and, if
necessary, further from the sonic point using the
positive branch.
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